Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/TUW-GEO/esa_cci_sm
Readers and converters for ESA CCI Soil Moisture image and time series data. Written in Python.
https://github.com/TUW-GEO/esa_cci_sm
Last synced: about 1 month ago
JSON representation
Readers and converters for ESA CCI Soil Moisture image and time series data. Written in Python.
- Host: GitHub
- URL: https://github.com/TUW-GEO/esa_cci_sm
- Owner: TUW-GEO
- License: mit
- Created: 2018-10-09T14:53:05.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-09-04T06:51:29.000Z (4 months ago)
- Last Synced: 2024-10-29T19:58:08.637Z (2 months ago)
- Language: Python
- Homepage: https://www.esa-soilmoisture-cci.org/
- Size: 4.64 MB
- Stars: 13
- Watchers: 3
- Forks: 11
- Open Issues: 1
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGES.rst
- License: LICENSE.txt
- Authors: AUTHORS.rst
Awesome Lists containing this project
- open-sustainable-technology - esa_cci_sm - Readers and converters for ESA CCI Soil Moisture image and time series data. (Natural Resources / Soil and Land)
README
============
esa_cci_sm
============|ci| |cov| |pip| |doc|
.. |ci| image:: https://github.com/TUW-GEO/esa_cci_sm/actions/workflows/ci.yml/badge.svg?branch=master
:target: https://github.com/TUW-GEO/esa_cci_sm/actions.. |cov| image:: https://coveralls.io/repos/TUW-GEO/esa_cci_sm/badge.png?branch=master
:target: https://coveralls.io/r/TUW-GEO/esa_cci_sm?branch=master.. |pip| image:: https://badge.fury.io/py/esa_cci_sm.svg
:target: http://badge.fury.io/py/esa_cci_sm.. |doc| image:: https://readthedocs.org/projects/esa_cci_sm/badge/?version=latest
:target: http://esa-cci-sm.readthedocs.org/Tools to convert `ESA CCI SM `_ image files into a time series format.
Installation
------------This python package and all required dependencies can be installed from
`pypi `_
via `pip `_.. code-block:: shell
pip install esa_cci_sm
On macOS if you get ``ImportError: Pykdtree failed to import its C extension``,
then it might be necessary to install the `pykdtree` package from conda-forge.. code-block:: shell
conda install -c conda-forge pykdtree
Data download
-------------Download ESA CCI SM data files either from the public
`CEDA data store via https `_
or the CEDA FTP server using, e.g. `FileZilla `_
or `wget `_**Host (FTP)**: ``anon-ftp.ceda.ac.uk`` no password or user required
**Directory (FTP)**: ``/neodc/esacci/soil_moisture``)
E.g the following command will download v9.1 COMBINED data for the year 2023 from the CEDA FTP via wget
.. code-block:: shell
wget -np -nH --cut-dirs 7 -r ftp://anon-ftp.ceda.ac.uk/neodc/esacci/soil_moisture/data/daily_files/COMBINED/v09.1/2023/
Time series creation
--------------------After installing this package via pip, you have access to the command line tool to convert ESA CCI SM image files
to CF conform time series. We use an Orthogonal multidimensional array representation
as implemented in the `pynetCF `_ python library.Note that we assume that the downloaded images are stored in yearly subfolders
like.. code-block::
/tmp/img/
├── 1978/
│ ├── ESACCI-SOILMOISTURE-L3S-SSMV-PASSIVE-19781101000000-fv09.1.nc
│ ├── ESACCI-SOILMOISTURE-L3S-SSMV-PASSIVE-19781102000000-fv09.1.nc
│ ├── ...
...
├── 2023/
│ ├── ...
│ ├── ESACCI-SOILMOISTURE-L3S-SSMV-PASSIVE-20231231000000-fv09.1.ncThe following command would then take the daily images from 1991
to 2023 in the path ``/tmp/img`` and convert data for grid cells over land into times series.
Time series are then stored in ``/tmp/ts``... code-block:: shell
ccism_reshuffle /tmp/img /tmp/ts 1991-01-01 2023-12-31 --land_points True
Afterwards, in python, the data can be read as pandas DataFrames.
.. code-block:: python
>> from esa_cci_sm.interface import CCITs
>> ds = CCITs("/tmp/ts", ioclass_kws={'read_bulk': True})
>> ds.read(15, 45) # lon, lat
sm sm_uncertainty flag ... mode sensor t0
1991-01-01 0.424880 0.094507 0 ... 1 2 7670.175000
1991-01-02 NaN NaN 24 ... 2 2 NaN
1991-01-03 NaN NaN 8 ... 0 2 NaN
... ... ... ... ... ... ... ...
2023-12-29 0.495448 0.039983 0 ... 3 21536 19720.051575
2023-12-30 0.426107 0.055060 0 ... 3 16416 19721.147066
2023-12-31 0.390103 0.030294 0 ... 3 21600 19722.117129Supported Products
==================At the moment this package supports ESA CCI soil moisture data versions
3 to 9 in netCDF format (reading and time series creation)
with a spatial sampling of 0.25 degrees.Contribute
==========We are happy if you want to contribute. Please raise an issue explaining what
is missing or if you find a bug. We will also gladly accept pull requests
against our master branch for new features or bug fixes.Setup
-----
Setup of a complete development environment with `conda
`_ can be performed using the following
commands:.. code-block:: shell
git clone [email protected]:TUW-GEO/esa_cci_sm.git --recursive esa_cci_sm
cd ./esa_cci_sm
conda create -n esa_cci_sm python=3.12
conda activate esa_cci_sm
pip install -e .[testing]To checkout our testdata files, you need to have
`Git LFS `_ installed on your machine.Guidelines
----------If you want to contribute please follow these steps:
- Fork the esa_cci_sm repository to your account
- Clone the repository, make sure you use ``git clone ... --recursive`` to also get
the test data repository.
- make a new feature branch from the esa_cci_sm master branch
- Add your feature
- Please include tests for your contributions in one of the test directories.
We use pytest so a simple function called test_my_feature is enough
- submit a pull request to our master branch