Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Syeda-Farhat/awesome-Transformers-For-Segmentation

Semantic segmentation is an important job in computer vision, and its applications have grown in popularity over the last decade.We grouped the publications that used various forms of segmentation in this repository. Particularly, every paper is built on a transformer.
https://github.com/Syeda-Farhat/awesome-Transformers-For-Segmentation

List: awesome-Transformers-For-Segmentation

computer-vision encoder-decoder instance-segmentation multihead-attention segmentation self-attention semantic-segmentation transformer

Last synced: 16 days ago
JSON representation

Semantic segmentation is an important job in computer vision, and its applications have grown in popularity over the last decade.We grouped the publications that used various forms of segmentation in this repository. Particularly, every paper is built on a transformer.

Awesome Lists containing this project

README

        

## Transfomers For Segmentation [![Awesome](https://awesome.re/badge-flat.svg)](https://awesome.re)

The suggested list is a compendium of works that use **Transformer-Based Segmentation** techniques for **Semantic and Instance Segmentation** of image or video datasets.

## Contribution
You can add to this repository; we would be grateful.
Please feel free to send me [pull requests](https://github.com/Syeda-Farhat/awesome-Transformers-For-Segmentation/pulls)

The structure that we'll use:
- [Paper Name] (link) -**Conference Name and Year** -[github] (link)

## Table of Contents

- [Papers](#papers)
* [Survey Papers](#survey-Papers)
* [2023](#2023)
* [ICCV 2023](#ICCV-2023)
* [CVPR 2023](#CVPR-2023)
* [WACV 2023](#WACV-2023)
* [IEEE 2023](#IEEE-2023)
* [MDPI 2023](#MDPI-2023)
* [arXiv 2023](#arXiv-2023)
* [2022](#2022)
* [CVPR 2022](#CVPR-2022)
* [WACV 2022](#WACV-2022)
* [NIPs 2022](#NIPs-2022)
* [IEEE 2022](#IEEE-2022)
* [MDPI 2022](#MDPI-2022)
* [arXiv 2022](#arXiv-2022)
* [2021](#2021)
* [CVPR 2021](#CVPR-2021)
* [ICCV 2021](#ICCV-2021)
* [NIPs 2021](#NIPs-2021)
* [MICCIA 2021](#MICCIA-2021)
* [MDPI 2021](#MDPI-2021)
* [IEEE 2021](#IEEE-2021)
* [arXiv 2021](#arXiv-2021)
* [2020](#2020)
* [CVPR 2020](#CVPR-2020)
* [ECCV 2020](#ECCV-2020)
* [MICCIA 2020](#MICCIA-2020)
* [IEEE 2020](#IEEE-2020)
* [arXiv 2020](#arXiv-2020)
* [2019](#2019)
* [IEEE 2019](#IEEE-2019)
* [arXiv 2019](#arXiv-2019)
* [Others](#Others)
* [Acknowledgements](#Acknowledgements)
* [Citation](#Citation)

## Papers
### Survey Papers
* [A Survey of Transformers](https://arxiv.org/pdf/2106.04554.pdf) -**arXiv 2021**.
* [Transformers in Vision: A Survey](https://arxiv.org/pdf/2101.01169.pdf) -**arXiv 2021**.
* [Transformers in computational visual media: A survey](https://link.springer.com/article/10.1007/s41095-021-0247-3) -**SpringerLink 2022**.
* [A Survey on Vision Transformer](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9716741) -**IEEE 2022**.
* [Vision Transformers in Medical Computer Vision - A Contemplative Retrospection](https://arxiv.org/ftp/arxiv/papers/2203/2203.15269.pdf) -**arXiv 2022**.
* [Recent Advances in Vision Transformer: A Survey and Outlook of Recent Work](https://arxiv.org/pdf/2203.01536.pdf) -**arXiv 2022**.
* [3D Vision with Transformers: A Survey](https://arxiv.org/pdf/2208.04309.pdf) -**arXiv 2022**.
* [A Survey on Graph Neural Networks and Graph Transformers in Computer Vision: A Task-Oriented Perspective](https://arxiv.org/pdf/2209.13232.pdf) -**arXiv 2022**.
* [VISION TRANSFORMERS FOR ACTION RECOGNITION: A SURVEY](https://arxiv.org/pdf/2209.05700.pdf) -**arXiv 2022**.
* [Vision transformers for dense prediction: A survey](https://www.sciencedirect.com/science/article/abs/pii/S0950705122007821) -**ELSEVIER 2022**.
* [Semantic segmentation using Vision Transformers: A survey](https://www.sciencedirect.com/science/article/abs/pii/S0952197623008539) -**ELSEVIER 2023**.
* [A Comprehensive Survey of Transformers for Computer Vision ](https://www.mdpi.com/2504-446X/7/5/287) -**MDPI 2023**.
* [Transformers in Remote Sensing: A Survey](https://www.mdpi.com/2072-4292/15/7/1860) -**MDPI 2023**.
* [A Survey of Visual Transformers](https://ieeexplore.ieee.org/abstract/document/10088164) -**IEEE 2023**.
* [Transformer-Based Visual Segmentation: A Survey](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613466) -**IEEE 2024**.

### 2023
#### ICCV 2023 ####
* [Mask-Attention-Free Transformer for 3D Instance Segmentation](https://openaccess.thecvf.com/content/ICCV2023/papers/Lai_Mask-Attention-Free_Transformer_for_3D_Instance_Segmentation_ICCV_2023_paper.pdf) -**ICCV 2023** -[github](https://github.com/dvlab-research/Mask-Attention-Free-Transformer)
* [Query Refinement Transformer for 3D Instance Segmentation](https://openaccess.thecvf.com/content/ICCV2023/papers/Lu_Query_Refinement_Transformer_for_3D_Instance_Segmentation_ICCV_2023_paper.pdf) -**ICCV 2023** -[github]
* [2D-3D Interlaced Transformer for Point Cloud Segmentation with Scene-Level Supervision](https://openaccess.thecvf.com/content/ICCV2023/papers/Yang_2D-3D_Interlaced_Transformer_for_Point_Cloud_Segmentation_with_Scene-Level_Supervision_ICCV_2023_paper.pdf) -**ICCV 2023** -[github](https://github.com/jimmy15923/mit)
* [CDAC: Cross-domain Attention Consistency in Transformer for Domain Adaptive Semantic Segmentation](https://openaccess.thecvf.com/content/ICCV2023/papers/Wang_CDAC_Cross-domain_Attention_Consistency_in_Transformer_for_Domain_Adaptive_Semantic_ICCV_2023_paper.pdf) -**ICCV 2023** -[github](https://github.com/wangkaihong/CDAC)
* [A Good Student is Cooperative and Reliable: CNN-Transformer Collaborative Learning for Semantic Segmentation](https://openaccess.thecvf.com/content/ICCV2023/papers/Zhu_A_Good_Student_is_Cooperative_and_Reliable_CNN-Transformer_Collaborative_Learning_ICCV_2023_paper.pdf) -**ICCV 2023** -[github]
* [Efficient 3D Semantic Segmentation with Superpoint Transformer](https://openaccess.thecvf.com/content/ICCV2023/papers/Robert_Efficient_3D_Semantic_Segmentation_with_Superpoint_Transformer_ICCV_2023_paper.pdf) -**ICCV 2023** -[github](https://github.com/drprojects/superpoint_transformer)
* [Adaptive Template Transformer for Mitochondria Segmentation in Electron Microscopy Images](https://openaccess.thecvf.com/content/ICCV2023/papers/Pan_Adaptive_Template_Transformer_for_Mitochondria_Segmentation_in_Electron_Microscopy_Images_ICCV_2023_paper.pdf) -**ICCV 2023** -[github]
* [CVSformer: Cross-View Synthesis Transformer for Semantic Scene Completion](https://openaccess.thecvf.com/content/ICCV2023/papers/Dong_CVSformer_Cross-View_Synthesis_Transformer_for_Semantic_Scene_Completion_ICCV_2023_paper.pdf) -**ICCV 2023** -[github]
#### CVPR 2023 ####
* [VoxFormer: Sparse Voxel Transformer for Camera-Based 3D Semantic Scene Completion](https://openaccess.thecvf.com/content/CVPR2023/papers/Li_VoxFormer_Sparse_Voxel_Transformer_for_Camera-Based_3D_Semantic_Scene_Completion_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/NVlabs/VoxFormer)
* [Mask DINO: Towards A Unified Transformer-based Framework for Object Detection and Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Li_Mask_DINO_Towards_a_Unified_Transformer-Based_Framework_for_Object_Detection_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/IDEA-Research/MaskDINO)
* [Heat Diffusion based Multi-scale and Geometric Structure-aware Transformer for Mesh Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Wong_Heat_Diffusion_Based_Multi-Scale_and_Geometric_Structure-Aware_Transformer_for_Mesh_CVPR_2023_paper.pdf) -**CVPR 2023** -[github]
* [CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly Supervised Semantic Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Lin_CLIP_Is_Also_an_Efficient_Segmenter_A_Text-Driven_Approach_for_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/linyq2117/CLIP-ES)
* [MED-VT: Multiscale Encoder-Decoder Video Transformer with Application to Object Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Karim_MED-VT_Multiscale_Encoder-Decoder_Video_Transformer_With_Application_To_Object_Segmentation_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/rkyuca/medvt)
* [Contrastive Grouping with Transformer for Referring Image Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Tang_Contrastive_Grouping_With_Transformer_for_Referring_Image_Segmentation_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/Toneyaya/CGFormer)
* [SemiCVT: Semi-Supervised Convolutional Vision Transformer for Semantic Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Huang_SemiCVT_Semi-Supervised_Convolutional_Vision_Transformer_for_Semantic_Segmentation_CVPR_2023_paper.pdf) -**CVPR 2023** -[github]
* [OneFormer: One Transformer to Rule Universal Image Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Jain_OneFormer_One_Transformer_To_Rule_Universal_Image_Segmentation_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/SHI-Labs/OneFormer)
* [HGFormer: Hierarchical Grouping Transformer for Domain Generalized Semantic Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Ding_HGFormer_Hierarchical_Grouping_Transformer_for_Domain_Generalized_Semantic_Segmentation_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/dingjiansw101/HGFormer)
* [Incrementer: Transformer for Class-Incremental Semantic Segmentation with Knowledge Distillation Focusing on Old Class](https://openaccess.thecvf.com/content/CVPR2023/papers/Shang_Incrementer_Transformer_for_Class-Incremental_Semantic_Segmentation_With_Knowledge_Distillation_Focusing_CVPR_2023_paper.pdf) -**CVPR 2023** -[github]
* [MP-Former: Mask-Piloted Transformer for Image Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Zhang_MP-Former_Mask-Piloted_Transformer_for_Image_Segmentation_CVPR_2023_paper.pdf) -**CVPR 2023** -[github](https://github.com/IDEA-Research/MP-Former)
* [Transformer Scale Gate for Semantic Segmentation](https://openaccess.thecvf.com/content/CVPR2023/papers/Shi_Transformer_Scale_Gate_for_Semantic_Segmentation_CVPR_2023_paper.pdf) -**CVPR 2023** -[github]
* [UniDAformer: Unified Domain Adaptive Panoptic Segmentation Transformer via Hierarchical Mask Calibration ](https://openaccess.thecvf.com/content/CVPR2023/papers/Zhang_UniDAformer_Unified_Domain_Adaptive_Panoptic_Segmentation_Transformer_via_Hierarchical_Mask_CVPR_2023_paper.pdf) -**CVPR 2023** -[github]
#### WACV 2023 ####
* [HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation](https://openaccess.thecvf.com/content/WACV2023/papers/Heidari_HiFormer_Hierarchical_Multi-Scale_Representations_Using_Transformers_for_Medical_Image_Segmentation_WACV_2023_paper.pdf) -**WACV 2023** -[github](https://github.com/amirhossein-kz/HiFormer)
* [SCTS: Instance Segmentation of Single Cells Using a Transformer-Based Semantic-Aware Model and Space-Filling Augmentation](https://openaccess.thecvf.com/content/WACV2023/papers/Zhou_SCTS_Instance_Segmentation_of_Single_Cells_Using_a_Transformer-Based_Semantic-Aware_WACV_2023_paper.pdf) -**WACV 2023** -[github]
* [Full Contextual Attention for Multi-resolution Transformers in Semantic Segmentation](https://openaccess.thecvf.com/content/WACV2023/papers/Themyr_Full_Contextual_Attention_for_Multi-Resolution_Transformers_in_Semantic_Segmentation_WACV_2023_paper.pdf) -**WACV 2023** -[github](https://github.com/themyrl/glam)
* [The Fully Convolutional Transformer for Medical Image Segmentation](https://openaccess.thecvf.com/content/WACV2023/papers/Tragakis_The_Fully_Convolutional_Transformer_for_Medical_Image_Segmentation_WACV_2023_paper.pdf) -**WACV 2023** -[github](https://github.com/Thanos-DB/FullyConvolutionalTransformer)
* [Towards Few-Annotation Learning for Object Detection: Are Transformer-based Models More Efficient ?](https://openaccess.thecvf.com/content/WACV2023/papers/Bouniot_Towards_Few-Annotation_Learning_for_Object_Detection_Are_Transformer-Based_Models_More_WACV_2023_paper.pdf) -**WACV 2023** -[github]
* [BEVSegFormer: Bird’s Eye View Semantic Segmentation From Arbitrary Camera Rigs](https://openaccess.thecvf.com/content/WACV2023/papers/Peng_BEVSegFormer_Birds_Eye_View_Semantic_Segmentation_From_Arbitrary_Camera_Rigs_WACV_2023_paper.pdf) -** WACV 2023** -[github]
* [Medical Image Segmentation via Cascaded Attention Decoding](https://openaccess.thecvf.com/content/WACV2023/papers/Rahman_Medical_Image_Segmentation_via_Cascaded_Attention_Decoding_WACV_2023_paper.pdf) -** WACV 2023** -[github]
* [Unsupervised multi-object segmentation using attention and soft-argmax](https://openaccess.thecvf.com/content/WACV2023/papers/Sauvalle_Unsupervised_Multi-Object_Segmentation_Using_Attention_and_Soft-Argmax_WACV_2023_paper.pdf) -** WACV 2023** -[github](https://github.com/BrunoSauvalle/AST)
#### IEEE 2023 ####
* [The Power of Fragmentation: A Hierarchical Transformer Model for Structural Segmentation in Symbolic Music Generation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10089423) -**IEEE 2023** -[github]
* [Local-Global Context Aware Transformer for Language-Guided Video Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10083244) -**IEEE 2023** -[github](https://github.com/leonnnop/Locater)
* [Medical Image Segmentation Based on Transformer and HarDNet Structures](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10042417) -**IEEE 2023** -[github]
* [A Unified Transformer Framework for Group-based Segmentation: Co-Segmentation, Co-Saliency Detection and Video Salient Object Detection](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10093043) -**IEEE 2023** -[github](https://github.com/suyukun666/UFO)
* [The Lighter The Better: Rethinking Transformers in Medical Image Segmentation Through Adaptive Pruning](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10050127) -**IEEE 2023** -[github]
* [RNGDet++: Road Network Graph Detection by Transformer with Instance Segmentation and Multi-scale Features Enhancement](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10093124) -**IEEE 2023** -[github](https://github.com/TonyXuQAQ/RNGDetPlusPlus)
* [RockFormer: A U-Shaped Transformer Network for Martian Rock Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10012398) -**IEEE 2023** -[github]
* [Unsupervised Visual Representation Learning Based on Segmentation of Geometric Pseudo-Shapes for Transformer-Based Medical Tasks](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10018448) -**IEEE 2023** -[github]
* [CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with Modality-Correlated Cross-Attention for Brain Tumor Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10056308) -**IEEE 2023** -[github]
* [RSSFormer: Foreground Saliency Enhancement for Remote Sensing Land-Cover Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10026298) -**IEEE 2023** -[github]
* [Normal-Knowledge-Based Pavement Defect Segmentation Using Relevance-Aware and Cross-Reasoning Mechanisms](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10013944) -**IEEE 2023** -[github]
#### MDPI 2023 ####
* [High-Resolution Swin Transformer for Automatic Medical Image Segmentation](https://www.mdpi.com/1424-8220/23/7/3420) -**MDPI 2023** -[github]
* [Multi-Swin Mask Transformer for Instance Segmentation of Agricultural Field Extraction](https://www.mdpi.com/2072-4292/15/3/549) -**MDPI 2023** -[github]
* [Enhancing Mask Transformer with Auxiliary Convolution Layers for Semantic Segmentation](https://www.mdpi.com/1424-8220/23/2/581) -**MDPI 2023** -[github]
* [Efficient Lung Cancer Image Classification and Segmentation Algorithm Based on an Improved Swin Transformer](https://www.mdpi.com/2079-9292/12/4/1024) -**MDPI 2023** -[github]
* [Transformer-Based Weed Segmentation for Grass Management](https://www.mdpi.com/1424-8220/23/1/65) -**MDPI 2023** -[github]
* [RCCT-ASPPNet: Dual-Encoder Remote Image Segmentation Based on Transformer and ASPP](https://www.mdpi.com/2072-4292/15/2/379) -**MDPI 2023** -[github]
* [MCANet: A Multi-Branch Network for Cloud/Snow Segmentation in High-Resolution Remote Sensing Images](https://www.mdpi.com/2072-4292/15/4/1055) -**MDPI 2023** -[github]
* [Muscle Cross-Sectional Area Segmentation in Transverse Ultrasound Images Using Vision Transformers](https://www.mdpi.com/2075-4418/13/2/217) -**MDPI 2023** -[github]
* [MCAFNet: A Multiscale Channel Attention Fusion Network for Semantic Segmentation of Remote Sensing Images](https://www.mdpi.com/2072-4292/15/2/361) -**MDPI 2023** -[github]
#### arXiv 2023 ####
* [Temporal Segment Transformer for Action Segmentation](https://arxiv.org/pdf/2302.13074.pdf) -**arXiv 2023** -[github]
* [SEAFORMER: SQUEEZE-ENHANCED AXIAL TRANSFORMER FOR MOBILE SEMANTIC SEGMENTATION](https://arxiv.org/pdf/2301.13156.pdf) -**arXiv 2023** -[github]
* [MP-Former: Mask-Piloted Transformer for Image Segmentation](https://arxiv.org/pdf/2303.07336.pdf) -**arXiv 2023** -[github]
* [MedSegDiff-V2: Diffusion based Medical Image Segmentation with Transformer](https://arxiv.org/pdf/2301.11798.pdf) -**arXiv 2023** -[github]
* [SwinVFTR: A Novel Volumetric Feature-learning Transformer for 3D OCT Fluid Segmentation](https://arxiv.org/pdf/2303.09233.pdf) -**arXiv 2023** -[github]
* [Towards Robust Video Instance Segmentation with Temporal-Aware Transformer](https://arxiv.org/pdf/2301.09416.pdf) -**arXiv 2023** -[github]
* [Head-Free Lightweight Semantic Segmentation with Linear Transformer](https://arxiv.org/pdf/2301.04648.pdf) -**arXiv 2023** -[github]
* [FullStop: Punctuation and Segmentation Prediction for Dutch with Transformers](https://arxiv.org/pdf/2301.03319.pdf) -**arXiv 2023** -[github]
* [Cooperation Learning Enhanced Colonic Polyp Segmentation Based on Transformer-CNN Fusion](https://arxiv.org/ftp/arxiv/papers/2301/2301.06892.pdf) -**arXiv 2023** -[github]
* [SAT: Size-Aware Transformer for 3D Point Cloud Semantic Segmentation](https://arxiv.org/pdf/2301.06869.pdf) -**arXiv 2023** -[github]
* [Effects of Architectures on Continual Semantic Segmentation](https://arxiv.org/pdf/2302.10718.pdf) -**arXiv 2023** -[github]
* [MECPformer: Multi-estimations Complementary Patch with CNN-Transformers for Weakly Supervised Semantic Segmentation](https://github.com/ChunmengLiu1/MECPformer) -**arXiv 2023** -[github](https://arxiv.org/pdf/2303.10689.pdf)
* [PSST! Prosodic Speech Segmentation with Transformers](https://arxiv.org/pdf/2302.01984.pdf) -**arXiv 2023** -[github]
* [TRANSADAPT: A TRANSFORMATIVE FRAMEWORK FOR ONLINE TEST TIME ADAPTIVE SEMANTIC SEGMENTATION](https://arxiv.org/pdf/2302.14611.pdf) -**arXiv 2023** -[github]
### 2022
#### CVPR 2022 ####
* [Multi-class Token Transformer for Weakly Supervised Semantic Segmentation](https://openaccess.thecvf.com/content/CVPR2022/papers/Xu_Multi-Class_Token_Transformer_for_Weakly_Supervised_Semantic_Segmentation_CVPR_2022_paper.pdf) -**CVPR 2022** -[github]
* [TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation](https://openaccess.thecvf.com/content/CVPR2022/papers/Zhang_TopFormer_Token_Pyramid_Transformer_for_Mobile_Semantic_Segmentation_CVPR_2022_paper.pdf) -**CVPR 2022** -[github](https://github.com/hustvl/TopFormer)
* [Masked-attention Mask Transformer for Universal Image Segmentation](https://openaccess.thecvf.com/content/CVPR2022/papers/Cheng_Masked-Attention_Mask_Transformer_for_Universal_Image_Segmentation_CVPR_2022_paper.pdf) -**CVPR 2022** -[github](https://github.com/facebookresearch/Mask2Former)
* [Temporally Efficient Vision Transformer for Video Instance Segmentation](https://openaccess.thecvf.com/content/CVPR2022/papers/Yang_Temporally_Efficient_Vision_Transformer_for_Video_Instance_Segmentation_CVPR_2022_paper.pdf) -**CVPR 2022** -[github](https://github.com/hustvl/TeViT)
* [An MIL-Derived Transformer for Weakly Supervised Point Cloud Segmentation](https://openaccess.thecvf.com/content/CVPR2022/papers/Yang_An_MIL-Derived_Transformer_for_Weakly_Supervised_Point_Cloud_Segmentation_CVPR_2022_paper.pdf) -**CVPR 2022** -[github]
* [Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation](https://openaccess.thecvf.com/content/CVPR2022/papers/Gu_Multi-Scale_High-Resolution_Vision_Transformer_for_Semantic_Segmentation_CVPR_2022_paper.pdf) -**CVPR 2022** -[github](https://github.com/facebookresearch/HRViT)
* [MPViT : Multi-Path Vision Transformer for Dense Prediction](https://openaccess.thecvf.com/content/CVPR2022/papers/Lee_MPViT_Multi-Path_Vision_Transformer_for_Dense_Prediction_CVPR_2022_paper.pdf) -**CVPR 2022** -[github]

#### WACV 2022 ####
* [Unetr: Transformers for 3d medical image segmentation](https://openaccess.thecvf.com/content/WACV2022/papers/Hatamizadeh_UNETR_Transformers_for_3D_Medical_Image_Segmentation_WACV_2022_paper.pdf) -**WACV 2022** -[github](https://github.com/tamasino52/UNETR)
* [AFTer-UNet: Axial Fusion Transformer UNet for Medical Image Segmentation](https://openaccess.thecvf.com/content/WACV2022/papers/Yan_AFTer-UNet_Axial_Fusion_Transformer_UNet_for_Medical_Image_Segmentation_WACV_2022_paper.pdf) -**WACV 2022** -[github]
* [Spatial-Temporal Transformer for 3D Point Cloud Sequences](https://openaccess.thecvf.com/content/WACV2022/papers/Wei_Spatial-Temporal_Transformer_for_3D_Point_Cloud_Sequences_WACV_2022_paper.pdf) -**WACV 2022** -[github]

#### NIPs 2022 ####
* [SegViT: Semantic Segmentation with Plain Vision Transformerss](https://proceedings.neurips.cc/paper_files/paper/2022/file/20189b1aaa8edbb6d8bd6c1067ab5f3f-Paper-Conference.pdf) -**NIPs 2022** -[github](https://github.com/zbwxp/SegVit)
* [Intermediate Prototype Mining Transformer for Few-Shot Semantic Segmentation](https://proceedings.neurips.cc/paper_files/paper/2022/hash/f7fef21d1fb3e950b12b50ad7f395e31-Abstract-Conference.html) -**NIPs 2022** -[github]
* [RTFormer: Efficient Design for Real-Time Semantic Segmentation with Transformer](https://proceedings.neurips.cc/paper_files/paper/2022/file/30e10e671c5e43edb67eb257abb6c3ea-Paper-Conference.pdf) -**NIPs 2022** -[github]

#### IEEE 2022 ####
* [Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9686686) -**IEEE 2022** -[github]
* [Transformer and CNN Hybrid Deep Neural Network for Semantic Segmentation of Very-high-resolution Remote Sensing Imagery](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9686732) -**IEEE 2022** -[github]
* [A novel transformer based semantic segmentation scheme for fine-resolution remote sensing images](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9681903) -**IEEE 2022** -[github]
* [LFT-Net: Local Feature Transformer Network for Point Clouds Analysis](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9700748) -**IEEE 2022** -[github]
* [Transformer-based Efficient Salient Instance Segmentation Networks with Orientative Query](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9678049) --[Code](https://github.com/ssecv/OQTR)
* [Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9681287) -**IEEE 2022** -[github]
* [Looking Outside the Window: Wide-Context Transformer for the Semantic Segmentation of High-Resolution Remote Sensing Images](https://ieeexplore.ieee.org/document/9759447) -**IEEE 2022** -[github]
#### MDPI 2022 ####
* [Enhanced Feature Pyramid Vision Transformer for Semantic Segmentation on Thailand Landsat-8 Corpus](https://www.mdpi.com/2078-2489/13/5/259) -**MDPI 2022** -[github]
#### arXiv 2022 ####
* [Pyramid fusion transformer for semantic segmentation](https://arxiv.org/pdf/2201.04019.pdf) -**arXiv 2022** -[github]
* [TransBTSV2: Wider Instead of Deeper Transformer for Medical Image Segmentation](https://arxiv.org/pdf/2201.12785.pdf) -**arXiv 2022** -[github](https://github.com/Wenxuan-1119/TransBTS)
* [Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images](https://link.springer.com/chapter/10.1007/978-3-031-08999-2_22) -**arXiv 2022** -[github]
* [Task-Adaptive Feature Transformer with Semantic Enrichment for Few-Shot Segmentation](https://arxiv.org/pdf/2202.06498.pdf) -**arXiv 2022** -[github](https://github.com/istarjun/TAFT-SE)
* [Inverted Pyramid Multi-task Transformer for Dense Scene Understanding](https://arxiv.org/pdf/2203.07997.pdf) -**arXiv 2022** -[github](https://github.com/prismformore/InvPT)
### 2021
#### CVPR 2021 ####
* [MaX-DeepLab: End-to-End Panoptic Segmentation With Mask Transformers](https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_MaX-DeepLab_End-to-End_Panoptic_Segmentation_With_Mask_Transformers_CVPR_2021_paper.pdf) -**CVPR 2021** -[github](https://github.com/mattdeitke/cvpr-buzz/blob/992c23b72584342f8621d3d272dc60077766b002/paper-data/Wang_MaX-DeepLab_End-to-End_Panoptic_Segmentation_With_Mask_Transformers.json)
* [End-to-End Video Instance Segmentation With Transformers](https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_End-to-End_Video_Instance_Segmentation_With_Transformers_CVPR_2021_paper.pdf) -**CVPR 2021** -[github](https://github.com/Epiphqny/VisTR)
* [Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers](https://openaccess.thecvf.com/content/CVPR2021/papers/Zheng_Rethinking_Semantic_Segmentation_From_a_Sequence-to-Sequence_Perspective_With_Transformers_CVPR_2021_paper.pdf) -**CVPR 2021** -[github](https://github.com/fudan-zvg/SETR)
* [Sstvos: Sparse spatiotemporal transformers for video object segmentation](https://openaccess.thecvf.com/content/CVPR2021/papers/Duke_SSTVOS_Sparse_Spatiotemporal_Transformers_for_Video_Object_Segmentation_CVPR_2021_paper.pdf) -**CVPR 2021** -[github](https://github.com/dukebw/SSTVOS)
* [Locate then Segment: A Strong Pipeline for Referring Image Segmentation](https://openaccess.thecvf.com/content/CVPR2021/papers/Jing_Locate_Then_Segment_A_Strong_Pipeline_for_Referring_Image_Segmentation_CVPR_2021_paper.pdf) -**CVPR 2021** -[github]
#### ICCV 2021 ####
* [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions](https://openaccess.thecvf.com/content/ICCV2021/papers/Wang_Pyramid_Vision_Transformer_A_Versatile_Backbone_for_Dense_Prediction_Without_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/wangermeng2021/PVT-tensorflow2)
* [Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions — Supplemental Materials](https://openaccess.thecvf.com/content/ICCV2021/supplemental/Wang_Pyramid_Vision_Transformer_ICCV_2021_supplemental.pdf) -**ICCV 2021** -[github]
* [Joint Inductive and Transductive Learning for Video Object Segmentation](https://openaccess.thecvf.com/content/ICCV2021/papers/Mao_Joint_Inductive_and_Transductive_Learning_for_Video_Object_Segmentation_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/maoyunyao/JOINT)
* [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://openaccess.thecvf.com/content/ICCV2021/papers/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/microsoft/Swin-Transformer)
* [Self-supervised Video Object Segmentation by Motion Grouping](https://openaccess.thecvf.com/content/ICCV2021/papers/Yang_Self-Supervised_Video_Object_Segmentation_by_Motion_Grouping_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/charigyang/motiongrouping)
* [Vision Transformers for Dense Prediction](https://openaccess.thecvf.com/content/ICCV2021/papers/Ranftl_Vision_Transformers_for_Dense_Prediction_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/czczup/ViT-Adapter)
* [Point Transformer](https://openaccess.thecvf.com/content/ICCV2021/papers/Zhao_Point_Transformer_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/qq456cvb/Point-Transformers)
* [SOTR: Segmenting Objects with Transformers](https://openaccess.thecvf.com/content/ICCV2021/papers/Guo_SOTR_Segmenting_Objects_With_Transformers_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/easton-cau/SOTR)
* [A Unified Efficient Pyramid Transformer for Semantic Segmentation](https://openaccess.thecvf.com/content/ICCV2021W/VSPW/papers/Zhu_A_Unified_Efficient_Pyramid_Transformer_for_Semantic_Segmentation_ICCVW_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/amazon-research/unified-ept)
* [Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding](https://openaccess.thecvf.com/content/ICCV2021/papers/Zhang_Multi-Scale_Vision_Longformer_A_New_Vision_Transformer_for_High-Resolution_Image_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/microsoft/vision-longformer)
* [Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer](https://openaccess.thecvf.com/content/ICCV2021/papers/Lu_Simpler_Is_Better_Few-Shot_Semantic_Segmentation_With_Classifier_Weight_Transformer_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/zhiheLu/CWT-for-FSS)
* [Trans4Trans: Efficient Transformer for Transparent Object Segmentation to Help Visually Impaired People Navigate in the Real World](https://openaccess.thecvf.com/content/ICCV2021W/ACVR/papers/Zhang_Trans4Trans_Efficient_Transformer_for_Transparent_Object_Segmentation_To_Help_Visually_ICCVW_2021_paper.pdf) -**ICCV 2021** -[github]
* [Vision-Language Transformer and Query Generation for Referring Segmentation](https://openaccess.thecvf.com/content/ICCV2021/papers/Ding_Vision-Language_Transformer_and_Query_Generation_for_Referring_Segmentation_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/henghuiding/Vision-Language-Transformer)
* [Segmenter: Transformer for Semantic Segmentation](https://openaccess.thecvf.com/content/ICCV2021/papers/Strudel_Segmenter_Transformer_for_Semantic_Segmentation_ICCV_2021_paper.pdf) -**ICCV 2021** -[github](https://github.com/rstrudel/segmenter)
#### NIPs 2021 ####
* [Twins: Revisiting the Design of Spatial Attention in Vision Transformers](https://proceedings.neurips.cc/paper/2021/file/4e0928de075538c593fbdabb0c5ef2c3-Paper.pdf) -**NIPs 2021** -[github](https://github.com/EarthNets/RSI-Classification/blob/1a858a80881757fc2114305f15c1ae26be2c2169/configs/twins/README.md)
* [HRFormer: High-Resolution Transformer for Dense Prediction](https://proceedings.neurips.cc/paper/2021/file/3bbfdde8842a5c44a0323518eec97cbe-Paper.pdf) -**NIPs 2021** -[github](https://github.com/HRNet/HRFormer)
* [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://proceedings.neurips.cc/paper/2021/file/64f1f27bf1b4ec22924fd0acb550c235-Paper.pdf) -**NIPs 2021** -[github](https://github.com/NVlabs/SegFormer)
* [Per-Pixel Classification is Not All You Need for Semantic Segmentation](https://proceedings.neurips.cc/paper/2021/file/950a4152c2b4aa3ad78bdd6b366cc179-Paper.pdf) -**NIPs 2021** -[github](https://github.com/facebookresearch/MaskFormer)
* [Associating Objects with Transformers for Video Object Segmentation](https://proceedings.neurips.cc/paper/2021/file/147702db07145348245dc5a2f2fe5683-Paper.pdf) -**NIPs 2021** -[github](https://github.com/yoxu515/aot-benchmark)
* [Video Instance Segmentation using Inter-Frame Communication Transformers](https://proceedings.neurips.cc/paper/2021/file/6f2688a5fce7d48c8d19762b88c32c3b-Paper.pdf) -**NIPs 2021** -[github](https://github.com/sukjunhwang/IFC)
* [Few-Shot Segmentation via Cycle-Consistent Transformer](https://proceedings.neurips.cc/paper/2021/file/b8b12f949378552c21f28deff8ba8eb6-Paper.pdf) -**NIPs 2021** -[github](https://github.com/GengDavid/CyCTR)
*
#### MICCIA 2021 ####
* [Medical Transformer: Gated Axial-Attention for Medical Image Segmentation](https://arxiv.org/pdf/2102.10662.pdf) -**MICCIA 2021** -[github](https://github.com/jeya-maria-jose/Medical-Transformer)
* [UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation](https://arxiv.org/pdf/2107.00781.pdf) -**MICCIA 2021** -[github](https://github.com/yhygao/UTNet)
* [Transbts: Multimodal brain tumor segmentation using transformer](https://arxiv.org/pdf/2103.04430.pdf) -**MICCIA 2021** -[github](https://github.com/Wenxuan-1119/TransBTS)
* [Multi-compound transformer for accurate biomedical image segmentation](https://arxiv.org/pdf/2106.14385.pdf) -**MICCIA 2021** -[github]
* [A multi-branch hybrid transformer network for corneal endothelial cell segmentation](https://arxiv.org/pdf/2106.07557.pdf) -**MICCIA 2021** -[github]
* [DC-Net: Dual Context Network for 2D Medical Image Segmentation](https://link.springer.com/chapter/10.1007/978-3-030-87193-2_48) -**MICCIA 2021** -[github]
* [Transfuse: Fusing transformers and cnns for medical image segmentation](https://arxiv.org/pdf/2102.08005.pdf) -**MICCIA 2021** -[github](https://github.com/Rayicer/TransFuse)
* [Teds-net: Enforcing diffeomorphisms in spatial transformers to guarantee topology preservation in segmentations](https://arxiv.org/pdf/2107.13542.pdf) -**MICCIA 2021** -[github]
* [Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation](https://arxiv.org/pdf/2103.03024.pdf) -**MICCIA 2021** -[github](https://github.com/YtongXie/CoTr)
* [Boundary-aware transformers for skin lesion segmentation](https://arxiv.org/pdf/2110.03864.pdf) -**MICCIA 2021** -[github](https://github.com/jcwang123/BA-Transformer)
* [Convolution-Free Medical Image Segmentation using Transformers](https://arxiv.org/pdf/2102.13645.pdf) -**MICCIA 2021** -[github]
#### MDPI 2021 ####
* [Transformer Meets Convolution: A Bilateral Awareness Network for Semantic Segmentation of Very Fine Resolution Urban Scene Images](https://www.mdpi.com/2072-4292/13/16/3065) -**MDPI 2021** -[github]
* [Wildfire Segmentation Using Deep Vision Transformers ](https://www.mdpi.com/2072-4292/13/17/3527) -**MDPI 2021** -[github]
* [Transformer-Based Decoder Designs for Semantic Segmentation on Remotely Sensed Images ](https://www.mdpi.com/2072-4292/13/24/5100) -**MDPI 2021** -[github](https://github.com/kaopanboonyuen/transformer-based-decoder-designs)
* [Efficient Transformer for Remote Sensing Image Segmentation ](https://www.mdpi.com/2072-4292/13/18/3585/htm) -**MDPI 2021** -[github](https://github.com/Syeda-Farhat/Efficient-Transformer)
#### IEEE 2021 ####
* [Segmentation applying TAG type label data and Transformer](https://ieeexplore.ieee.org/document/9650042) -**IEEE 2021** -[github]
* [Local Memory Attention for Fast Video Semantic Segmentation](https://ieeexplore.ieee.org/document/9636192) --**IEEE 2021** -[github]
* [A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9648201) -**IEEE 2021** -[github]
* [STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9573374) -**IEEE 2021** -[github]
* [Swin-Spectral Transformer for Cholangiocarcinoma Hyperspectral Image Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9624405) -**IEEE 2021** -[github]
* [ECT-NAS: Searching Efficient CNN-Transformers Architecture for Medical Image Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9669734) -**IEEE 2021** -[github]
* [3D Deep Attentive U-Net with Transformer for Breast Tumor Segmentation from Automated Breast Volume Scanner](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9629523) -**IEEE 2021** -[github]
* [Visual-Semantic Transformer for Face Forgery Detection](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9484407) -**IEEE 2021** -[github]
* [MaAST: Map Attention with Semantic Transformers for Efficient Visual Navigation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9561058) -**IEEE 2021** -[github]
* [Multi-scale Hierarchical Transformer structure for 3D medical image segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9669799) -**IEEE 2021** -[github]
* [A Temporary Transformer Network for Guide- Wire Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9624350) -**IEEE 2021** -[github]
* [A Transformer-Based Network for Anisotropic 3D Medical Image Segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9411990) -**IEEE 2021** -[github]
#### arXiv 2021 ####
* [OffRoadTranSeg: Semi-Supervised Segmentation using Transformers on OffRoad environments](https://arxiv.org/pdf/2106.13963.pdf) -**arXiv 2021** -[github]
* [Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation](https://arxiv.org/pdf/2111.01236.pdf) -**arXiv 2021** -[github](https://github.com/facebookresearch/HRViT)
* [Self-Supervised Learning with Swin Transformers](https://arxiv.org/pdf/2105.04553.pdf) -**arXiv 2021** -[github]
* [GT U-Net: A U-Net Like Group Transformer Network for Tooth Root Segmentation](https://link.springer.com/chapter/10.1007/978-3-030-87589-3_40) -**arXiv 2021** -[github]
* [SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation](https://arxiv.org/pdf/2103.03604.pdf) -**arXiv 2021** -[github]
* [Satellite Image Semantic Segmentation](https://arxiv.org/pdf/2110.05812.pdf) -**arXiv 2021** -[github](https://github.com/YudeWang/UNet-Satellite-Image-Segmentation)
* [Boosting Few-shot Semantic Segmentation with Transformers](https://arxiv.org/pdf/2108.02266.pdf) -**arXiv 2021** -[github]
* [Multi-Scale High-Resolution Vision Transformer for Semantic Segmentation](https://arxiv.org/pdf/2111.01236.pdf) -**arXiv 2021** -[github](https://github.com/facebookresearch/HRViT)
* [A Robust Volumetric Transformer for Accurate 3D Tumor Segmentation](https://arxiv.org/pdf/2111.13300.pdf) -**arXiv 2021** -[github](https://github.com/himashi92/VT-UNet)
* [Dynamic Convolution for 3D Point Cloud Instance Segmentation](https://arxiv.org/pdf/2107.08392.pdf) -**arXiv 2021** -[github]
* [Fast Point Transformer](https://openaccess.thecvf.com/content/CVPR2022/papers/Park_Fast_Point_Transformer_CVPR_2022_paper.pdf) -**arXiv 2021** -[github](https://github.com/POSTECH-CVLab/FastPointTransformer)
* [ViTBIS: Vision Transformer for Biomedical Image Segmentation](https://link.springer.com/chapter/10.1007/978-3-030-90874-4_4) -**arXiv 2021** -[github]
* [Fully Transformer Networks for Semantic Image Segmentation](https://arxiv.org/pdf/2106.04108.pdf) -**arXiv 2021** -[github]
* [UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery](https://arxiv.org/ftp/arxiv/papers/2109/2109.08937.pdf) -**arXiv 2021** -[github]
* [Unsupervised Brain Anomaly Detection and Segmentation with Transformers](https://arxiv.org/pdf/2102.11650.pdf) -**arXiv 2021** -[github]
* [few-Shot Temporal Action Localization with Query Adaptive Transformer](https://arxiv.org/pdf/2110.10552.pdf) -**arXiv 2021** -[github](https://github.com/sauradip/fewshotQA)
* [Cost Aggregation Is All You Need for Few-Shot Segmentation](https://arxiv.org/pdf/2112.11685.pdf) -**arXiv 2021** -[github]
* [Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers](https://arxiv.org/pdf/2108.06932.pdf) -**arXiv 2021** -[github](https://github.com/DengPingFan/Polyp-PVT)
* [TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation](https://arxiv.org/pdf/2107.05274.pdf) -**arXiv 2021** -[github]
* [ASFormer: Transformer for Action Segmentation](https://arxiv.org/pdf/2110.08568.pdf) -**arXiv 2021** -[github](https://github.com/ChinaYi/ASFormer)
* [TransClaw U-Net: Claw U-Net with Transformers for Medical Image Segmentation](https://arxiv.org/pdf/2107.05188.pdf) -**arXiv 2021** -[github]
* [SeqFormer: Sequential Transformer for Video Instance Segmentation](https://arxiv.org/pdf/2112.08275.pdf) -**arXiv 2021** -[github](https://github.com/wjf5203/SeqFormer)
* [Mask2Former for Video Instance Segmentation](https://arxiv.org/pdf/2112.10764.pdf) -**arXiv 2021** -[github](https://github.com/facebookresearch/Mask2Former)
* [Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation](https://arxiv.org/pdf/2105.05537.pdf) -**arXiv 2021** -[github](https://github.com/HuCaoFighting/Swin-Unet)
* [LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation](https://arxiv.org/pdf/2107.08623.pdf) -**arXiv 2021** -[github]
* [ISTR: End-to-End Instance Segmentation with Transformers](https://arxiv.org/pdf/2105.00637.pdf) -**arXiv 2021** -[github](https://github.com/hujiecpp/ISTR)
* [P2T: Pyramid Pooling Transformer for Scene Understanding](https://arxiv.org/pdf/2106.12011.pdf) -**arXiv 2021** -[github]
* [Medical Transformer: Universal Brain Encoder for 3D MRI Analysis](https://arxiv.org/pdf/2104.13633.pdf) -**arXiv 2021** -[github]
* [nnFormer: Interleaved Transformer for Volumetric Segmentation](https://arxiv.org/pdf/2109.03201.pdf) -**arXiv 2021** -[github]
* [MISSFormer: An Effective Medical Image Segmentation Transformer](https://arxiv.org/pdf/2109.07162.pdf) -**arXiv 2021** -[github]
* [ViT-V-Net: Vision Transformer for Unsupervised Volumetric Medical Image Registration](https://arxiv.org/pdf/2104.06468.pdf) -**arXiv 2021** -[github]
* [Pyramid Medical Transformer for Medical Image Segmentation](https://arxiv.org/ftp/arxiv/papers/2104/2104.14702.pdf) -**arXiv 2021** -[github]
* [U-Net Transformer: Self and Cross Attention for Medical Image Segmentation](https://link.springer.com/chapter/10.1007/978-3-030-87589-3_28) -**arXiv 2021** -[github]
* [Ds-transunet: Dual swin transformer u-net for medical image segmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9785614) -**arXiv 2021** -[github]
* [TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation](https://arxiv.org/pdf/2102.04306.pdf) -**arXiv 2021** -[github](https://github.com/Beckschen/TransUNet)
* [TransVOS: Video Object Segmentation with Transformers](https://arxiv.org/pdf/2106.00588.pdf) -**arXiv 2021** -[github]
### 2020
#### CVPR 2020 ####
* [Polytransform: Deep polygon transformer for instance segmentation](https://openaccess.thecvf.com/content_CVPR_2020/papers/Liang_PolyTransform_Deep_Polygon_Transformer_for_Instance_Segmentation_CVPR_2020_paper.pdf) -**CVPR 2020** -[github]
* [Sct: Set constrained temporal transformer for set supervised action segmentation](https://openaccess.thecvf.com/content_CVPR_2020/papers/Fayyaz_SCT_Set_Constrained_Temporal_Transformer_for_Set_Supervised_Action_Segmentation_CVPR_2020_paper.pdf) -**CVPR 2020** -[github](https://github.com/MohsenFayyaz89/SCT)
#### ECCV 2020 ####
* [Feature pyramid transformer](https://arxiv.org/pdf/2007.09451.pdf) -**ECCV 2020** -[github](https://github.com/dongzhang89/FPT)
* [End-to-end object detection with transformers](https://arxiv.org/pdf/2005.12872.pdf,) -**ECCV 2020** -[github](https://github.com/facebookresearch/detr)
#### MICCIA 2020 ####
* [Multi-task Dynamic Transformer Network for Concurrent Bone Segmentation and Large-Scale Landmark Localization with Dental CBCT](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687703/) -**MICCIA 2020** -[github]
#### IEEE 2020 ####
* [Attention-Based Transformers for Instance Segmentation of Cells in Microstructures](https://ieeexplore.ieee.org/document/9313305) -**IEEE 2020** -[github](https://github.com/ChristophReich1996/Cell-DETR)
* [Detecting lane and road markings at a distance with perspective transformer layers](https://arxiv.org/pdf/2003.08550.pdf) -**IEEE 2020** -[github]
* [Efficient aortic valve multilabel segmentation using a spatial transformer network](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9098378&casa_token=lSTpC0BJ9DcAAAAA:n3TVrNADU5egVyqJ78ZPwtGnhDMyrAYShc6dJzqQUg-M3sKAwwwbu7hTLgsnV_OmdCFZKZmdSw&tag=1) -**IEEE 2020** -[github]
#### arXiv 2020 ####
* [Visual transformers: Token-based image representation and processing for computer vision](https://arxiv.org/pdf/2006.03677.pdf) -**arXiv 2020** -[github](https://github.com/tahmid0007/VisualTransformers)
* [Task-adaptive feature transformer for few-shot segmentation](https://arxiv.org/pdf/2010.11437.pdf) -**arXiv 2020** -[github](https://github.com/istarjun/TAFT-SE)
### 2019
#### IEEE 2019 ####
* [TETRIS: Template transformer networks for image segmentation with shape priors](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8672808) -**IEEE 2019** -[github]
#### arXiv 2019 ####
* [Iterative transformer network for 3d point cloud](https://arxiv.org/pdf/1811.11209.pdf) -**arXiv 2019** -[github](https://github.com/wentaoyuan/it-net)
* [Segmentation transformer: Object-contextual representations for semantic segmentation](https://arxiv.org/pdf/1909.11065.pdf) -**arXiv 2019** -[github]
### Others
* [TrSeg: Transformer for semantic segmentation](https://pdf.sciencedirectassets.com/271524/1-s2.0-S0167865521X00074/1-s2.0-S016786552100163X/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEO3%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIFlNu5rMdOhBm6xZ9JqePuOI4dXGYbZEATfhaQlbBLrlAiEAj4bE9oSC5k6xSVA9lLSk9kE5EPBLQ0Gp7YJa8oduODQq0gQIVRAFGgwwNTkwMDM1NDY4NjUiDAmrnEwr%2BNntVOsrWiqvBN16AKDRXC%2Byc6u4JUuIbuLxzM%2F4lYkoM6UwiA6zDq92OmgFeHuI2wQLDBZGZ6s3Qh9ZubxhcSEnIrRY8LRSxfSb9xXCpy7LG4bMkdl1qQoGUN8rGB2lk%2BBfRT8ar7dXSGpoanKgoLVHvORbp1nrPXPhv08S6udDxxDDyF3n7hpll2E%2BiOGHf0iIrJNV11KpowVxbhMJLepoBayXYyXEALRfbFBLtDRUTv3xH%2BdNaAAe%2BiUL3v7DLKuDOam7EFHnSL70zCo6UsftEnG%2Byzzo7KxVlUJNY7Dp2vMEw0PDmhgcV17On%2BflhTdrIWT5ouoEavYbt4Si093fFWYiyRBGDDFInT010X%2BPXg3VM3WVXPez5cQl6Zvym4GUiTwEAm6yGLepoJ4gbEurq8tSLcZ5mHwrviBsbI4a3RgFpQfbKo16TvNr1VPXMIkgecIWOsD5M%2FMCa5aHMypvyK69jkIOgVoeoP1MUK2S5aX8FpVo6Fv5xyQngHPMuDS2LTANbQG7H1ZANOpQ%2FY%2B5OviwIAj7QXwF0ulIPJFqzbo%2BUeoX7eWC4qjzX6ZCfZuneeyxeDpyhLBCMw8UkrfsB%2FBGb3JF%2BGKZ0VEjIMdy9innc8ovqmhVQDoRDMKCpiPikc6wfyILV46MFsoDw5ZEOi9TFMmT9iWldq67HRzcBZhRbjVi9cM5Mb6GrDgGPpUJiCme5IqwWMwe6uVAn0SoTaBTAPy200ZD7cT7%2Bc0hXt53V5ZzPDswloTSlwY6qQGxaQm55B6%2FeL6424W%2BCVNou5VFr2cenMpiBej21Qb1Ldjnz8ycP8v0kG7mBKWqvXzFdCbRgQFk3G1%2FGhFZyy%2FynTlXbCwnipxIhI6qFV0WpqTV7DxmM2XCeyju8N5%2Btgf2gYxXvzi8nxU018Vf%2FjfePePahuDjmkMHQtHgi8J7BLReqYP0kEXgpmPq%2BOXcHbD71LX%2BJ1LJChcb8v2BkdxZkiTeMk9AZqwB&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20220811T051212Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYWCIX64SK%2F20220811%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=a9e1160c1edb9fac03b1c9610adcdefbfce6f4aed9d295011ba253ceb82eaf69&hash=08500206c3b0e4ca9db6b86bfc8c0e7650f8c8b461b8046fc174940308c8d0e0&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S016786552100163X&tid=spdf-15e8c3c6-591f-4da0-b719-533e86352601&sid=e74741ce47d48945d12bc644efe2a56d70c7gxrqb&type=client&ua=51535f06555c56510200&rr=738e7992bb77ca8c) -**Pattern Recognition Letters 2021** -[github](https://github.com/youngsjjn/TrSeg)
* [Video Semantic Segmentation via Sparse Temporal Transformer](https://dl.acm.org/doi/abs/10.1145/3474085.3475409?casa_token=I1PVo2St5EMAAAAA:WWlinaGz9yYZrXkMDTqBySg7x7uyfYqTHxeIxLy_zQ8pHwE_4WKx5kClZdjfLIoNCv3uig0ZEEDmBA) -**ACM 2021** -[github]

### Acknowledgements
We appreciate the excellent work of the authors mentioned above.
### Citation