Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency
Awesome LLM Self-Consistency: a curated list of Self-consistency in Large Language Models
https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency
List: Awesome-LLM-Self-Consistency
chain-of-thought chatgpt compositional-consistency factual-consistency gpt-3 gpt-4 hypothetical-consistency llms llms-reasoning logical-consistency pretrained-language-model reasoning self-consistency self-consistency-benchmark self-consistency-learning self-consistent-generation semantics semantics-consistency semantics-preserving
Last synced: 3 months ago
JSON representation
Awesome LLM Self-Consistency: a curated list of Self-consistency in Large Language Models
- Host: GitHub
- URL: https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency
- Owner: SuperBruceJia
- License: mit
- Created: 2023-10-08T18:27:36.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-03-04T19:14:53.000Z (11 months ago)
- Last Synced: 2024-05-21T17:07:18.572Z (8 months ago)
- Topics: chain-of-thought, chatgpt, compositional-consistency, factual-consistency, gpt-3, gpt-4, hypothetical-consistency, llms, llms-reasoning, logical-consistency, pretrained-language-model, reasoning, self-consistency, self-consistency-benchmark, self-consistency-learning, self-consistent-generation, semantics, semantics-consistency, semantics-preserving
- Homepage: https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency
- Size: 142 KB
- Stars: 37
- Watchers: 3
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-LLM-Reasoning - Awesome LLM Self-Consistency - consistency in Large Language Models. (Other Awesome Lists / 2022)
- ultimate-awesome - Awesome-LLM-Self-Consistency - Awesome LLM Self-Consistency: a curated list of Self-consistency in Large Language Models. (Other Lists / Monkey C Lists)
README
# Awesome LLM Self-Consistency
Awesome LLM Self-Consistency: A Curated List of Self-consistency in Large Language Models[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
[![Made With Love](https://img.shields.io/badge/Made%20With-Love-red.svg)](https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency)This repository, called **Self-Consistency of LLMs**, contains a collection of resources and papers on **Self-Consistency** in **Large Language Models**.
"*I can't see a path that guarantees safety. We're entering a period of great uncertainty where we're dealing with things we've never dealt with before, and we can't afford to get it wrong with these things because they might take over.*" - Geoffrey Hinton, Professor, Department of Computer Science, University of Toronto, October 5, 2023
*Welcome to share your papers, thoughts, and ideas by [submitting an issue](https://github.com/SuperBruceJia/Awesome-LLM-Self-Consistency/issues/new)!*
## Contents
- [Presentations](#Presentations)
- [Books](#Books)
- [Benchmarks](#Benchmarks)
- [Arithmetic Reasoning](#Arithmetic-Reasoning)
- [Commonsense Reasoning](#Commonsense-Reasoning)
- [Semantic Consistency](#Semantic-Consistency)
- [Logical Consistency](#Logical-Consistency)
- [Factual Consistency](#Factual-Consistency)
- [Papers](#Papers)
- [Reasoning](#Reasoning)
- [Semantics](#Semantics)
- [Logicality](#Logicality)
- [Factuality](#Factuality)
- [Medicine and Healthcare](#Medicine-and-Healthcare)
- [Multimodal Foundation Models](#Multimodal-Foundation-Models)# Presentations
**Teach Language Models to Reason** \
*Denny Zhou, Google DeepMind* \
[[Link](https://dennyzhou.github.io/LLMs-Reason-2023-Harvard-Yale.pdf)] \
Sept 2023# Books
**The Path to Artificial General Intelligence: Insights from Adversarial LLM Dialogue** \
*Edward Y. Chang* \
SocraSynth.com, [[Link](https://www.amazon.com/dp/1962463303)] \
March 2024**Foundation Models for Natural Language Processing: Pre-trained Language Models Integrating Media** \
*Gerhard Paaß, Sven Giesselbach* \
Artificial Intelligence: Foundations, Theory, and Algorithms (Springer Nature), [[Link](https://link.springer.com/book/10.1007/978-3-031-23190-2)] \
16 Feb 2023# Benchmarks
## Arithmetic Reasoning
**GSM8K-Consistency**: \
**Consistency of Arithmetic Reasoning on GSM8K Benchmark** \
*Shuyue Jia* \
Hugging Face 2023, [[Hugging Face](https://huggingface.co/datasets/shuyuej/GSM8K-Consistency)] [[GitHub](https://github.com/SuperBruceJia/GSM8K-Consistency)]\
01 Dec 2023**GSM8K**: \
**Training Verifiers to Solve Math Word Problems** \
*Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, John Schulman* \
arXiv 2021, [[Paper](https://github.com/openai/grade-school-math)] [[GitHub](https://github.com/openai/grade-school-math)] [[Blog Post]](https://openai.com/research/solving-math-word-problems)\
18 Nov 2021**SingleEq**: \
**Parsing Algebraic Word Problems into Equations** \
*Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, Siena Dumas Ang* \
TACL 2015, [[Paper](https://aclanthology.org/Q15-1042.pdf)] [[Gitlab](https://gitlab.cs.washington.edu/ALGES/TACL2015)] \
24 June 2015**AddSub**: \
**Learning to Solve Arithmetic Word Problems with Verb Categorization** \
*Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, Nate Kushman* \
EMNLP 2014, [[Paper](https://aclanthology.org/D14-1058.pdf)] [[Gitlab](https://www.cs.washington.edu/nlp/arithmetic)] \
25 Oct 2014**MultiArith**: \
**Solving General Arithmetic Word Problems** \
*Subhro Roy, Dan Roth* \
EMNLP 2015, [[Paper](https://aclanthology.org/D15-1202.pdf)] [[Webpage](https://cogcomp.seas.upenn.edu/page/resource_view/98)] \
17 Sept 2015**AQUA-RAT**: \
**Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems** \
*Wang Ling, Dani Yogatama, Chris Dyer, Phil Blunsom* \
ACL 2017, [[Paper](https://aclanthology.org/P17-1015.pdf)] [[GitHub](https://github.com/google-deepmind/AQuA)] \
30 July 2017**SVAMP**: \
**Are NLP Models really able to Solve Simple Math Word Problems?** \
*Arkil Patel, Satwik Bhattamishra, Navin Goyal* \
NAACL 2021, [[Paper](https://aclanthology.org/2021.naacl-main.168.pdf)] [[GitHub](https://github.com/arkilpatel/SVAMP)] \
6 July 2021**ASDiv**: \
**A Diverse Corpus for Evaluating and Developing English Math Word Problem Solvers** \
*Shen-yun Miao, Chao-Chun Liang, Keh-Yih Su* \
ACL 2020, [[Paper](https://aclanthology.org/2020.acl-main.92.pdf)] [[GitHub](https://github.com/chaochun/nlu-asdiv-dataset)] \
5 July 2020## Commonsense Reasoning
**CSQA**: \
**CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge** \
*Alon Talmor, Jonathan Herzig, Nicholas Lourie, Jonathan Berant* \
NAACL 2019, [[Paper](https://arxiv.org/pdf/1811.00937.pdf)] [[Webpage](https://www.tau-nlp.sites.tau.ac.il/commonsenseqa)] \
15 Mar 2019## Semantic Consistency
**BECEL**: \
**BECEL: Benchmark for Consistency Evaluation of Language Models** \
*Myeongjun Jang, Deuk Sin Kwon, Thomas Lukasiewicz* \
COLING 2022, [[Paper](https://aclanthology.org/2022.coling-1.324.pdf)] [[GitHub](https://github.com/MJ-Jang/BECEL)]\
12 Oct 2022**Paraphrased SQuAD Questions**: \
**Improving the Robustness of Question Answering Systems to Question Paraphrasing** \
*Wee Chung Gan, Hwee Tou Ng* \
ACL 2019, [[Paper](https://aclanthology.org/P19-1610.pdf)] [[GitHub](https://github.com/nusnlp/paraphrasing-squad)]\
28 July 2019## Logical Consistency
### Negational, Symmetric, Transitive, and Additive Consistency
**BECEL**: \
**BECEL: Benchmark for Consistency Evaluation of Language Models** \
*Myeongjun Jang, Deuk Sin Kwon, Thomas Lukasiewicz* \
COLING 2022, [[Paper](https://aclanthology.org/2022.coling-1.324.pdf)] [[GitHub](https://github.com/MJ-Jang/BECEL)]\
12 Oct 2022### Hypothetical and Compositional Consistency
**Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs** \
*Angelica Chen, Jason Phang, Alicia Parrish, Vishakh Padmakumar, Chen Zhao, Samuel R. Bowman, Kyunghyun Cho* \
arXiv 2023, [[Paper](https://browse.arxiv.org/pdf/2305.14279.pdf)]\
2 Oct 2023## Factual Consistency
**mParaRel**: \
**mParaRel: Factual Consistency of Multilingual Pretrained Language Models** \
*Constanza Fierro, Anders Søgaard* \
Findings of ACL: ACL 2022, [[Paper](https://aclanthology.org/2022.findings-acl.240.pdf)] [[GitHub](https://github.com/coastalcph/mpararel)]\
22 Mar 2022**ParaRel**: \
**ParaRel:metal:: Measuring and Improving Consistency in Pretrained Language Models** \
*Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schütze, Yoav Goldberg* \
TACL 2021, [[Paper](https://aclanthology.org/2021.tacl-1.60.pdf)] [[GitHub](https://github.com/yanaiela/pararel)] [[Presentation](https://yanaiela.github.io/presentations/consistency.pdf)]\
29 May 2021# Papers
## Reasoning
**Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations** \
*Peiyi Wang, Lei Li, Zhihong Shao, R.X. Xu, Damai Dai, Yifei Li, Deli Chen, Y.Wu, Zhifang Sui* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2312.08935.pdf)]\
28 Dec 2023**A Survey of Reasoning with Foundation Models** \
*Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu, Mingyu Ding, Hongyang Li, Mengzhe Geng, Yue Wu, Wenhai Wang, Junsong Chen, Zhangyue Yin, Xiaozhe Ren, Jie Fu, Junxian He, Wu Yuan, Qi Liu, Xihui Liu, Yu Li, Hao Dong, Yu Cheng, Ming Zhang, Pheng Ann Heng, Jifeng Dai, Ping Luo, Jingdong Wang, Ji-Rong Wen, Xipeng Qiu, Yike Guo, Hui Xiong, Qun Liu, Zhenguo Li* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2312.11562.pdf)] [[GitHub](https://github.com/reasoning-survey/Awesome-Reasoning-Foundation-Models)]\
26 Dec 2023**Query and Response Augmentation Cannot Help Out-of-domain Math Reasoning Generalization** \
*Chengpeng Li, Zheng Yuan, Hongyi Yuan, Guanting Dong, Keming Lu, Jiancan Wu, Chuanqi Tan, Xiang Wang, Chang Zhou* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2310.05506.pdf)] [[GitHub](https://github.com/OFA-Sys/gsm8k-ScRel)]\
1 Nov 2023**MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models** \
*Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhenguo Li, Adrian Weller, Weiyang Liu* \
arXiv 2023, [[Paper](https://openreview.net/pdf?id=N8N0hgNDRt)] [[GitHub](https://github.com/meta-math/MetaMath)]\
9 Oct 2023**Large Language Models are Better Reasoners with Self-Verification** \
*Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, Jun Zhao* \
EMNLP 2023 Findings, [[Paper](https://arxiv.org/pdf/2212.09561.pdf)] [[GitHub](https://github.com/WENGSYX/Self-Verification)]\
19 Oct 2023**Reasoning with Language Model Prompting: A Survey** \
*Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang, Huajun Chen* \
ACL 2023, [[Paper](https://aclanthology.org/2023.acl-long.294.pdf)] [[GitHub](https://github.com/zjunlp/Prompt4ReasoningPapers)]\
18 Sep 2023**Scaling Relationship on Learning Mathematical Reasoning with Large Language Models** \
*Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou, Jingren Zhou* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2308.01825.pdf)] [[GitHub](https://github.com/OFA-Sys/gsm8k-ScRel)]\
3 Aug 2023**Large Language Models Can Be Easily Distracted by Irrelevant Context** \
*Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael Schärli, Denny Zhou* \
ICML 2023, [[Paper](https://proceedings.mlr.press/v202/shi23a/shi23a.pdf)] [[GitHub](https://github.com/google-research-datasets/GSM-IC)]\
6 Jun 2023**Towards Reasoning in Large Language Models: A Survey** \
*Jie Huang, Kevin Chen-Chuan Chang* \
Findings of ACL 2023, [[Paper](https://aclanthology.org/2023.findings-acl.67.pdf)] [[GitHub](https://github.com/jeffhj/LM-reasoning)]\
26 May 2023**Self-Refine: Iterative Refinement with Self-Feedback** \
*Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, Peter Clark* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2303.17651.pdf)] [[GitHub](https://github.com/madaan/self-refine)] [[Webpage](https://selfrefine.info/)]\
25 May 2023**Self-Refine: Iterative Refinement with Self-Feedback** \
*Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, Peter Clark* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2303.17651.pdf)] [[Website](https://selfrefine.info/)] [[GitHub](https://github.com/madaan/self-refine)] [[Demo](https://self-refine-webgen.herokuapp.com/)]\
25 May 2023**Let's Sample Step by Step: Adaptive-Consistency for Efficient Reasoning with LLMs** \
*Pranjal Aggarwal, Aman Madaan, Yiming Yang, Mausam* \
arXiv 2023, [[Paper](https://browse.arxiv.org/pdf/2305.11860.pdf)] [[Website](http://sample-step-by-step.info/)] [[GitHub](https://github.com/Pranjal2041/AdaptiveConsistency)]\
19 May 2023**Self-Consistency Improves Chain of Thought Reasoning in Language Models** \
*Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, Denny Zhou* \
ICLR 2023, [[Paper](https://openreview.net/pdf?id=1PL1NIMMrw)]\
7 Mar 2023**Chain-of-Thought Prompting Elicits Reasoning in Large Language Models** \
*Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou* \
NeurIPS 2022, [[Paper](https://arxiv.org/pdf/2201.11903.pdf)]\
28 Jan 2022## Semantics
**Semantic Consistency for Assuring Reliability of Large Language Models** \
*Harsh Raj, Vipul Gupta, Domenic Rosati, Subhabrata Majumdar* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2308.09138.pdf)]\
17 Aug 2023**Measuring Reliability of Large Language Models through Semantic Consistency** \
*Harsh Raj, Domenic Rosati, Subhabrata Majumdar* \
ML Safety Workshop, NeurIPS 2022, [[Paper](https://arxiv.org/pdf/2211.05853.pdf)]\
28 Nov 2022**Prompt Consistency for Zero-Shot Task Generalization** \
*Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig* \
Findings of ACL: EMNLP 2022, [[Paper](https://aclanthology.org/2022.findings-emnlp.192.pdf)] [[GitHub](https://github.com/violet-zct/swarm-distillation-zero-shot)]\
27 Dec 2022**Accurate, Yet Inconsistent? Consistency Analysis on Language Understanding Models** \
*Myeongjun Jang, Deuk Sin Kwon, Thomas Lukasiewicz* \
arXiv 2021, [[Paper](https://arxiv.org/pdf/2108.06665.pdf)]\
15 Aug 2021**Evolution of Semantic Similarity—A Survey** \
*Dhivya Chandrasekaran, Vijay Mago* \
ACM Computing Survey 2021, [[Paper](https://dl.acm.org/doi/abs/10.1145/3440755)]\
30 Jan 2021## Logicality
**Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference** \
*Eric Mitchell, Joseph Noh, Siyan Li, Will Armstrong, Ananth Agarwal, Patrick Liu, Chelsea Finn, Christopher Manning* \
EMNLP 2022, [[Paper](https://aclanthology.org/2022.emnlp-main.115.pdf)] [[Website](https://ericmitchell.ai/emnlp-2022-concord/)] [[GitHub](https://github.com/eric-mitchell/concord)]\
21 Nov 2022## Factuality
**RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by Reversing Chain-of-Thought** \
*Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han, Pengfei Yu, Heng Ji* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2305.11499.pdf)] \
2 Oct 2023**P-Adapters: Robustly Extracting Factual Information from Language Models with Diverse Prompts** \
*Benjamin Newman, Prafulla Kumar Choubey, Nazneen Rajani* \
ICLR 2022, [[Paper](https://openreview.net/pdf?id=DhzIU48OcZh)] [[GitHub](https://github.com/salesforce/FactLM)]\
19 Apr 2022**How Can We Know What Language Models Know?** \
*Zhengbao Jiang, Frank F. Xu, Jun Araki, Graham Neubig* \
TACL 2020, [[Paper](https://aclanthology.org/2020.tacl-1.28.pdf)] [[GitHub](https://github.com/jzbjyb/LPAQA)]\
3 May 2020## Medicine and Healthcare
**BiomedGPT: A Unified and Generalist Biomedical Generative Pre-trained Transformer for Vision, Language, and Multimodal Tasks** \
*Kai Zhang, Jun Yu, Eashan Adhikarla, Rong Zhou, Zhiling Yan, Yixin Liu, Zhengliang Liu, Lifang He, Brian Davison, Xiang Li, Hui Ren, Sunyang Fu, James Zou, Wei Liu, Jing Huang, Chen Chen, Yuyin Zhou, Tianming Liu, Xun Chen, Yong Chen, Quanzheng Li, Hongfang Liu, Lichao Sun* \
arXiv 2024, [[Paper](https://arxiv.org/pdf/2305.17100.pdf)] [[GitHub](https://github.com/taokz/BiomedGPT)]\
9 Jan 2024**Can Large Language Models Reason about Medical Questions?** \
*Valentin Liévin, Christoffer Egeberg Hother, Andreas Geert Motzfeldt, Ole Winther* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2207.08143.pdf)] [[GitHub](https://github.com/vlievin/medical-reasoning)]\
24 Dec 2023**Towards Generalist Biomedical AI** \
*Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed Amin, Pi-Chuan Chang, Andrew Carroll, Chuck Lau, Ryutaro Tanno, Ira Ktena, Basil Mustafa, Aakanksha Chowdhery, Yun Liu, Simon Kornblith, David Fleet, Philip Mansfield, Sushant Prakash, Renee Wong, Sunny Virmani, Christopher Semturs, S Sara Mahdavi, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Karan Singhal, Pete Florence, Alan Karthikesalingam, Vivek Natarajan* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2307.14334.pdf)] [[GitHub](https://github.com/kyegomez/Med-PaLM)]\
26 Jul 2023**LLaVA-Med: Training a Large Language-and-Vision Assistant for Biomedicine in One Day** \
*Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon, Jianfeng Gao* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2306.00890.pdf)] [[GitHub](https://github.com/microsoft/LLaVA-Med)]\
1 Jun 2023**Towards Expert-Level Medical Question Answering with Large Language Models** \
*Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather Cole-Lewis, Darlene Neal, Mike Schaekermann, Amy Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield, Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong, Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh Azizi, Alan Karthikesalingam, Vivek Natarajan* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2305.09617.pdf)]\
16 May 2023**Large Language Models Encode Clinical Knowledge** \
*Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Nathaneal Scharli, Aakanksha Chowdhery, Philip Mansfield, Blaise Aguera y Arcas, Dale Webster, Greg S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajkomar, Joelle Barral, Christopher Semturs, Alan Karthikesalingam, Vivek Natarajan* \
Nature, [[Paper](https://www.nature.com/articles/s41586-023-06291-2)]\
26 Dec 2022## Multimodal Foundation Models
**Multimodal Foundation Models: From Specialists to General-Purpose Assistants** \
*Chunyuan Li, Zhe Gan, Zhengyuan Yang, Jianwei Yang, Linjie Li, Lijuan Wang, Jianfeng Gao* \
arXiv 2023, [[Paper](https://arxiv.org/pdf/2309.10020.pdf)] [[Webpage](https://vlp-tutorial.github.io/2023/)]\
18 Sep 2023