Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/SwiftBrain/awesome-CoreML-models
Collection of models for Core ML
https://github.com/SwiftBrain/awesome-CoreML-models
List: awesome-CoreML-models
ai awesome awesome-list coreml coreml-framework coreml-models coremltools deep-learning ios ios11 machine-learning machine-learning-models model swift
Last synced: 3 months ago
JSON representation
Collection of models for Core ML
- Host: GitHub
- URL: https://github.com/SwiftBrain/awesome-CoreML-models
- Owner: SwiftBrain
- License: mit
- Created: 2017-06-08T05:36:55.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2019-12-07T02:09:02.000Z (about 5 years ago)
- Last Synced: 2024-04-14T09:57:33.917Z (9 months ago)
- Topics: ai, awesome, awesome-list, coreml, coreml-framework, coreml-models, coremltools, deep-learning, ios, ios11, machine-learning, machine-learning-models, model, swift
- Size: 17 MB
- Stars: 559
- Watchers: 33
- Forks: 62
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- open-source-handbook - Core ML models
- ultimate-awesome - awesome-CoreML-models - Collection of models for Core ML . (Other Lists / Monkey C Lists)
README
# Awesome Core ML models [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
This repository has a collection of Open Source machine learning models which work with Apples **Core ML** standard.
Apple has published some of their own models. They can be downloaded [here](https://developer.apple.com/machine-learning/).
Those published models are: **SqueezeNet, Places205-GoogLeNet, ResNet50, Inception v3, VGG16** and will not be republished in this repository.## Contributing
If you want your model added simply create a pull request with your repository and model added. In order to keep the quality of this repository you have to conform to this project structure (taken from **@hollance**).```
├── Convert
├── coreml.py
├── mobilenet_deploy.prototxt
└── synset_words.txt
```There has to be a **Convert** directory with a Python script and additional data to reproduce this model on your own. If your model requires a huge amount of space please include a script which downloads those files.
```
├── MobileNetCoreML
│ ├── *.swift
├── MobileNetCoreML.xcodeproj
│ ├── project.pbxproj
│ └── project.xcworkspace
│ └── contents.xcworkspacedata
├── README.markdown
```You also have to have an Xcode project where the user can test the model (sample data included would be nice).
This is a template for the README to copy:
```
### Name of your model
**Model:** [Model.mlmodel](link for downloading)
**Description:** Short description
**Author:** [Author](https://github.com/author)
**Reference:** [Name of reference](URL to reference)
**Example:** [Your example project](URL to example project)
```
## Models### MobileNet
**Model:** [MobileNet.mlmodel](https://github.com/hollance/MobileNet-CoreML/raw/master/MobileNet.mlmodel)
**Description:** Object detection, finegrain classification, face attributes and large scale geo-localization
**Author:** [Matthijs Hollemans](https://github.com/hollance)
**Reference:** [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861v1)
**Example:** [MobileNet-CoreML](https://github.com/hollance/MobileNet-CoreML)### MNIST
**Model:** [MNIST.mlmodel](https://github.com/ph1ps/MNIST-CoreML/raw/master/MNISTPrediction/MNIST.mlmodel)
**Description:** Handwritten digit classification
**Author:** [Philipp Gabriel](https://github.com/ph1ps)
**Reference:** [MNIST handwritten digit database](http://yann.lecun.com/exdb/mnist/)
**Example:** [MNIST-CoreML](https://github.com/ph1ps/MNIST-CoreML)### Food101
**Model:** [Food101.mlmodel](https://drive.google.com/open?id=0B5TjkH3njRqnVjBPZGRZbkNITjA)
**Description:** Food classification
**Author:** [Philipp Gabriel](https://github.com/ph1ps)
**Reference:** [UPMC Food-101](http://visiir.lip6.fr/explore)
**Example:** [Food101-CoreML](https://github.com/ph1ps/Food101-CoreML)### SentimentPolarity
**Model:** [SentimentPolarity](https://github.com/cocoa-ai/SentimentCoreMLDemo/raw/master/SentimentPolarity/Resources/SentimentPolarity.mlmodel)
**Description:** Sentiment Polarity Analysis
**Author:** [Vadym Markov](https://github.com/vadymmarkov)
**Reference:** [Epinions.com reviews dataset](http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW3/)
**Example:** [SentimentCoreMLDemo](https://github.com/cocoa-ai/SentimentCoreMLDemo)### VisualSentimentCNN
**Model:** [VisualSentimentCNN](https://drive.google.com/open?id=0B1ghKa_MYL6mZ0dITW5uZlgyNTg)
**Description:** Visual Sentiment Prediction
**Author:** [Image Processing Group - BarcelonaTECH - UPC](https://github.com/imatge-upc)
**Reference:** [From Pixels to Sentiment: Fine-tuning CNNs for Visual Sentiment Prediction](https://github.com/imatge-upc/sentiment-2017-imavis)
**Example:** [SentimentVisionDemo](https://github.com/cocoa-ai/SentimentVisionDemo)### AgeNet
**Model:** [AgeNet](https://drive.google.com/file/d/0B1ghKa_MYL6mT1J3T1BEeWx4TWc/view?usp=sharing)
**Description:** Age Classification
**Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/)
**Reference:** [Age and Gender Classification using Convolutional Neural Networks](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf)
**Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)### GenderNet
**Model:** [GenderNet](https://drive.google.com/file/d/0B1ghKa_MYL6mYkNsZHlyc2ZuaFk/view?usp=sharing)
**Description:** Gender Classification
**Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/)
**Reference:** [Age and Gender Classification using Convolutional Neural Networks](http://www.openu.ac.il/home/hassner/projects/cnn_agegender/CNN_AgeGenderEstimation.pdf)
**Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)### CNNEmotions
**Model:** [CNNEmotions](https://drive.google.com/file/d/0B1ghKa_MYL6mTlYtRGdXNFlpWDQ/view?usp=sharing)
**Description:** Emotion Recognition
**Author:** [Gil Levi and Tal Hassner](http://www.openu.ac.il/home/hassner/projects/cnn_emotions/)
**Reference:** [Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns](http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf)
**Example:** [FacesVisionDemo](https://github.com/cocoa-ai/FacesVisionDemo)### NamesDT
**Model:** [NamesDT](https://github.com/cocoa-ai/NamesCoreMLDemo/raw/master/Names/Resources/NamesDT.mlmodel)
**Description:** Gender Classification from first names
**Author:** [http://nlpforhackers.io](http://nlpforhackers.io)
**Reference:** [Is it a boy or a girl? An introduction to Machine Learning](http://nlpforhackers.io/introduction-machine-learning/)
**Example:** [NamesCoreMLDemo](https://github.com/cocoa-ai/NamesCoreMLDemo)### Oxford102
**Model:** [Oxford102](https://drive.google.com/file/d/0B1ghKa_MYL6meDBHT2NaZGxkNzQ/view?usp=sharing)
**Description:** Flower Classification
**Author:** [Jimmie Goode](https://github.com/jimgoo)
**Reference:** [Classifying images in the Oxford 102 flower dataset with CNNs](http://jimgoo.com/flower-power/)
**Example:** [FlowersVisionDemo](https://github.com/cocoa-ai/FlowersVisionDemo)### FlickrStyle
**Model:** [FlickrStyle](https://drive.google.com/file/d/0B1ghKa_MYL6maFFWR3drLUFNQ1E/view?usp=sharing)
**Description:** Image Style Classification
**Author:** [Sergey Karayev](https://gist.github.com/sergeyk)
**Reference:** [Recognizing Image Style](http://sergeykarayev.com/files/1311.3715v3.pdf)
**Example:** [StylesVisionDemo](https://github.com/cocoa-ai/StylesVisionDemo)## Model Demonstration App
**Description:** Discover, download, on-device-compile & launch different image processing CoreML models on iOS.
**Author:** [Eugene Bokhan](https://github.com/eugenebokhan)
**Source:** [Awesome ML](https://github.com/eugenebokhan/Awesome-ML)
**Lincese:** [BSD 3-Clause](https://github.com/eugenebokhan/Awesome-ML/blob/master/LICENSE.md)