Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Westlake-AI/Awesome-Mixup

Awesome List of Mixup Augmentation Papers for Visual Representation Learning
https://github.com/Westlake-AI/Awesome-Mixup

List: Awesome-Mixup

awesome-list awesome-mixup computer-vision data-augmentation deep-learning image-classification mixup self-supervised-learning

Last synced: 16 days ago
JSON representation

Awesome List of Mixup Augmentation Papers for Visual Representation Learning

Awesome Lists containing this project

README

        

# Awesome-Mixup



[![Awesome](https://awesome.re/badge.svg)](https://awesome.re) ![GitHub stars](https://img.shields.io/github/stars/Westlake-AI/Awesome-Mixup?color=green) ![GitHub forks](https://img.shields.io/github/forks/Westlake-AI/Awesome-Mixup?color=yellow&label=Fork)

Welcome to Awesome-Mixup, a carefully curated survey of **Mixup** algorithms implemented in the PyTorch library, aiming to meet various needs of the research community. **Mixup** is a kind of methods that focus on alleviating model overfitting and poor generalization. As a *"data-centric"* way, Mixup can be applied to various training paradigms and data modalities.

If this repository has been helpful to you, please consider giving it a ⭐️ to show your support. Your support helps us reach more researchers and contributes to the growth of this resource. Thank you!

## Introduction

**We summarize awesome mixup data augmentation methods for visual representation learning in various scenarios from 2018 to 2024.**

The list of awesome mixup augmentation methods is summarized in chronological order and is on updating. The main branch is modified according to [Awesome-Mixup](https://github.com/Westlake-AI/openmixup/docs/en/awesome_mixups) in [OpenMixup](https://github.com/Westlake-AI/openmixup) and [Awesome-Mix](https://github.com/ChengtaiCao/Awesome-Mix), and we are working on a comperhensive survey on mixup augmentations. You can read our survey: [**A Survey on Mixup Augmentations and Beyond**](https://arxiv.org/abs/2409.05202) see more detailed information.

* To find related papers and their relationships, check out [Connected Papers](https://www.connectedpapers.com/), which visualizes the academic field in a graph representation.
* To export BibTeX citations of papers, check out [ArXiv](https://arxiv.org/) or [Semantic Scholar](https://www.semanticscholar.org/) of the paper for professional reference formats.



## Figuer of Contents

You can see the figuer of mixup augmentation methods deirtly that we summarized.



## Table of Contents

Table of Contents


    Sample Mixup Policies in SL


    1. Static Linear

    2. Feature-based

    3. Cutting-based

    4. K Samples Mixup

    5. Random Policies

    6. Style-based

    7. Saliency-based

    8. Attention-based

    9. Generating Samples




    Label Mixup Policies in SL

    1. Optimizing Calibration

    2. Area-based

    3. Loss Object

    4. Random Label Policies

    5. Optimizing Mixing Ratio

    6. Generating Label

    7. Attention Score

    8. Saliency Token



    Self-Supervised Learning


    1. Contrastive Learning

    2. Masked Image Modeling




    Semi-Supervised Learning

    1. Semi-Supervised Learning



    CV Downstream Tasks


    1. Regression

    2. Long tail distribution

    3. Segmentation

    4. Object Detection




    Training Paradigms

    1. Federated Learning

    2. Adversarial Attack and Adversarial Training

    3. Domain Adaption

    4. Knowledge Distillation

    5. Multi Modal




    Beyond Vision

    1. NLP

    2. GNN

    3. 3D Point

    4. Other



  1. Analysis and Theorem

  2. Survey

  3. Benchmark

  4. Classification Results on Datasets

  5. Related Datasets Link

  6. Contribution

  7. License

  8. Acknowledgement

  9. Related Project

### Sample Mixup Policies in SL



#### **Static Linear**

* **mixup: Beyond Empirical Risk Minimization**

*Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, David Lopez-Paz*

ICLR'2018 [[Paper](https://arxiv.org/abs/1710.09412)]
[[Code](https://github.com/facebookresearch/mixup-cifar10)]

MixUp Framework


* **Between-class Learning for Image Classification**

*Yuji Tokozume, Yoshitaka Ushiku, Tatsuya Harada*

CVPR'2018 [[Paper](https://arxiv.org/abs/1711.10284)]
[[Code](https://github.com/mil-tokyo/bc_learning_image)]

BC Framework


* **Preventing Manifold Intrusion with Locality: Local Mixup**

*Raphael Baena, Lucas Drumetz, Vincent Gripon*

EUSIPCO'2022 [[Paper](https://arxiv.org/abs/2201.04368)]

LocalMixup Framework


* **AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty**

*Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, Balaji Lakshminarayanan*

ICLR'2020 [[Paper](https://arxiv.org/abs/1912.02781)]
[[Code](https://github.com/google-research/augmix)]

AugMix Framework


* **DJMix: Unsupervised Task-agnostic Augmentation for Improving Robustness**

*Ryuichiro Hataya, Hideki Nakayama*

arXiv'2021 [[Paper](https://openreview.net/pdf?id=0n3BaVlNsHI)]

DJMix Framework


* **PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures**

*Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, Jacob Steinhardt*

CVPR'2022 [[Paper](https://arxiv.org/abs/2112.05135)]
[[Code](https://github.com/andyzoujm/pixmix)]

PixMix Framework


* **IPMix: Label-Preserving Data Augmentation Method for Training Robust Classifiers**

*Zhenglin Huang, Xiaoan Bao, Na Zhang, Qingqi Zhang, Xiaomei Tu, Biao Wu, Xi Yang*

NIPS'2023 [[Paper](https://arxiv.org/abs/2310.04780)]
[[Code](https://github.com/hzlsaber/IPMix)]

IPMix Framework


(back to top)



#### **Feature-based**

* **Manifold Mixup: Better Representations by Interpolating Hidden States**

*Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, Yoshua Bengio*

ICML'2019 [[Paper](https://arxiv.org/abs/1806.05236)]
[[Code](https://github.com/vikasverma1077/manifold_mixup)]

ManifoldMix Framework


* **PatchUp: A Regularization Technique for Convolutional Neural Networks**

*Mojtaba Faramarzi, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma, Sarath Chandar*

arXiv'2020 [[Paper](https://arxiv.org/abs/2006.07794)]
[[Code](https://github.com/chandar-lab/PatchUp)]

PatchUp Framework


* **On Feature Normalization and Data Augmentation**

*Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, Kilian Q. Weinberger*

CVPR'2021 [[Paper](https://arxiv.org/abs/2002.11102)]
[[Code](https://github.com/Boyiliee/MoEx)]

MoEx Framework


* **Catch-Up Mix: Catch-Up Class for Struggling Filters in CNN**

*Minsoo Kang, Minkoo Kang, Suhyun Kim*

AAAI'2024 [[Paper](https://arxiv.org/abs/2401.13193)]

Catch-Up-Mix Framework


(back to top)

#### **Cutting-based**

* **CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features**

*Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, Youngjoon Yoo*

ICCV'2019 [[Paper](https://arxiv.org/abs/1905.04899)]
[[Code](https://github.com/clovaai/CutMix-PyTorch)]

CutMix Framework


* **Improved Mixed-Example Data Augmentation**

*Cecilia Summers, Michael J. Dinneen*

WACV'2019 [[Paper](https://arxiv.org/abs/1805.11272)]
[[Code](https://github.com/ceciliaresearch/MixedExample)]

MixedExamples Framework


* **Patch-level Neighborhood Interpolation: A General and Effective Graph-based Regularization Strategy**

*Ke Sun, Bing Yu, Zhouchen Lin, Zhanxing Zhu*

arXiv'2019 [[Paper](https://arxiv.org/abs/1911.09307)]

Pani VAT Framework


* **FMix: Enhancing Mixed Sample Data Augmentation**

*Ethan Harris, Antonia Marcu, Matthew Painter, Mahesan Niranjan, Adam Prügel-Bennett, Jonathon Hare*

arXiv'2020 [[Paper](https://arxiv.org/abs/2002.12047)]
[[Code](https://github.com/ecs-vlc/FMix)]

FMix Framework


* **SmoothMix: a Simple Yet Effective Data Augmentation to Train Robust Classifiers**

*Jin-Ha Lee, Muhammad Zaigham Zaheer, Marcella Astrid, Seung-Ik Lee*

CVPRW'2020 [[Paper](https://openaccess.thecvf.com/content_CVPRW_2020/html/w45/Lee_SmoothMix_A_Simple_Yet_Effective_Data_Augmentation_to_Train_Robust_CVPRW_2020_paper.html)]
[[Code](https://github.com/Westlake-AI/openmixup)]

SmoothMix Framework


* **GridMix: Strong regularization through local context mapping**

*Kyungjune Baek, Duhyeon Bang, Hyunjung Shim*

Pattern Recognition'2021 [[Paper](https://www.sciencedirect.com/science/article/pii/S0031320320303976)]
[[Code](https://github.com/IlyaDobrynin/GridMixup)]

GridMixup Framework


* **ResizeMix: Mixing Data with Preserved Object Information and True Labels**

*Jie Qin, Jiemin Fang, Qian Zhang, Wenyu Liu, Xingang Wang, Xinggang Wang*

arXiv'2020 [[Paper](https://arxiv.org/abs/2012.11101)]
[[Code](https://github.com/Westlake-AI/openmixup)]

ResizeMix Framework


* **StackMix: A complementary Mix algorithm**

*John Chen, Samarth Sinha, Anastasios Kyrillidis*

UAI'2022 [[Paper](https://arxiv.org/abs/2011.12618)]

StackMix Framework


* **SuperpixelGridCut, SuperpixelGridMean and SuperpixelGridMix Data Augmentation**

*Karim Hammoudi, Adnane Cabani, Bouthaina Slika, Halim Benhabiles, Fadi Dornaika, Mahmoud Melkemi*

arXiv'2022 [[Paper](https://arxiv.org/abs/2204.08458)]
[[Code](https://github.com/hammoudiproject/SuperpixelGridMasks)]

SuperpixelGridCut Framework


* **A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective**

*Chanwoo Park, Sangdoo Yun, Sanghyuk Chun*

NIPS'2022 [[Paper](https://arxiv.org/abs/2208.09913)]
[[Code](https://github.com/naver-ai/hmix-gmix)]

MSDA Framework


* **You Only Cut Once: Boosting Data Augmentation with a Single Cut**

*Junlin Han, Pengfei Fang, Weihao Li, Jie Hong, Mohammad Ali Armin, Ian Reid, Lars Petersson, Hongdong Li*

ICML'2022 [[Paper](https://arxiv.org/abs/2201.12078)]
[[Code](https://github.com/JunlinHan/YOCO)]

YOCO Framework


* **StarLKNet: Star Mixup with Large Kernel Networks for Palm Vein Identification**

*Xin Jin, Hongyu Zhu, Mounîm A.El Yacoubi, Hongchao Liao, Huafeng Qin, Yun Jiang*

arXiv'2024 [[Paper](https://arxiv.org/abs/2405.12721)]

StarMix Framework


(back to top)

#### **K Samples Mixup**

* **You Only Look Once: Unified, Real-Time Object Detection**

*Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi*

CVPR'2016 [[Paper](https://arxiv.org/abs/1506.02640)]
[[Code](https://pjreddie.com/darknet/yolo/#google_vignette)]

Mosaic


* **Data Augmentation using Random Image Cropping and Patching for Deep CNNs**

*Ryo Takahashi, Takashi Matsubara, Kuniaki Uehara*

IEEE TCSVT'2020 [[Paper](https://arxiv.org/abs/1811.09030)]

RICAP


* **k-Mixup Regularization for Deep Learning via Optimal Transport**

*Kristjan Greenewald, Anming Gu, Mikhail Yurochkin, Justin Solomon, Edward Chien*

arXiv'2021 [[Paper](https://arxiv.org/abs/2106.02933)]

k-Mixup Framework


* **Observations on K-image Expansion of Image-Mixing Augmentation for Classification**

*Joonhyun Jeong, Sungmin Cha, Youngjoon Yoo, Sangdoo Yun, Taesup Moon, Jongwon Choi*

IEEE Access'2021 [[Paper](https://arxiv.org/abs/2110.04248)]
[[Code](https://github.com/yjyoo3312/DCutMix-PyTorch)]

DCutMix Framework


* **MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks**

*Alexandre Rame, Remy Sun, Matthieu Cord*

ICCV'2021 [[Paper](https://arxiv.org/abs/2103.06132)]

MixMo Framework


* **Cut-Thumbnail: A Novel Data Augmentation for Convolutional Neural Network**

*Tianshu Xie, Xuan Cheng, Minghui Liu, Jiali Deng, Xiaomin Wang, Ming Liu*

ACM MM;2021 [[Paper](https://arxiv.org/abs/2103.05342)]

Cut-Thumbnail


(back to top)

#### **Random Policies**

* **RandomMix: A mixed sample data augmentation method with multiple mixed modes**

*Xiaoliang Liu, Furao Shen, Jian Zhao, Changhai Nie*

arXiv'2022 [[Paper](https://arxiv.org/abs/2205.08728)]

RandomMix Framework


* **AugRmixAT: A Data Processing and Training Method for Improving Multiple Robustness and Generalization Performance**

*Xiaoliang Liu, Furao Shen, Jian Zhao, Changhai Nie*

ICME'2022 [[Paper](https://arxiv.org/abs/2207.10290)]

AugRmixAT Framework


(back to top)

#### **Style-based**

* **StyleMix: Separating Content and Style for Enhanced Data Augmentation**

*Minui Hong, Jinwoo Choi, Gunhee Kim*

CVPR'2021 [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Hong_StyleMix_Separating_Content_and_Style_for_Enhanced_Data_Augmentation_CVPR_2021_paper.pdf)]
[[Code](https://github.com/alsdml/StyleMix)]

StyleMix Framework


* **Domain Generalization with MixStyle**

*Kaiyang Zhou, Yongxin Yang, Yu Qiao, Tao Xiang*

ICLR'2021 [[Paper](https://openreview.net/forum?id=6xHJ37MVxxp)]
[[Code](https://github.com/KaiyangZhou/mixstyle-release)]

MixStyle Framework


* **AlignMix: Improving representation by interpolating aligned features**

*Shashanka Venkataramanan, Ewa Kijak, Laurent Amsaleg, Yannis Avrithis*

CVPR'2022 [[Paper](https://arxiv.org/abs/2103.15375)]
[[Code](https://github.com/shashankvkt/AlignMixup_CVPR22)]

AlignMixup Framework


* **Embedding Space Interpolation Beyond Mini-Batch, Beyond Pairs and Beyond Examples**

*Shashanka Venkataramanan, Ewa Kijak, Laurent Amsaleg, Yannis Avrithis*

NIPS'2023 [[Paper](https://arxiv.org/abs/2206.14868)]

MultiMix Framework


(back to top)

#### **Saliency-based**

* **SaliencyMix: A Saliency Guided Data Augmentation Strategy for Better Regularization**

*A F M Shahab Uddin and Mst. Sirazam Monira and Wheemyung Shin and TaeChoong Chung and Sung-Ho Bae*

ICLR'2021 [[Paper](https://arxiv.org/abs/2006.01791)]
[[Code](https://github.com/SaliencyMix/SaliencyMix)]

SaliencyMix Framework


* **Attentive CutMix: An Enhanced Data Augmentation Approach for Deep Learning Based Image Classification**

*Devesh Walawalkar, Zhiqiang Shen, Zechun Liu, Marios Savvides*

ICASSP'2020 [[Paper](https://arxiv.org/abs/2003.13048)]
[[Code](https://github.com/xden2331/attentive_cutmix)]

AttentiveMix Framework


* **SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data**

*Shaoli Huang, Xinchao Wang, Dacheng Tao*

AAAI'2021 [[Paper](https://arxiv.org/abs/2012.04846)]
[[Code](https://github.com/Shaoli-Huang/SnapMix)]

SnapMix Framework


* **Attribute Mix: Semantic Data Augmentation for Fine Grained Recognition**

*Hao Li, Xiaopeng Zhang, Hongkai Xiong, Qi Tian*

VCIP'2020 [[Paper](https://arxiv.org/abs/2004.02684)]

AttributeMix Framework


* **Where to Cut and Paste: Data Regularization with Selective Features**

*Jiyeon Kim, Ik-Hee Shin, Jong-Ryul, Lee, Yong-Ju Lee*

ICTC'2020 [[Paper](https://ieeexplore.ieee.org/abstract/document/9289404)]
[[Code](https://github.com/google-research/augmix)]

FocusMix Framework


* **PuzzleMix: Exploiting Saliency and Local Statistics for Optimal Mixup**

*Jang-Hyun Kim, Wonho Choo, Hyun Oh Song*

ICML'2020 [[Paper](https://arxiv.org/abs/2009.06962)]
[[Code](https://github.com/snu-mllab/PuzzleMix)]

PuzzleMix Framework


* **Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity**

*Jang-Hyun Kim, Wonho Choo, Hosan Jeong, Hyun Oh Song*

ICLR'2021 [[Paper](https://arxiv.org/abs/2102.03065)]
[[Code](https://github.com/snu-mllab/Co-Mixup)]

Co-Mixup Framework


* **SuperMix: Supervising the Mixing Data Augmentation**

*Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, Nasser M. Nasrabadi*

CVPR'2021 [[Paper](https://arxiv.org/abs/2003.05034)]
[[Code](https://github.com/alldbi/SuperMix)]

SuperMix Framework


* **AutoMix: Unveiling the Power of Mixup for Stronger Classifiers**

*Zicheng Liu, Siyuan Li, Di Wu, Zihan Liu, Zhiyuan Chen, Lirong Wu, Stan Z. Li*

ECCV'2022 [[Paper](https://arxiv.org/abs/2103.13027)]
[[Code](https://github.com/Westlake-AI/openmixup)]

AutoMix Framework


* **Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup**

*Siyuan Li, Zicheng Liu, Di Wu, Zihan Liu, Stan Z. Li*

arXiv'2021 [[Paper](https://arxiv.org/abs/2111.15454)]
[[Code](https://github.com/Westlake-AI/openmixup)]

SAMix Framework


* **RecursiveMix: Mixed Learning with History**

*Lingfeng Yang, Xiang Li, Borui Zhao, Renjie Song, Jian Yang*

NIPS'2022 [[Paper](https://arxiv.org/abs/2203.06844)]
[[Code](https://github.com/implus/RecursiveMix-pytorch)]

RecursiveMix Framework


* **TransformMix: Learning Transformation and Mixing Strategies for Sample-mixing Data Augmentation**

*Tsz-Him Cheung, Dit-Yan Yeung*

OpenReview'2023 [[Paper](https://openreview.net/forum?id=-1vpxBUtP0B)]

TransformMix Framework


* **GuidedMixup: An Efficient Mixup Strategy Guided by Saliency Maps**

*Minsoo Kang, Suhyun Kim*

AAAI'2023 [[Paper](https://arxiv.org/abs/2306.16612)]
[[Code](https://github.com/3neutronstar/GuidedMixup)]

GuidedMixup Framework


* **GradSalMix: Gradient Saliency-Based Mix for Image Data Augmentation**

*Tao Hong, Ya Wang, Xingwu Sun, Fengzong Lian, Zhanhui Kang, Jinwen Ma*

ICME'2023 [[Paper](https://ieeexplore.ieee.org/abstract/document/10219625)]

GradSalMix Framework


* **LGCOAMix: Local and Global Context-and-Object-Part-Aware Superpixel-Based Data Augmentation for Deep Visual Recognition**

*Fadi Dornaika, Danyang Sun*

TIP'2023 [[Paper](https://ieeexplore.ieee.org/document/10348509)]
[[Code](https://github.com/DanielaPlusPlus/LGCOAMix)]

LGCOAMix Framework


* **Adversarial AutoMixup**

*Huafeng Qin, Xin Jin, Yun Jiang, Mounim A. El-Yacoubi, Xinbo Gao*

ICLR'2024 [[Paper](https://arxiv.org/abs/2312.11954)]
[[Code](https://github.com/jinxins/adversarial-automixup)]

AdAutoMix Framework


(back to top)

#### **Attention-based**

* **TokenMix: Rethinking Image Mixing for Data Augmentation in Vision Transformers**

*Jihao Liu, Boxiao Liu, Hang Zhou, Hongsheng Li, Yu Liu*

ECCV'2022 [[Paper](https://arxiv.org/abs/2207.08409)]
[[Code](https://github.com/Sense-X/TokenMix)]

TokenMix Framework


* **TokenMixup: Efficient Attention-guided Token-level Data Augmentation for Transformers**

*Hyeong Kyu Choi, Joonmyung Choi, Hyunwoo J. Kim*

NIPS'2022 [[Paper](https://arxiv.org/abs/2210.07562)]
[[Code](https://github.com/mlvlab/TokenMixup)]

TokenMixup Framework


* **ScoreNet: Learning Non-Uniform Attention and Augmentation for Transformer-Based Histopathological Image Classification**

*Thomas Stegmüller, Behzad Bozorgtabar, Antoine Spahr, Jean-Philippe Thiran*

WACV'2023 [[Paper](https://arxiv.org/abs/2202.07570)]

ScoreMix Framework


* **MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer**

*Qihao Zhao, Yangyu Huang, Wei Hu, Fan Zhang, Jun Liu*

ICLR'2023 [[Paper](https://openreview.net/forum?id=dRjWsd3gwsm)]
[[Code](https://github.com/fistyee/MixPro)]

MixPro Framework


* **SMMix: Self-Motivated Image Mixing for Vision Transformers**

*Mengzhao Chen, Mingbao Lin, ZhiHang Lin, Yuxin Zhang, Fei Chao, Rongrong Ji*

ICCV'2023 [[Paper](https://arxiv.org/abs/2212.12977)]
[[Code](https://github.com/chenmnz/smmix)]

SMMix Framework


(back to top)

#### **Generating Samples**

* **Data Augmentation via Latent Space Interpolation for Image Classification**

*Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao, Junliang Yan, Jun Wang, Site Li, Ping Jia, Jane You

ICPR'2018 [[Paper](https://ieeexplore.ieee.org/abstract/document/8545506)]

AEE Framework


* **On Adversarial Mixup Resynthesis**

*Christopher Beckham, Sina Honari, Vikas Verma, Alex Lamb, Farnoosh Ghadiri, R Devon Hjelm, Yoshua Bengio, Christopher Pal*

NIPS'2019 [[Paper](https://arxiv.org/abs/1903.02709)]
[[Code](https://github.com/christopher-beckham/amr)]

AMR Framework


* **AutoMix: Mixup Networks for Sample Interpolation via Cooperative Barycenter Learning**

*Jianchao Zhu, Liangliang Shi, Junchi Yan, Hongyuan Zha*

ECCV'2020 [[Paper](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123550630.pdf)]

AutoMix Framework


* **VarMixup: Exploiting the Latent Space for Robust Training and Inference**

*Puneet Mangla, Vedant Singh, Shreyas Jayant Havaldar, Vineeth N Balasubramanian*

CVPRW'2021 [[Paper](https://arxiv.org/abs/2003.06566v1)]

VarMixup Framework


* **DiffuseMix: Label-Preserving Data Augmentation with Diffusion Models**

*Khawar Islam, Muhammad Zaigham Zaheer, Arif Mahmood, Karthik Nandakumar*

CVPR'2024 [[Paper](https://arxiv.org/abs/2405.14881)]
[[Code](https://github.com/khawar-islam/diffuseMix)]

DiffuseMix Framework


(back to top)

### Label Mixup Policies in SL



### **Optimizing Calibration**

* **Combining Ensembles and Data Augmentation can Harm your Calibration**

*Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W. Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, Dustin Tran*

ICLR'2021 [[Paper](https://arxiv.org/abs/2010.09875)]
[[Code](https://github.com/google/edward2/tree/main/experimental/marginalization_mixup)]

CAMix Framework


* **RankMixup: Ranking-Based Mixup Training for Network Calibration**

*Jongyoun Noh, Hyekang Park, Junghyup Lee, Bumsub Ham*

ICCV'2023 [[Paper](https://arxiv.org/abs/2308.11990)]
[[Code](https://cvlab.yonsei.ac.kr/projects/RankMixup)]

RankMixup Framework


* **SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness**

*Jongheon Jeong, Sejun Park, Minkyu Kim, Heung-Chang Lee, Doguk Kim, Jinwoo Shin*

NIPS'2021 [[Paper](https://arxiv.org/abs/2111.09277)]
[[Code](https://github.com/jh-jeong/smoothmix)]

SmoothMixup Framework


(back to top)

### **Area-based**

* **TransMix: Attend to Mix for Vision Transformers**

*Jie-Neng Chen, Shuyang Sun, Ju He, Philip Torr, Alan Yuille, Song Bai*

CVPR'2022 [[Paper](https://arxiv.org/abs/2111.09833)]
[[Code](https://github.com/Beckschen/TransMix)]

TransMix Framework


* **Data Augmentation using Random Image Cropping and Patching for Deep CNNs**

*Ryo Takahashi, Takashi Matsubara, Kuniaki Uehara*

IEEE TCSVT'2020 [[Paper](https://arxiv.org/abs/1811.09030)]

RICAP


* **RecursiveMix: Mixed Learning with History**

*Lingfeng Yang, Xiang Li, Borui Zhao, Renjie Song, Jian Yang*

NIPS'2022 [[Paper](https://arxiv.org/abs/2203.06844)]
[[Code](https://github.com/implus/RecursiveMix-pytorch)]

RecursiveMix Framework


(back to top)

### **Loss Object**

* **Harnessing Hard Mixed Samples with Decoupled Regularizer**

*Zicheng Liu, Siyuan Li, Ge Wang, Cheng Tan, Lirong Wu, Stan Z. Li*

NIPS'2023 [[Paper](https://arxiv.org/abs/2203.10761)]
[[Code](https://github.com/Westlake-AI/openmixup)]

DecoupledMix Framework


* **MixupE: Understanding and Improving Mixup from Directional Derivative Perspective**

*Vikas Verma, Sarthak Mittal, Wai Hoh Tang, Hieu Pham, Juho Kannala, Yoshua Bengio, Arno Solin, Kenji Kawaguchi*

UAI'2023 [[Paper](https://arxiv.org/abs/2212.13381)]
[[Code](https://github.com/onehuster/mixupe)]

MixupE Framework


(back to top)

### **Random Label Policies**

* **Mixup Without Hesitation**

*Hao Yu, Huanyu Wang, Jianxin Wu*

ICIG'2022 [[Paper](https://arxiv.org/abs/2101.04342)]
[[Code](https://github.com/yuhao318/mwh)]

* **RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness**

*Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, Puneet K. Dokania*

NIPS'2022 [[Paper](https://arxiv.org/abs/2206.14502)]
[[Code](https://github.com/FrancescoPinto/RegMixup)]

RegMixup Framework


(back to top)

### **Optimizing Mixing Ratio**

* **MixUp as Locally Linear Out-Of-Manifold Regularization**

*Hongyu Guo, Yongyi Mao, Richong Zhang*

AAAI'2019 [[Paper](https://arxiv.org/abs/1809.02499)]

AdaMixup Framework


* **RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness**

*Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, Puneet K. Dokania*

NIPS'2022 [[Paper](https://arxiv.org/abs/2206.14502)]
[[Code](https://github.com/FrancescoPinto/RegMixup)]

RegMixup Framework


* **Metamixup: Learning adaptive interpolation policy of mixup with metalearning**

*Zhijun Mai, Guosheng Hu, Dexiong Chen, Fumin Shen, Heng Tao Shen*

IEEE TNNLS'2021 [[Paper](https://arxiv.org/abs/1908.10059)]

MetaMixup Framework


* **LUMix: Improving Mixup by Better Modelling Label Uncertainty**

*Shuyang Sun, Jie-Neng Chen, Ruifei He, Alan Yuille, Philip Torr, Song Bai*

ICASSP'2024 [[Paper](https://arxiv.org/abs/2211.15846)]
[[Code](https://github.com/kevin-ssy/LUMix)]

LUMix Framework


* **SUMix: Mixup with Semantic and Uncertain Information**

*Huafeng Qin, Xin Jin, Hongyu Zhu, Hongchao Liao, Mounîm A. El-Yacoubi, Xinbo Gao*

ECCV'2024 [[Paper](https://arxiv.org/abs/2407.07805)]
[[Code](https://github.com/JinXins/SUMix)]

SUMix Framework


(back to top)

### **Generating Label**

* **GenLabel: Mixup Relabeling using Generative Models**

*Jy-yong Sohn, Liang Shang, Hongxu Chen, Jaekyun Moon, Dimitris Papailiopoulos, Kangwook Lee*

ICML'2022 [[Paper](https://arxiv.org/abs/2201.02354)]

GenLabel Framework


(back to top)

### **Attention Score**

* **All Tokens Matter: Token Labeling for Training Better Vision Transformers**

*Zihang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun Shi, Xiaojie Jin, Anran Wang, Jiashi Feng*

NIPS'2021 [[Paper](https://arxiv.org/abs/2104.10858)]
[[Code](https://github.com/zihangJiang/TokenLabeling)]

Token Labeling Framework


* **TokenMix: Rethinking Image Mixing for Data Augmentation in Vision Transformers**

*Jihao Liu, Boxiao Liu, Hang Zhou, Hongsheng Li, Yu Liu*

ECCV'2022 [[Paper](https://arxiv.org/abs/2207.08409)]
[[Code](https://github.com/Sense-X/TokenMix)]

TokenMix Framework


* **TokenMixup: Efficient Attention-guided Token-level Data Augmentation for Transformers**

*Hyeong Kyu Choi, Joonmyung Choi, Hyunwoo J. Kim*

NIPS'2022 [[Paper](https://arxiv.org/abs/2210.07562)]
[[Code](https://github.com/mlvlab/TokenMixup)]

TokenMixup Framework


* **MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer**

*Qihao Zhao, Yangyu Huang, Wei Hu, Fan Zhang, Jun Liu*

ICLR'2023 [[Paper](https://openreview.net/forum?id=dRjWsd3gwsm)]
[[Code](https://github.com/fistyee/MixPro)]

MixPro Framework


* **Token-Label Alignment for Vision Transformers**

*Han Xiao, Wenzhao Zheng, Zheng Zhu, Jie Zhou, Jiwen Lu*

ICCV'2023 [[Paper](https://arxiv.org/abs/2210.06455)]
[[Code](https://github.com/Euphoria16/TL-Align)]

TL-Align Framework


(back to top)

### **Saliency Token**

* **SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data**

*Shaoli Huang, Xinchao Wang, Dacheng Tao*

AAAI'2021 [[Paper](https://arxiv.org/abs/2012.04846)]
[[Code](https://github.com/Shaoli-Huang/SnapMix)]

SnapMix Framework


* **Saliency Grafting: Innocuous Attribution-Guided Mixup with Calibrated Label Mixing**

*Joonhyung Park, June Yong Yang, Jinwoo Shin, Sung Ju Hwang, Eunho Yang*

AAAI'2022 [[Paper](https://arxiv.org/abs/2112.08796)]

Saliency Grafting Framework


(back to top)

## Self-Supervised Learning

### **Contrastive Learning**

* **MixCo: Mix-up Contrastive Learning for Visual Representation**

*Sungnyun Kim, Gihun Lee, Sangmin Bae, Se-Young Yun*

NIPSW'2020 [[Paper](https://arxiv.org/abs/2010.06300)]
[[Code](https://github.com/Lee-Gihun/MixCo-Mixup-Contrast)]

MixCo Framework


* **Hard Negative Mixing for Contrastive Learning**

*Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, Diane Larlus*

NIPS'2020 [[Paper](https://arxiv.org/abs/2010.01028)]
[[Code](https://europe.naverlabs.com/mochi)]

MoCHi Framework


* **i-Mix A Domain-Agnostic Strategy for Contrastive Representation Learning**

*Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, Honglak Lee*

ICLR'2021 [[Paper](https://arxiv.org/abs/2010.08887)]
[[Code](https://github.com/kibok90/imix)]

i-Mix Framework


* **Beyond Single Instance Multi-view Unsupervised Representation Learning**

*Xiangxiang Chu, Xiaohang Zhan, Xiaolin Wei*

BMVC'2022 [[Paper](https://arxiv.org/abs/2011.13356)]

BSIM Framework


* **Improving Contrastive Learning by Visualizing Feature Transformation**

*Rui Zhu, Bingchen Zhao, Jingen Liu, Zhenglong Sun, Chang Wen Chen*

ICCV'2021 [[Paper](https://arxiv.org/abs/2108.02982)]
[[Code](https://github.com/DTennant/CL-Visualizing-Feature-Transformation)]

FT Framework


* **Mix-up Self-Supervised Learning for Contrast-agnostic Applications**

*Yichen Zhang, Yifang Yin, Ying Zhang, Roger Zimmermann*

ICME'2021 [[Paper](https://arxiv.org/abs/2204.00901)]

MixSSL Framework


* **Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning**

*Yifan Zhang, Bryan Hooi, Dapeng Hu, Jian Liang, Jiashi Feng*

NIPS'2021 [[Paper](https://arxiv.org/abs/2102.06605)]
[[Code](https://github.com/Vanint/Core-tuning)]

Co-Tuning Framework


* **Center-wise Local Image Mixture For Contrastive Representation Learning**

*Hao Li, Xiaopeng Zhang, Hongkai Xiong*

BMVC'2021 [[Paper](https://arxiv.org/abs/2011.02697)]

CLIM Framework


* **Piecing and Chipping: An effective solution for the information-erasing view generation in Self-supervised Learning**

*Jingwei Liu, Yi Gu, Shentong Mo, Zhun Sun, Shumin Han, Jiafeng Guo, Xueqi Cheng*

OpenReview'2021 [[Paper](https://openreview.net/forum?id=DnG8f7gweH4)]

PCEA Framework


* **Boosting Discriminative Visual Representation Learning with Scenario-Agnostic Mixup**

*Siyuan Li, Zicheng Liu, Di Wu, Zihan Liu, Stan Z. Li*

arXiv'2021 [[Paper](https://arxiv.org/abs/2111.15454)]
[[Code](https://github.com/Westlake-AI/openmixup)]

SAMix Framework


* **MixSiam: A Mixture-based Approach to Self-supervised Representation Learning**

*Xiaoyang Guo, Tianhao Zhao, Yutian Lin, Bo Du*

OpenReview'2021 [[Paper](https://arxiv.org/abs/2111.02679)]

MixSiam Framework




* **Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing**

*Aadarsh Sahoo, Rutav Shah, Rameswar Panda, Kate Saenko, Abir Das*

NIPS'2021 [[Paper](https://arxiv.org/abs/2011.02697)]
[[Code](https://cvir.github.io/projects/comix)]

CoMix Framework


* **Un-Mix: Rethinking Image Mixtures for Unsupervised Visual Representation**

*Zhiqiang Shen, Zechun Liu, Zhuang Liu, Marios Savvides, Trevor Darrell, Eric Xing*

AAAI'2022 [[Paper](https://arxiv.org/abs/2003.05438)]
[[Code](https://github.com/szq0214/Un-Mix)]

Un-Mix Framework


* **m-Mix: Generating Hard Negatives via Multi-sample Mixing for Contrastive Learning**

*Shaofeng Zhang, Meng Liu, Junchi Yan, Hengrui Zhang, Lingxiao Huang, Pinyan Lu, Xiaokang Yang*

KDD'2022 [[Paper](https://sherrylone.github.io/assets/KDD22_M-Mix.pdf)]
[[Code](https://github.com/Sherrylone/m-mix)]

m-Mix Framework




* **A Simple Data Mixing Prior for Improving Self-Supervised Learning**

*Sucheng Ren, Huiyu Wang, Zhengqi Gao, Shengfeng He, Alan Yuille, Yuyin Zhou, Cihang Xie*

CVPR'2022 [[Paper](https://arxiv.org/abs/2206.07692)]
[[Code](https://github.com/oliverrensu/sdmp)]

SDMP Framework


* **CropMix: Sampling a Rich Input Distribution via Multi-Scale Cropping**

*Junlin Han, Lars Petersson, Hongdong Li, Ian Reid*

arXiv'2022 [[Paper](https://arxiv.org/abs/2205.15955)]
[[Code](https://github.com/JunlinHan/CropMix)]

CropMix Framework


* **Mixing up contrastive learning: Self-supervised representation learning for time series**

*Kristoffer Wickstrøm, Michael Kampffmeyer, Karl Øyvind Mikalsen, Robert Jenssen*

PR Letter'2022 [[Paper](https://www.sciencedirect.com/science/article/pii/S0167865522000502)]

MCL Framework


* **Towards Domain-Agnostic Contrastive Learning**

*Vikas Verma, Minh-Thang Luong, Kenji Kawaguchi, Hieu Pham, Quoc V. Le*

ICML'2021 [[Paper](https://arxiv.org/abs/2011.04419)]

DACL Framework


* **ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning**

*Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, Stan Z.Li*

ICML'2022 [[Paper](https://arxiv.org/abs/2110.02027)]
[[Code](https://github.com/junxia97/ProGCL)]

ProGCL Framework


* **Evolving Image Compositions for Feature Representation Learning**

*Paola Cascante-Bonilla, Arshdeep Sekhon, Yanjun Qi, Vicente Ordonez*

BMVC'2021 [[Paper](https://arxiv.org/abs/2106.09011)]

PatchMix Framework


* **On the Importance of Asymmetry for Siamese Representation Learning**

*Xiao Wang, Haoqi Fan, Yuandong Tian, Daisuke Kihara, Xinlei Chen*

CVPR'2022 [[Paper](https://arxiv.org/abs/2204.00613)]
[[Code](https://github.com/facebookresearch/asym-siam)]

ScaleMix Framework


* **Geodesic Multi-Modal Mixup for Robust Fine-Tuning**

*Changdae Oh, Junhyuk So, Hoyoon Byun, YongTaek Lim, Minchul Shin, Jong-June Jeon, Kyungwoo Song*

NIPS'2023 [[Paper](https://arxiv.org/abs/2203.03897)]
[[Code](https://github.com/changdaeoh/multimodal-mixup)]

m2-Mix Framework


(back to top)

### **Masked Image Modeling**

* **i-MAE: Are Latent Representations in Masked Autoencoders Linearly Separable**

*Kevin Zhang, Zhiqiang Shen*

arXiv'2022 [[Paper](https://arxiv.org/abs/2210.11470)]
[[Code](https://github.com/vision-learning-acceleration-lab/i-mae)]

i-MAE Framework


* **MixMAE: Mixed and Masked Autoencoder for Efficient Pretraining of Hierarchical Vision Transformers**

*Jihao Liu, Xin Huang, Jinliang Zheng, Yu Liu, Hongsheng Li*

CVPR'2023 [[Paper](https://arxiv.org/abs/2205.13137)]
[[Code](https://github.com/Sense-X/MixMIM)]

MixMAE Framework


* **Mixed Autoencoder for Self-supervised Visual Representation Learning**

*Kai Chen, Zhili Liu, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung*

CVPR'2023 [[Paper](https://arxiv.org/abs/2303.17152)]

MixedAE Framework


(back to top)

### Semi-Supervised Learning

* **MixMatch: A Holistic Approach to Semi-Supervised Learning**

*David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, Colin Raffel*

NIPS'2019 [[Paper](https://arxiv.org/abs/1905.02249)]
[[Code](https://github.com/google-research/mixmatch)]

MixMatch Framework


* **ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring**

*David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, Colin Raffel*

ICLR'2020 [[Paper](https://openreview.net/forum?id=HklkeR4KPB)]
[[Code](https://github.com/google-research/remixmatch)]

ReMixMatch Framework


* **DivideMix: Learning with Noisy Labels as Semi-supervised Learning**

*Junnan Li, Richard Socher, Steven C.H. Hoi*

ICLR'2020 [[Paper](https://arxiv.org/abs/2002.07394)]
[[Code](https://github.com/LiJunnan1992/DivideMix)]

DivideMix Framework


* **MixPUL: Consistency-based Augmentation for Positive and Unlabeled Learning**

*Tong Wei, Feng Shi, Hai Wang, Wei-Wei Tu. Yu-Feng Li*

arXiv'2020 [[Paper](https://arxiv.org/abs/2004.09388)]

MixPUL Framework

* **Milking CowMask for Semi-Supervised Image Classification**

*Geoff French, Avital Oliver, Tim Salimans*

NIPS'2020 [[Paper](https://arxiv.org/abs/2003.12022)]
[[Code](https://github.com/google-research/google-research/tree/master/milking_cowmask)]

CowMask Framework


* **Epsilon Consistent Mixup: Structural Regularization with an Adaptive Consistency-Interpolation Tradeoff**

*Vincent Pisztora, Yanglan Ou, Xiaolei Huang, Francesca Chiaromonte, Jia Li*

arXiv'2021 [[Paper](https://arxiv.org/abs/2104.09452)]

Epsilon Consistent Mixup (ϵmu) Framework


* **Who Is Your Right Mixup Partner in Positive and Unlabeled Learning**

*Changchun Li, Ximing Li, Lei Feng, Jihong Ouyang*

ICLR'2021 [[Paper](https://openreview.net/forum?id=NH29920YEmj)]

P3Mix Framework


* **Interpolation Consistency Training for Semi-Supervised Learning**

*Vikas Verma, Kenji Kawaguchi, Alex Lamb, Juho Kannala, Arno Solin, Yoshua Bengio, David Lopez-Paz*

NN'2022 [[Paper](https://arxiv.org/abs/1903.03825)]

ICT Framework


* **Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for Semi-Supervised Medical Image Segmentation**

*Yuanbin Chen, Tao Wang, Hui Tang, Longxuan Zhao, Ruige Zong, Tao Tan, Xinlin Zhang, Tong Tong*

arXiv'2023 [[Paper](https://arxiv.org/abs/2308.16573)]

DCPA Framework


* **MUM: Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection**

*JongMok Kim, Jooyoung Jang, Seunghyeon Seo, Jisoo Jeong, Jongkeun Na, Nojun Kwak*

CVPR'2022 [[Paper](https://user-images.githubusercontent.com/44519745/225082975-4143e7f5-8873-433c-ab6f-6caa615f7120.png)]
[[Code](https://github.com/jongmokkim/mix-unmix)]

MUM Framework


* **Harnessing Hard Mixed Samples with Decoupled Regularizer**

*Zicheng Liu, Siyuan Li, Ge Wang, Cheng Tan, Lirong Wu, Stan Z. Li*

NIPS'2023 [[Paper](https://arxiv.org/abs/2203.10761)]
[[Code](https://github.com/Westlake-AI/openmixup)]

DFixMatch Framework


* **Manifold DivideMix: A Semi-Supervised Contrastive Learning Framework for Severe Label Noise**

*Fahimeh Fooladgar, Minh Nguyen Nhat To, Parvin Mousavi, Purang Abolmaesumi*

arXiv'2023 [[Paper](https://arxiv.org/abs/2308.06861)]
[[Code](https://github.com/Fahim-F/ManifoldDivideMix)]

MixEMatch Framework


* **LaserMix for Semi-Supervised LiDAR Semantic Segmentation**

*Lingdong Kong, Jiawei Ren, Liang Pan, Ziwei Liu*

CVPR'2023 [[Paper](https://arxiv.org/abs/2207.00026)]
[[Code](https://github.com/ldkong1205/LaserMix)] [[project](https://ldkong.com/LaserMix)]

LaserMix Framework




* **PCLMix: Weakly Supervised Medical Image Segmentation via Pixel-Level Contrastive Learning and Dynamic Mix Augmentation**

*Yu Lei, Haolun Luo, Lituan Wang, Zhenwei Zhang, Lei Zhang*

arXiv'2024 [[Paper](https://arxiv.org/abs/2405.06288)]
[[Code](https://github.com/Torpedo2648/PCLMix)]

PCLMix Framework


(back to top)

## CV Downstream Tasks

### **Regression**

* **RegMix: Data Mixing Augmentation for Regression**

*Seong-Hyeon Hwang, Steven Euijong Whang*

arXiv'2021 [[Paper](https://arxiv.org/abs/2106.03374)]

MixRL Framework


* **C-Mixup: Improving Generalization in Regression**

*Huaxiu Yao, Yiping Wang, Linjun Zhang, James Zou, Chelsea Finn*

NIPS'2022 [[Paper](https://arxiv.org/abs/2210.05775)]
[[Code](https://github.com/huaxiuyao/C-Mixup)]

C-Mixup Framework


* **ExtraMix: Extrapolatable Data Augmentation for Regression using Generative Models**

*Kisoo Kwon, Kuhwan Jeong, Sanghyun Park, Sangha Park, Hoshik Lee, Seung-Yeon Kwak, Sungmin Kim, Kyunghyun Cho*

OpenReview'2022 [[Paper](https://openreview.net/forum?id=NgEuFT-SIgI)]

SupReMix Framework


* **Rank-N-Contrast: Learning Continuous Representations for Regression**

*Kaiwen Zha, Peng Cao, Jeany Son, Yuzhe Yang, Dina Katabi*

NIPS'2023 [[Paper](https://arxiv.org/abs/2210.01189)]
[[Code](https://github.com/kaiwenzha/Rank-N-Contrast)]

* **Anchor Data Augmentation**

*Nora Schneider, Shirin Goshtasbpour, Fernando Perez-Cruz*

NIPS'2023 [[Paper](https://arxiv.org/abs/2311.06965)]

* **Mixup Your Own Pairs**

*Yilei Wu, Zijian Dong, Chongyao Chen, Wangchunshu Zhou, Juan Helen Zhou*

arXiv'2023 [[Paper](https://arxiv.org/abs/2309.16633)]
[[Code](https://github.com/yilei-wu/supremix)]

SupReMix Framework


* **Tailoring Mixup to Data using Kernel Warping functions**

*Quentin Bouniot, Pavlo Mozharovskyi, Florence d'Alché-Buc*

arXiv'2023 [[Paper](https://arxiv.org/abs/2311.01434)]
[[Code](https://github.com/ENSTA-U2IS/torch-uncertainty)]

Warped Mixup Framework


* **OmniMixup: Generalize Mixup with Mixing-Pair Sampling Distribution**

*Anonymous*

Openreview'2023 [[Paper](https://openreview.net/forum?id=6Uc7Fgwrsm)]

* **Augment on Manifold: Mixup Regularization with UMAP**

*Yousef El-Laham, Elizabeth Fons, Dillon Daudert, Svitlana Vyetrenko*

ICASSP'2024 [[Paper](https://arxiv.org/abs/2210.01189)]

(back to top)

### **Long tail distribution**

* **Remix: Rebalanced Mixup**

*Hsin-Ping Chou, Shih-Chieh Chang, Jia-Yu Pan, Wei Wei, Da-Cheng Juan*

ECCVW'2020 [[Paper](https://arxiv.org/abs/2007.03943)]

Remix Framework


* **Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective**

*Zhengzhuo Xu, Zenghao Chai, Chun Yuan*

NIPS'2021 [[Paper](https://arxiv.org/abs/2111.03874)]
[[Code](https://github.com/XuZhengzhuo/Prior-LT)]

UniMix Framework


* **Label-Occurrence-Balanced Mixup for Long-tailed Recognition**

*Shaoyu Zhang, Chen Chen, Xiujuan Zhang, Silong Peng*

ICASSP'2022 [[Paper](https://arxiv.org/abs/2110.04964)]

OBMix Framework


* **DBN-Mix: Training Dual Branch Network Using Bilateral Mixup Augmentation for Long-Tailed Visual Recognition**

*Jae Soon Baik, In Young Yoon, Jun Won Choi*

PR'2024 [[Paper](https://arxiv.org/abs/2110.04964)]

DBN-Mix Framework


(back to top)

### **Segmentation**

* **ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning**

*Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, Lennart Svensson*

WACV'2021 [[Paper](https://arxiv.org/abs/2007.07936)]
[[Code](https://github.com/WilhelmT/ClassMix)]

ClassMix Framework


* **ChessMix: Spatial Context Data Augmentation for Remote Sensing Semantic Segmentation**

*Matheus Barros Pereira, Jefersson Alex dos Santos*

SIBGRAPI'2021 [[Paper](https://arxiv.org/abs/2108.11535)]

ChessMix Framework


* **CycleMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision**

*Ke Zhang, Xiahai Zhuang*

CVPR'2022 [[Paper](https://arxiv.org/abs/2203.01475)]
[[Code](https://github.com/BWGZK/CycleMix)]

CyclesMix Framework


* **InsMix: Towards Realistic Generative Data Augmentation for Nuclei Instance Segmentation**

*Yi Lin, Zeyu Wang, Kwang-Ting Cheng, Hao Chen*

MICCAI'2022 [[Paper](https://arxiv.org/abs/2206.15134)]
[[Code](https://github.com/hust-linyi/insmix)]

InsMix Framework


* **LaserMix for Semi-Supervised LiDAR Semantic Segmentation**

*Lingdong Kong, Jiawei Ren, Liang Pan, Ziwei Liu*

CVPR'2023 [[Paper](https://arxiv.org/abs/2207.00026)]
[[Code](https://github.com/ldkong1205/LaserMix)] [[project](https://ldkong.com/LaserMix)]

LaserMix Framework


* **Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for Semi-Supervised Medical Image Segmentation**

*Yuanbin Chen, Tao Wang, Hui Tang, Longxuan Zhao, Ruige Zong, Tao Tan, Xinlin Zhang, Tong Tong*

arXiv'2023 [[Paper](https://arxiv.org/abs/2308.16573)]

DCPA Framework


* **SA-MixNet: Structure-aware Mixup and Invariance Learning for Scribble-supervised Road Extraction in Remote Sensing Images**

*Jie Feng, Hao Huang, Junpeng Zhang, Weisheng Dong, Dingwen Zhang, Licheng Jiao*

arXiv'2024 [[Paper](https://arxiv.org/abs/2403.01381)]
[[Code](https://github.com/xdu-jjgs/SA-MixNet-for-Scribble-based-Road-Extraction)]

SA-MixNet Framework


* **Constructing and Exploring Intermediate Domains in Mixed Domain Semi-supervised Medical Image Segmentation**

*Qinghe Ma, Jian Zhang, Lei Qi, Qian Yu, Yinghuan Shi, Yang Gao*

CVPR'2024 [[Paper](https://arxiv.org/abs/2404.08951)]
[[Code](https://github.com/MQinghe/MiDSS)]

MiDSS Framework


* **UniMix: Towards Domain Adaptive and Generalizable LiDAR Semantic Segmentation in Adverse Weather**

*Haimei Zhao, Jing Zhang, Zhuo Chen, Shanshan Zhao, Dacheng Tao*

CVPR'2024 [[Paper](https://arxiv.org/abs/2404.05145)]
[[Code](https://github.com/sunnyHelen/UniMix)]

* **ModelMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision**

*Ke Zhang, Vishal M. Patel*

MICCAI'2024 [[Paper](https://arxiv.org/abs/2406.13237)]

ModelMix Framework


(back to top)

### **Object Detection**

* **MUM: Mix Image Tiles and UnMix Feature Tiles for Semi-Supervised Object Detection**

*JongMok Kim, Jooyoung Jang, Seunghyeon Seo, Jisoo Jeong, Jongkeun Na, Nojun Kwak*

CVPR'2022 [[Paper](https://arxiv.org/abs/2111.10958)]
[[Code](https://github.com/jongmokkim/mix-unmix)]

MUM Framework


* **Mixed Pseudo Labels for Semi-Supervised Object Detection**

*Zeming Chen, Wenwei Zhang, Xinjiang Wang, Kai Chen, Zhi Wang*

arXiv'2023 [[Paper](https://arxiv.org/abs/2312.07006)]
[[Code](https://github.com/czm369/mixpl)]

MixPL Framework


* **MS-DETR: Efficient DETR Training with Mixed Supervision**

*Chuyang Zhao, Yifan Sun, Wenhao Wang, Qiang Chen, Errui Ding, Yi Yang, Jingdong Wang*

arXiv'2024 [[Paper](https://arxiv.org/abs/2401.03989)]
[[Code](https://github.com/Atten4Vis/MS-DETR)]

MS-DETR Framework


(back to top)

## Other Applications



## Training Paradigms

### **Federated Learning**

* **XOR Mixup: Privacy-Preserving Data Augmentation for One-Shot Federated Learning**

*MyungJae Shin, Chihoon Hwang, Joongheon Kim, Jihong Park, Mehdi Bennis, Seong-Lyun Kim*

ICML'2020 [[Paper](https://arxiv.org/abs/2111.05073)]
[[Code](https://github.com/ihooni/XOR-Mixup)]

* **FedMix: Approximation of Mixup Under Mean augmented Federated Learning**

*Tehrim Yoon, Sumin Shin, Sung Ju Hwang, Eunho Yang*

ECCV'2022 [[Paper](https://arxiv.org/abs/2107.00233)]
[[Code](https://github.com/DevPranjal/fedmix)]

* **Mix2FLD: Downlink Federated Learning After Uplink Federated Distillation With Two-Way Mixup**

*Seungeun Oh, Jihong Park, Eunjeong Jeong, Hyesung Kim, Mehdi Bennis, Seong-Lyun Kim*

IEEE Communications Letters'2020 [[Paper](https://ieeexplore.ieee.org/document/9121290)]

* **StatMix: Data augmentation method that relies on image statistics in federated learning**

*Dominik Lewy, Jacek Mańdziuk, Maria Ganzha, Marcin Paprzycki*

ICONIP'2022 [[Paper](https://link.springer.com/chapter/10.1007/978-981-99-1639-9_48)]

(back to top)

### **Adversarial Attack and Adversarial Training**

* **Addressing Neural Network Robustness with Mixup and Targeted Labeling Adversarial Training**

*Alfred Laugros, Alice Caplier, Matthieu Ospici*

ECCV'2020 [[Paper](https://arxiv.org/abs/2008.08384)]

* **Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks**

*Tianyu Pang, Kun Xu, Jun Zhu*

ICLR'2020 [[Paper](https://arxiv.org/abs/1909.11515)]
[[Code](https://github.com/P2333/Mixup-Inference)]

* **Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization**

*Saehyung Lee, Hyungyu Lee, Sungroh Yoon*

CVPR'2020 [[Paper](https://arxiv.org/abs/2003.02484)]
[[Code](https://github.com/Saehyung-Lee/cifar10_challenge)]

* **Adversarial Mixing Policy for Relaxing Locally Linear Constraints in Mixup**

*Guang Liu, Yuzhao Mao, Hailong Huang, Weiguo Gao, Xuan Li*

EMNLP'2021 [[Paper](https://arxiv.org/abs/2109.07177)]

* **Adversarially Optimized Mixup for Robust Classification**

*Jason Bunk, Srinjoy Chattopadhyay, B. S. Manjunath, Shivkumar Chandrasekaran*

arXiv'2021 [[Paper](https://arxiv.org/abs/2103.11589)]

* **Better Robustness by More Coverage: Adversarial and Mixup Data Augmentation for Robust Finetuning**

*Guillaume P. Archambault, Yongyi Mao, Hongyu Guo, Richong Zhang*

ACL'2021 [[Paper](https://aclanthology.org/2021.findings-acl.137/)]

* **Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy**

*Alex Lamb, Vikas Verma, Kenji Kawaguchi, Alexander Matyasko, Savya Khosla, Juho Kannala, Yoshua Bengio*

NN'2021 [[Paper](https://arxiv.org/abs/1906.06784)]

* **Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction**

*Ruochen Jiao, Xiangguo Liu, Takami Sato, Qi Alfred Chen, Qi Zhu*

ICCV'2023 [[Paper](https://ieeexplore.ieee.org/document/10376952)]

* **Mixup as directional adversarial training**

*Guillaume P. Archambault, Yongyi Mao, Hongyu Guo, Richong Zhang*

NIPS'2019 [[Paper](https://arxiv.org/abs/1906.06875)]
[[Code](https://github.com/mixupAsDirectionalAdversarial/mixup_as_dat)]

* **On the benefits of defining vicinal distributions in latent space**

*Puneet Mangla, Vedant Singh, Shreyas Jayant Havaldar, Vineeth N Balasubramanian*

CVPRW'2021 [[Paper](https://arxiv.org/abs/2003.06566)]

(back to top)

### **Domain Adaption**

* **Mix-up Self-Supervised Learning for Contrast-agnostic Applications**

*Yichen Zhang, Yifang Yin, Ying Zhang, Roger Zimmermann*

ICDE'2022 [[Paper](https://arxiv.org/abs/2204.00901)]

* **Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing**

*Aadarsh Sahoo, Rutav Shah, Rameswar Panda, Kate Saenko, Abir Das*

NIPS'2021 [[Paper](https://arxiv.org/abs/2110.15128)]
[[Code](https://github.com/CVIR/CoMix)]

* **Virtual Mixup Training for Unsupervised Domain Adaptation**

*Xudong Mao, Yun Ma, Zhenguo Yang, Yangbin Chen, Qing Li*

arXiv'2019 [[Paper](https://arxiv.org/abs/1905.04215)]
[[Code](https://github.com/xudonmao/VMT)]

* **Improve Unsupervised Domain Adaptation with Mixup Training**

*Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, Liu Ren*

arXiv'2020 [[Paper](https://arxiv.org/abs/2001.00677)]

* **Adversarial Domain Adaptation with Domain Mixup**

*Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, Wenjun Zhang*

AAAI'2020 [[Paper](https://arxiv.org/abs/1912.01805)]
[[Code](https://github.com/ChrisAllenMing/Mixup_for_UDA)]

* **Dual Mixup Regularized Learning for Adversarial Domain Adaptation**

*Yuan Wu, Diana Inkpen, Ahmed El-Roby*

ECCV'2020 [[Paper](https://arxiv.org/abs/2007.03141)]
[[Code](https://github.com/YuanWu3/Dual-Mixup-Regularized-Learning-for-Adversarial-Domain-Adaptation)]

* **Select, Label, and Mix: Learning Discriminative Invariant Feature Representations for Partial Domain Adaptation**

*Aadarsh Sahoo, Rameswar Panda, Rogerio Feris, Kate Saenko, Abir Das*

WACV'2023 [[Paper](https://arxiv.org/abs/2012.03358)]
[[Code](https://github.com/CVIR/SLM)]

* **Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation**

*Jiajin Zhang, Hanqing Chao, Amit Dhurandhar, Pin-Yu Chen, Ali Tajer, Yangyang Xu, Pingkun Yan*

MICCAI'2023 [[Paper](https://arxiv.org/abs/2309.01207)]
[[Code](https://github.com/RPIDIAL/SAMix)]

(back to top)

### **Knowledge Distillation**

* **MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps**

*Muhammad Awais, Fengwei Zhou, Chuanlong Xie, Jiawei Li, Sung-Ho Bae, Zhenguo Li*

NIPS'2021 [[Paper](https://arxiv.org/abs/2111.05073)]

* **MixSKD: Self-Knowledge Distillation from Mixup for Image Recognition**

*Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai, Xiang Zhi, Jiwen Wu, Yongjun Xu, Qian Zhang*

ECCV'2022 [[Paper](https://arxiv.org/abs/2208.05768)]

* **Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study**

*Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai, Xiang Zhi, Jiwen Wu, Yongjun Xu, Qian Zhang*

WACV'2023 [[Paper](https://arxiv.org/abs/2211.03946)]

(back to top)

### **Multi-Modal**

* **MixGen: A New Multi-Modal Data Augmentation**

*Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston Zhang, Wanqian Zhang, Bo Li, Mu Li*

arXiv'2023 [[Paper](https://arxiv.org/abs/2206.08358)]
[[Code](https://github.com/amazon-research/mix-generation)]

* **VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix**

*Teng Wang, Wenhao Jiang, Zhichao Lu, Feng Zheng, Ran Cheng, Chengguo Yin, Ping Luo*

ICML'2022 [[Paper](https://arxiv.org/abs/2206.08919)]

VLMixer Framework


* **Geodesic Multi-Modal Mixup for Robust Fine-Tuning**

*Changdae Oh, Junhyuk So, Hoyoon Byun, YongTaek Lim, Minchul Shin, Jong-June Jeon, Kyungwoo Song*

NIPS'2023 [[Paper](https://arxiv.org/abs/2203.03897)]
[[Code](https://github.com/changdaeoh/multimodal-mixup)]

* **PowMix: A Versatile Regularizer for Multimodal Sentiment Analysis**

*Efthymios Georgiou, Yannis Avrithis, Alexandros Potamianos*

arXiv'2023 [[Paper](https://arxiv.org/abs/2312.12334)]

PowMix Framework


* **Enhance image classification via inter-class image mixup with diffusion model**

*Efthymios Georgiou, Yannis Avrithis, Alexandros Potamianos*

CVPR'2024 [[Paper](https://arxiv.org/abs/2403.19600)]
[[Code](https://github.com/Zhicaiwww/Diff-Mix)]

* **Frequency-Enhanced Data Augmentation for Vision-and-Language Navigation**

*Keji He, Chenyang Si, Zhihe Lu, Yan Huang, Liang Wang, Xinchao Wang*

NIPS'2023 [[Paper](https://proceedings.neurips.cc/paper_files/paper/2023/file/0d9e08f247ca7fbbfd5e50b7ff9cf357-Paper-Conference.pdf)]
[[Code](https://github.com/hekj/FDA)]

(back to top)

## Beyond Vision

### **NLP**

* **Augmenting Data with Mixup for Sentence Classification: An Empirical Study**

*Hongyu Guo, Yongyi Mao, Richong Zhang*

arXiv'2019 [[Paper](https://arxiv.org/abs/1905.08941)]
[[Code](https://github.com/dsfsi/textaugment)]

* **Adversarial Mixing Policy for Relaxing Locally Linear Constraints in Mixup**

*Guang Liu, Yuzhao Mao, Hailong Huang, Weiguo Gao, Xuan Li*

EMNLP'2021 [[Paper](https://arxiv.org/abs/2109.07177)]

* **SeqMix: Augmenting Active Sequence Labeling via Sequence Mixup**

*Hongyu Guo, Yongyi Mao, Richong Zhang*

EMNLP'2020 [[Paper](https://aclanthology.org/2020.emnlp-main.691/)]
[[Code](https://github.com/rz-zhang/SeqMix)]

* **Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks**

*Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S. Yu, Lifang He*

COLING'2020 [[Paper](https://arxiv.org/abs/2010.02394)]

* **Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data**

*Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie Lyu, Tuo Zhao, Chao Zhang*

EMNLP'2020 [[Paper](https://arxiv.org/abs/2010.11506)]
[[Code](https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning)]

* **Augmenting NLP Models using Latent Feature Interpolations**

*Amit Jindal, Arijit Ghosh Chowdhury, Aniket Didolkar, Di Jin, Ramit Sawhney, Rajiv Ratn Shah*

COLING'2020 [[Paper](https://aclanthology.org/2020.coling-main.611/)]

* **MixText: Linguistically-informed Interpolation of Hidden Space for Semi-Supervised Text Classification**

*Jiaao Chen, Zichao Yang, Diyi Yang*

ACL'2020 [[Paper](https://arxiv.org/abs/2004.12239)]
[[Code](https://github.com/GT-SALT/MixText)]

* **Sequence-Level Mixed Sample Data Augmentation**

*Jiaao Chen, Zichao Yang, Diyi Yang*

EMNLP'2020 [[Paper](https://aclanthology.org/2020.emnlp-main.447/)]
[[Code](https://github.com/dguo98/seqmix)]

* **AdvAug: Robust Adversarial Augmentation for Neural Machine Translation**

*Yong Cheng, Lu Jiang, Wolfgang Macherey, Jacob Eisenstein*

ACL'2020 [[Paper](https://aclanthology.org/2020.acl-main.529.pdf)]
[[Code](https://github.com/dguo98/seqmix)]

* **Local Additivity Based Data Augmentation for Semi-supervised NER**

*Jiaao Chen, Zhenghui Wang, Ran Tian, Zichao Yang, Diyi Yang*

ACL'2020 [[Paper](https://aclanthology.org/2020.emnlp-main.95/)]
[[Code](https://github.com/SALT-NLP/LADA)]

* **Mixup Decoding for Diverse Machine Translation**

*Jicheng Li, Pengzhi Gao, Xuanfu Wu, Yang Feng, Zhongjun He, Hua Wu, Haifeng Wang*

EMNLP'2021 [[Paper](https://arxiv.org/abs/2109.03402)]

* **TreeMix: Compositional Constituency-based Data Augmentation for Natural Language Understanding**

*Le Zhang, Zichao Yang, Diyi Yang*

NAALC'2022 [[Paper](https://arxiv.org/abs/2205.06153)]
[[Code](https://github.com/magiccircuit/treemix)]

* **STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation**

*Qingkai Fang, Rong Ye, Lei Li, Yang Feng, Mingxuan Wang*

ACL'2022 [[Paper](https://arxiv.org/abs/2010.02394)]
[[Code](https://github.com/ictnlp/STEMM)]

* **AdMix: A Mixed Sample Data Augmentation Method for Neural Machine Translation**

*Chang Jin, Shigui Qiu, Nini Xiao, Hao Jia*

IJCAI'2022 [[Paper](https://www.ijcai.org/proceedings/2022/0579.pdf)]

* **Enhancing Cross-lingual Transfer by Manifold Mixup**

*Huiyun Yang, Huadong Chen, Hao Zhou, Lei Li*

ICLR'2022 [[Paper](https://arxiv.org/abs/2205.04182)]
[[Code](https://github.com/yhy1117/x-mixup)]

* **Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation**

*Yong Cheng, Ankur Bapna, Orhan Firat, Yuan Cao, Pidong Wang, Wolfgang Macherey*

ACL'2022 [[Paper](https://aclanthology.org/2022.acl-long.282/)]

(back to top)

### **GNN**

* **Node Augmentation Methods for Graph Neural Network based Object Classification**

*Yifan Xue; Yixuan Liao; Xiaoxin Chen; Jingwei Zhao*

CDS'2021 [[Paper](https://ieeexplore.ieee.org/document/9463199/authors#authors)]

* **Mixup for Node and Graph Classification**

*Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, Bryan Hooi*

WWW'2021 [[Paper](https://dl.acm.org/doi/10.1145/3442381.3449796)]
[[Code](https://github.com/vanoracai/MixupForGraph)]

* **Graph Mixed Random Network Based on PageRank**

*Qianli Ma, Zheng Fan, Chenzhi Wang, Hongye Tan*

Symmetry'2022 [[Paper](https://www.mdpi.com/2073-8994/14/8/1678)]

* **GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks**

*Tianxiang Zhao, Xiang Zhang, Suhang Wang*

WSDM'2021 [[Paper](https://arxiv.org/abs/2103.08826)]

* **GraphMix: Improved Training of GNNs for Semi-Supervised Learning**

*Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, Jian Tang*

AAAI'2021 [[Paper](https://arxiv.org/abs/1909.11715)]
[[Code](https://github.com/vikasverma1077/GraphMix)]

* **GraphMixup: Improving Class-Imbalanced Node Classification on Graphs by Self-supervised Context Prediction**

*Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan.Z.Li*

ECML-PKDD'2022 [[Paper](https://link.springer.com/chapter/10.1007/978-3-031-19818-2_34)]
[[Code](https://github.com/LirongWu/GraphMixup)]

* **Graph Transplant: Node Saliency-Guided Graph Mixup with Local Structure Preservation**

*Joonhyung Park, Hajin Shim, Eunho Yang*

AAAI'2022 [[Paper](https://arxiv.org/abs/2111.05639)]
[[Code](https://github.com/shimazing/Graph-Transplant)]

* **G-Mixup: Graph Data Augmentation for Graph Classification**

*Xiaotian Han, Zhimeng Jiang, Ninghao Liu, Xia Hu*

ICML'2022 [[Paper](https://arxiv.org/abs/2202.07179)]

* **Fused Gromov-Wasserstein Graph Mixup for Graph-level Classifications**

*Xinyu Ma, Xu Chu, Yasha Wang, Yang Lin, Junfeng Zhao, Liantao Ma, Wenwu Zhu*

NIPS'2023 [[Paper](https://arxiv.org/abs/2306.15963)]
[[code](https://github.com/ArthurLeoM/FGWMixup)]

* **iGraphMix: Input Graph Mixup Method for Node Classification**

*Jongwon Jeong, Hoyeop Lee, Hyui Geon Yoon, Beomyoung Lee, Junhee Heo, Geonsoo Kim, Kim Jin Seon*

ICLR'2024 [[Paper](https://openreview.net/forum?id=a2ljjXeDcE)]

(back to top)

### **3D Point**

* **PointMixup: Augmentation for Point Clouds**

*Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes, Pengwan Yang, Cees G.M. Snoek*

ECCV'2020 [[Paper](https://arxiv.org/abs/2008.06374)]
[[Code](https://github.com/yunlu-chen/PointMixup/)]

* **PointCutMix: Regularization Strategy for Point Cloud Classification**

*Jinlai Zhang, Lyujie Chen, Bo Ouyang, Binbin Liu, Jihong Zhu, Yujing Chen, Yanmei Meng, Danfeng Wu*

Neurocomputing'2022 [[Paper](https://arxiv.org/abs/2101.01461)]
[[Code](https://github.com/cuge1995/PointCutMix)]

* **Regularization Strategy for Point Cloud via Rigidly Mixed Sample**

*Dogyoon Lee, Jaeha Lee, Junhyeop Lee, Hyeongmin Lee, Minhyeok Lee, Sungmin Woo, Sangyoun Lee*

CVPR'2021 [[Paper](https://arxiv.org/abs/2102.01929)]
[[Code](https://github.com/dogyoonlee/RSMix)]

* **Part-Aware Data Augmentation for 3D Object Detection in Point Cloud**

*Jaeseok Choi, Yeji Song, Nojun Kwak*

IROS'2021 [[Paper](https://arxiv.org/abs/2007.13373)]
[[Code](https://github.com/sky77764/pa-aug.pytorch)]

* **Point MixSwap: Attentional Point Cloud Mixing via Swapping Matched Structural Divisions**

*Ardian Umam, Cheng-Kun Yang, Yung-Yu Chuang, Jen-Hui Chuang, Yen-Yu Lin*

ECCV'2022 [[Paper](https://link.springer.com/chapter/10.1007/978-3-031-19818-2_34)]
[[Code](https://github.com/ardianumam/PointMixSwap)]

(back to top)

### **Other**

* **Embedding Expansion: Augmentation in Embedding Space for Deep Metric Learning**

*Byungsoo Ko, Geonmo Gu*

CVPR'2020 [[Paper](https://arxiv.org/abs/2003.02546)]
[[Code](https://github.com/clovaai/embedding-expansion)]

* **SalfMix: A Novel Single Image-Based Data Augmentation Technique Using a Saliency Map**

*Jaehyeop Choi, Chaehyeon Lee, Donggyu Lee, Heechul Jung*

Sensor'2021 [[Paper](https://pdfs.semanticscholar.org/1db9/c80edeed50858783c69237aeba764750e8b7.pdf?_ga=2.182064935.1813772674.1674154381-1810295069.1625160008)]

* **Octave Mix: Data Augmentation Using Frequency Decomposition for Activity Recognition**

*Tatsuhito Hasegawa*

IEEE Access'2021 [[Paper](https://ieeexplore.ieee.org/document/9393911)]

* **Guided Interpolation for Adversarial Training**

*Chen Chen, Jingfeng Zhang, Xilie Xu, Tianlei Hu, Gang Niu, Gang Chen, Masashi Sugiyama*

arXiv'2021 [[Paper](https://arxiv.org/abs/2102.07327)]

* **Recall@k Surrogate Loss with Large Batches and Similarity Mixup**

*Yash Patel, Giorgos Tolias, Jiri Matas*

CVPR'2022 [[Paper](https://arxiv.org/abs/2108.11179)]
[[Code](https://github.com/yash0307/RecallatK_surrogate)]

* **Contrastive-mixup Learning for Improved Speaker Verification**

*Xin Zhang, Minho Jin, Roger Cheng, Ruirui Li, Eunjung Han, Andreas Stolcke*

ICASSP'2022 [[Paper](https://arxiv.org/abs/2202.10672)]

* **Noisy Feature Mixup**

*Soon Hoe Lim, N. Benjamin Erichson, Francisco Utrera, Winnie Xu, Michael W. Mahoney*

ICLR'2022 [[Paper](https://arxiv.org/abs/2110.02180)]
[[Code](https://github.com/erichson/NFM)]

* **It Takes Two to Tango: Mixup for Deep Metric Learning**

*Shashanka Venkataramanan, Bill Psomas, Ewa Kijak, Laurent Amsaleg, Konstantinos Karantzalos, Yannis Avrithis*

ICLR'2022 [[Paper](https://arxiv.org/abs/2106.04990)]
[[Code](https://github.com/billpsomas/metrix)]

* **Representational Continuity for Unsupervised Continual Learning**

*Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, Sung Ju Hwang*

ICLR'2022 [[Paper](https://arxiv.org/abs/2110.06976)]
[[Code](https://github.com/divyam3897/UCL)]

* **Expeditious Saliency-guided Mix-up through Random Gradient Thresholding**

*Remy Sun, Clement Masson, Gilles Henaff, Nicolas Thome, Matthieu Cord.*

ICPR'2022 [[Paper](https://arxiv.org/abs/2205.10158)]

* **Guarding Barlow Twins Against Overfitting with Mixed Samples**

*Wele Gedara Chaminda Bandara, Celso M. De Melo, Vishal M. Patel*

arXiv'2023 [[Paper](https://arxiv.org/abs/2312.02151)]
[[Code](https://github.com/wgcban/mix-bt)]

* **Infinite Class Mixup**

*Thomas Mensink, Pascal Mettes*

arXiv'2023 [[Paper](https://arxiv.org/abs/2305.10293)]

* **Semantic Equivariant Mixup**

*Zongbo Han, Tianchi Xie, Bingzhe Wu, Qinghua Hu, Changqing Zhang*

arXiv'2023 [[Paper](https://arxiv.org/abs/2308.06451)]

* **G-Mix: A Generalized Mixup Learning Framework Towards Flat Minima**

*Xingyu Li, Bo Tang*

arXiv'2023 [[Paper](https://arxiv.org/abs/2308.03236)]

* **Inter-Instance Similarity Modeling for Contrastive Learning**

*Chengchao Shen, Dawei Liu, Hao Tang, Zhe Qu, Jianxin Wang*

arXiv'2023 [[Paper](https://arxiv.org/abs/2306.12243)]
[[Code](https://github.com/visresearch/patchmix)]

* **Single-channel speech enhancement using learnable loss mixup**

*Oscar Chang, Dung N. Tran, Kazuhito Koishida*

arXiv'2023 [[Paper](https://arxiv.org/abs/2312.17255)]

* **Selective Volume Mixup for Video Action Recognition**

*Yi Tan, Zhaofan Qiu, Yanbin Hao, Ting Yao, Xiangnan He, Tao Mei*

arXiv'2023 [[Paper](https://arxiv.org/abs/2309.09534)]

* **Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy**

*Jaejun Yoo, Namhyuk Ahn, Kyung-Ah Sohn*

CVPR'2020 & IJCV'2024 [[Paper](https://arxiv.org/abs/2110.06976)]
[[Code](https://github.com/clovaai/cutblur)]

* **DNABERT-S: Learning Species-Aware DNA Embedding with Genome Foundation Models**

*Zhihan Zhou, Weimin Wu, Harrison Ho, Jiayi Wang, Lizhen Shi, Ramana V Davuluri, Zhong Wang, Han Liu*

arXiv'2024 [[Paper](https://ieeexplore.ieee.org/document/9156551)]
[[Code](https://github.com/MAGICS-LAB/DNABERT_S)]

* **ContextMix: A context-aware data augmentation method for industrial visual inspection systems**

*Hyungmin Kim, Donghun Kim, Pyunghwan Ahn, Sungho Suh, Hansang Cho, Junmo Kim*

EAAI'2024 [[Paper](https://arxiv.org/abs/2401.10050)]

* **Robust Image Denoising through Adversarial Frequency Mixup**

*Donghun Ryou, Inju Ha, Hyewon Yoo, Dongwan Kim, Bohyung Han*

CVPR'2024 [[Paper](https://openaccess.thecvf.com/content/CVPR2024/papers/Ryou_Robust_Image_Denoising_through_Adversarial_Frequency_Mixup_CVPR_2024_paper.pdf)]
[[Code](https://github.com/dhryougit/AFM)]

(back to top)

## Analysis and Theorem

* **Understanding Mixup Training Methods**

*Daojun Liang, Feng Yang, Tian Zhang, Peter Yang*

NIPS'2019 [[Paper](https://ieeexplore.ieee.org/document/8478159/authors#authors)]

* **MixUp as Locally Linear Out-Of-Manifold Regularization**

*Hongyu Guo, Yongyi Mao, Richong Zhang*

AAAI'2019 [[Paper](https://arxiv.org/abs/1809.02499)]

* **MixUp as Directional Adversarial Training**

*Chanwoo Park, Sangdoo Yun, Sanghyuk Chun*

NIPS'2019 [[Paper](https://arxiv.org/abs/1906.06875)]

* **On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks**

*Sunil Thulasidasan, Gopinath Chennupati, Jeff Bilmes, Tanmoy Bhattacharya, Sarah Michalak*

NIPS'2019 [[Paper](https://arxiv.org/abs/1905.11001)]
[[Code](https://github.com/paganpasta/onmixup)]

* **On Mixup Regularization**

*Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, Jean-Philippe Vert*

arXiv'2020 [[Paper](https://arxiv.org/abs/2006.06049)]

* **Mixup Training as the Complexity Reduction**

*Masanari Kimura*

arXiv'2021 [[Paper](https://arxiv.org/abs/1906.06875)]

* **How Does Mixup Help With Robustness and Generalization**

*Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, James Zou*

ICLR'2021 [[Paper](https://arxiv.org/abs/2010.04819)]

* **Mixup Without Hesitation**

*Hao Yu, Huanyu Wang, Jianxin Wu*

ICIG'2022 [[Paper](https://arxiv.org/abs/2101.04342)]
[[Code](https://github.com/yuhao318/mwh)]

* **RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness**

*Francesco Pinto, Harry Yang, Ser-Nam Lim, Philip H.S. Torr, Puneet K. Dokania*

NIPS'2022 [[Paper](https://arxiv.org/abs/2206.14502)]
[[Code](https://github.com/FrancescoPinto/RegMixup)]

* **A Unified Analysis of Mixed Sample Data Augmentation: A Loss Function Perspective**

*Chanwoo Park, Sangdoo Yun, Sanghyuk Chun*

NIPS'2022 [[Paper](https://arxiv.org/abs/2208.09913)]
[[Code](https://github.com/naver-ai/hmix-gmix)]

* **Towards Understanding the Data Dependency of Mixup-style Training**

*Muthu Chidambaram, Xiang Wang, Yuzheng Hu, Chenwei Wu, Rong Ge*

ICLR'2022 [[Paper](https://openreview.net/pdf?id=ieNJYujcGDO)]
[[Code](https://github.com/2014mchidamb/Mixup-Data-Dependency)]

* **When and How Mixup Improves Calibration**

*Linjun Zhang, Zhun Deng, Kenji Kawaguchi, James Zou*

ICML'2022 [[Paper](https://arxiv.org/abs/2102.06289)]

* **Provable Benefit of Mixup for Finding Optimal Decision Boundaries**

*Junsoo Oh, Chulhee Yun*

ICML'2023 [[Paper](https://chulheeyun.github.io/publication/oh2023provable/)]

* **On the Pitfall of Mixup for Uncertainty Calibration**

*Deng-Bao Wang, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, Min-Ling Zhang*

CVPR'2023 [[Paper](https://openaccess.thecvf.com/content/CVPR2023/papers/Wang_On_the_Pitfall_of_Mixup_for_Uncertainty_Calibration_CVPR_2023_paper.pdf)]

* **Understanding the Role of Mixup in Knowledge Distillation: An Empirical Study**

*Hongjun Choi, Eun Som Jeon, Ankita Shukla, Pavan Turaga*

WACV'2023 [[Paper](https://arxiv.org/abs/2211.03946)]
[[Code](https://github.com/hchoi71/mix-kd)]

* **Over-Training with Mixup May Hurt Generalization**

*Zixuan Liu, Ziqiao Wang, Hongyu Guo, Yongyi Mao*

ICLR'2023 [[Paper](https://openreview.net/forum?id=JmkjrlVE-DG)]

* **Analyzing Effects of Mixed Sample Data Augmentation on Model Interpretability**

*Soyoun Won, Sung-Ho Bae, Seong Tae Kim*

arXiv'2023 [[Paper](https://arxiv.org/abs/2303.14608)]

* **Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup**

*Damien Teney, Jindong Wang, Ehsan Abbasnejad*

ICML'2024 [[Paper](https://arxiv.org/abs/2305.16817)]

* **Pushing Boundaries: Mixup's Influence on Neural Collapse**

*Quinn Fisher, Haoming Meng, Vardan Papyan*

ICLR'2024 [[Paper](https://arxiv.org/abs/2402.06171)]

(back to top)

## Survey

* **A survey on Image Data Augmentation for Deep Learning**

*Connor Shorten and Taghi Khoshgoftaar*

Journal of Big Data'2019 [[Paper](https://www.researchgate.net/publication/334279066_A_survey_on_Image_Data_Augmentation_for_Deep_Learning)]

* **An overview of mixing augmentation methods and augmentation strategies**

*Dominik Lewy and Jacek Ma ́ndziuk*

Artificial Intelligence Review'2022 [[Paper](https://link.springer.com/article/10.1007/s10462-022-10227-z)]

* **Image Data Augmentation for Deep Learning: A Survey**

*Suorong Yang, Weikang Xiao, Mengcheng Zhang, Suhan Guo, Jian Zhao, Furao Shen*

arXiv'2022 [[Paper](https://arxiv.org/abs/2204.08610)]

* **A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability**

*Chengtai Cao, Fan Zhou, Yurou Dai, Jianping Wang*

arXiv'2022 [[Paper](https://arxiv.org/abs/2212.10888)]
[[Code](https://github.com/ChengtaiCao/Awesome-Mix)]

* **A Survey of Automated Data Augmentation for Image Classification: Learning to Compose, Mix, and Generate**

*Tsz-Him Cheung, Dit-Yan Yeung*

IEEE TNNLS'2023 [[Paper](https://ieeexplore.ieee.org/abstract/document/10158722)]

* **Survey: Image Mixing and Deleting for Data Augmentation**

*Humza Naveed, Saeed Anwar, Munawar Hayat, Kashif Javed, Ajmal Mian*

EAAI'2024 [[Paper](https://arxiv.org/abs/2106.07085)]

* **A Survey on Mixup Augmentations and Beyond**

*Xin Jin, Hongyu Zhu, Siyuan Li, Zedong Wang, Zecheng Liu, Chang Yu, Huafeng Qin, Stan. Z. Li*

arXiv'2024 [[Paper](https://arxiv.org/abs/2409.05202)]

## Benchmark

* **OpenMixup: A Comprehensive Mixup Benchmark for Visual Classification**

*Siyuan Li, Zedong Wang, Zicheng Liu, Di Wu, Cheng Tan, Weiyang Jin, Stan Z. Li*

arXiv'2024 [[Paper](https://arxiv.org/abs/2209.04851)]
[[Code](https://github.com/Westlake-AI/openmixup)]

(back to top)

## Classification Results on Datasets

**Mixup methods classification results on general datasets: CIFAR10 \ CIFAR100, TinyImageNet, and ImageNet-1K. $(\cdot)$ denotes training epochs based on ResNet18 (R18), ResNet50 (R50), ResNeXt50 (RX50), PreActResNet18 (PreActR18), and Wide-ResNet28 (WRN28-10, WRN28-8).**

| Method | Publish | CIFAR10 | CIFAR100 | CIFAR100 | CIFAR100 | CIFAR100 | CIFAR100 | Tiny-ImageNet| Tiny-ImageNet | ImageNet-1K | ImageNet-1K |
|:--------:|:--------:|:-------:|:---------:|:--------:|:----------:|:----------:|:--------:|:------------:|:-------------:|:-----------:|:-----------:|
| | | R18 | R18 | RX50 | PreActR18 | WRN28-10 | WRN28-8 | R18 | RX50 | R18 | R50 |
| MixUp | ICLR'2018| 96.62(800) | 79.12(800) | 82.10(800) | 78.90(200) | 82.50(200) | 82.82(400) | 63.86(400) | 66.36(400) | 69.98(100) | 77.12(100) |
| CutMix | ICCV'2019| 96.68(800) | 78.17(800) | 78.32(800) | 76.80(1200)| 83.40(200) | 84.45(400) | 65.53(400) | 66.47(400) | 68.95(100) | 77.17(100) |
| Manifold Mixup | ICML'2019 | 96.71(800) | 80.35(800) | 82.88(800) | 79.66(1200) | 81.96(1200) | 83.24(400) | 64.15(400) | 67.30(400) | 69.98(100) | 77.01(100) |
| FMix | arXiv'2020 | 96.18(800) | 79.69(800) | 79.02(800) | 79.85(200) | 82.03(200) | 84.21(400) | 63.47(400) | 65.08(400) | 69.96(100) | 77.19(100) |
| SmoothMix | CVPRW'2020 | 96.17(800) | 78.69(800) | 78.95(800) | - | - | 82.09(400) | - | - | - | 77.66(300) |
| GridMix | PR'2020 | 96.56(800) | 78.72(800) | 78.90(800) | - | - | 84.24(400) | 64.79(400) | - | - | - |
| ResizeMix | arXiv'2020 | 96.76(800) | 80.01(800) | 80.35(800) | - | 85.23(200) | 84.87(400) | 63.47(400) | 65.87(400) | 69.50(100) | 77.42(100) |
| SaliencyMix | ICLR'2021 | 96.20(800) | 79.12(800) | 78.77(800) | 80.31(300) | 83.44(200) | 84.35(400) | 64.60(400) | 66.55(400) | 69.16(100) | 77.14(100) |
| Attentive-CutMix | ICASSP'2020 | 96.63(800)n| 78.91(800) | 80.54(800) | - | - | 84.34(400) | 64.01(400) | 66.84(400) | - | 77.46(100) |
| Saliency Grafting | AAAI'2022 | - | 80.83(800) | 83.10(800) | - | 84.68(300) | - | 64.84(600) | 67.83(400) | - | 77.65(100) |
| PuzzleMix | ICML'2020 | 97.10(800) | 81.13(800) | 82.85(800) | 80.38(1200) | 84.05(200) | 85.02(400) | 65.81(400) | 67.83(400) | 70.12(100) | 77.54(100) |
| Co-Mix | ICLR'2021 | 97.15(800) | 81.17(800) | 82.91(800) | 80.13(300) | - | 85.05(400) | 65.92(400) | 68.02(400) | - | 77.61(100) |
| SuperMix | CVPR'2021 | - | - | - | 79.07(2000) | 93.60(600) | - | - | - | - | 77.60(600) |
| RecursiveMix | NIPS'2022 | - | 81.36(200) | - | 80.58(2000) | - | - | - | - | - | 79.20(300) |
| AutoMix | ECCV'2022 | 97.34(800) | 82.04(800) | 83.64(800) | - | - | 85.18(400) | 67.33(400) | 70.72(400) | 70.50(100) | 77.91(100) |
| SAMix | arXiv'2021 | 97.50(800) | 82.30(800) | 84.42(800) | - | - | 85.50(400) | 68.89(400) | 72.18(400) | 70.83(100) | 78.06(100) |
| AlignMixup | CVPR'2022 | - | - | - | 81.71(2000) | - | - | - | - | - | 78.00(100) |
| MultiMix | NIPS'2023 | - | - | - | 81.82(2000) | - | - | - | - | - | 78.81(300) |
| GuidedMixup | AAAI'2023 | - | - | - | 81.20(300) | 84.02(200) | - | - | - | - | 77.53(100) |
| Catch-up Mix | AAAI'2023 | - | 82.10(400) | 83.56(400) | 82.24(2000) | - | - | 68.84(400) | - | - | 78.71(300) |
| LGCOAMix | TIP'2024 | - | 82.34(800) | 84.11(800) | - | - | - | 68.27(400) | 73.08(400) | - | - |
| AdAutoMix | ICLR'2024 | 97.55(800) | 82.32(800) | 84.42(800) | - | - | 85.32(400) | 69.19(400) | 72.89(400) | 70.86(100) | 78.04(100) |

**Mixup methods classification results on ImageNet-1K dataset use ViT-based models: DeiT, Swin Transformer (Swin), Pyramid Vision Transformer (PVT), and ConvNext trained 300 epochs.**

| Method | Publish | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K | ImageNet-1K |
|:----------:|:-------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|
| | | DieT-Tiny | DieT-Small | DieT-Base | Swin-Tiny | PVT-Tiny | PVT-Small | ConvNeXt-Tiny |
| MixUp | ICLR'2018 | 74.69 | 77.72 | 78.98 | 81.01 | 75.24 | 78.69 | 80.88 |
| CutMix | ICCV'2019 | 74.23 | 80.13 | 81.61 | 81.23 | 75.53 | 79.64 | 81.57 |
| FMix | arXiv'2020 | 74.41 | 77.37 | - | 79.60 | 75.28 | 78.72 | 81.04 |
| ResizeMix | arXiv'2020 | 74.79 | 78.61 | 80.89 | 81.36 | 76.05 | 79.55 | 81.64 |
| SaliencyMix | ICLR'2021 | 74.17 | 79.88 | 80.72 | 81.37 | 75.71 | 79.69 | 81.33 |
| Attentive-CutMix | ICASSP'2020 | 74.07 | 80.32 | 82.42 | 81.29 | 74.98 | 79.84 | 81.14 |
| PuzzleMix | ICML'2020 | 73.85 | 80.45 | 81.63 | 81.47 | 75.48 | 79.70 | 81.48 |
| AutoMix | ECCV'2022 | 75.52 | 80.78 | 82.18 | 81.80 | 76.38 | 80.64 | 82.28 |
| SAMix | arXiv'2021 | 75.83 | 80.94 | 82.85 | 81.87 | 76.60 | 80.78 | 82.35 |
| TransMix | CVPR'2022 | 74.56 | 80.68 | 82.51 | 81.80 | 75.50 | 80.50 | - |
| TokenMix | ECCV'2022 | 75.31 | 80.80 | 82.90 | 81.60 | 75.60 | - | 73.97 |
| TL-Align | ICCV'2023 | 73.20 | 80.60 | 82.30 | 81.40 | 75.50 | 80.40 | - |
| SMMix | ICCV'2023 | 75.56 | 81.10 | 82.90 | 81.80 | 75.60 | 81.03 | - |
| Mixpro | ICLR'2023 | 73.80 | 81.30 | 82.90 | 82.80 | 76.70 | 81.20 | - |
| LUMix | ICASSP'2024 | - | 80.60 | 80.20 | 81.70 | - | - | 82.50 |

(back to top)

## Related Datasets Link

**Summary of datasets for mixup methods tasks. Link to dataset websites is provided.**

| Dataset | Type | Label | Task | Total data number | Link |
|:-------:|:----:|:-----:|:----:|:-----------------:|:----:|
| MINIST | Image | 10 | Classification | 70,000 | [MINIST](https://yann.lecun.com/exdb/mnist/) |
| Fashion-MNIST | Image | 10 | Classification | 70,000 | [Fashion-MINIST](https://github.com/zalandoresearch/fashion-mnist) |
| CIFAR10 | Image | 10 | Classification | 60,000 | [CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html) |
| CIFAR100 | Image | 100 | Classification | 60,000 | [CIFAR100](https://www.cs.toronto.edu/~kriz/cifar.html) |
| SVHN | Image | 10 | Classification | 630,420 | [SVHN](http://ufldl.stanford.edu/housenumbers/) |
| GTSRB | Image | 43 | Classification | 51,839 | [GTSRB](https://benchmark.ini.rub.de/gtsrb_dataset.html) |
| STL10 | Image | 10 | Classification | 113,000 | [STL10](https://cs.stanford.edu/~acoates/stl10/) |
| Tiny-ImageNet | Image | 200 | Classification | 100,000 | [Tiny-ImageNet](http://cs231n.stanford.edu/tiny-imagenet-200.zip) |
| ImageNet-1K | Image | 1,000 | Classification | 1,431,167 | [ImageNet-1K](https://image-net.org/challenges/LSVRC/2012/)|
| CUB-200-2011 | Image | 200 | Classification, Object Detection | 11,788 | [CUB-200-2011](https://www.vision.caltech.edu/datasets/cub_200_2011/) |
| FGVC-Aircraft | Image | 102 | Classification | 10,200 | [FGVC-Aircraft](https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/) |
| StanfordCars | Image | 196 | Classification | 16,185 | [StanfordCars](https://ai.stanford.edu/$/sim20jkrause/cars/car_dataset.html) |
| Oxford Flowers | Image | 102 | Classification | 8,189 | [Oxford Flowers](https://www.robots.ox.ac.uk/~vgg/data/flowers/102/) |
| Caltech101 | Image | 101 | Classification | 9,000 | [Caltech101](https://data.caltech.edu/records/mzrjq-6wc02) |
| SOP | Image | 22,634 | Classification | 120,053 | [SOP](https://cvgl.stanford.edu/projects/lifted_struct/) |
| Food-101 | Image | 101 | Classification | 101,000 | [Food-101](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) |
| SUN397 | Image | 899 | Classification | 130,519 | [SUN397](https://vision.princeton.edu/projects/2010/SUN//) |
| iNaturalist | Image | 5,089 | Classification | 675,170 | [iNaturalist](https://github.com/visipedia/inat_comp/tree/master/2017) |
| CIFAR-C | Image | 10,100 | Corruption Classification | 60,000 | [CIFAR-C](https://github.com/hendrycks/robustness/) |
| CIFAR-LT | Image | 10,100 | Long-tail Classification | 60,000 | [CIFAR-LT](https://github.com/hendrycks/robustness/) |
| ImageNet-1K-C | Image | 1,000 | Corruption Classification | 1,431,167 | [ImageNet-1K-C](https://github.com/hendrycks/robustness/) |
| ImageNet-A | Image | 200 | Classification | 7,500 | [ImageNet-A](https://github.com/hendrycks/natural-adv-examples) |
| Pascal VOC 102 | Image | 20 | Object Detection | 33,043 | [Pascal VOC 102](http://host.robots.ox.ac.uk/pascal/VOC/) |
| MS-COCO Detection | Image | 91 | Object Detection | 164,062 | [MS-COCO Detection](https://cocodataset.org/detection-eval) |
| DSprites | Image | 737,280*6 | Disentanglement | 737,280 | [DSprites](https://github.com/google-deepmind/dsprites-dataset) |
| Place205 | Image | 205 | Recognition | 2,500,000 | [Place205](http://places.csail.mit.edu/downloadData.html) |
| Pascal Context | Image | 459 | Segmentation | 10,103 | [Pascal Context](http://places.csail.mit.edu/downloadData.html) |
| ADE20K | Image | 3,169 | Segmentation | 25,210 | [ADE20K](https://groups.csail.mit.edu/vision/datasets/ADE20K/) |
| Cityscapes | Image | 19 | Segmentation | 5,000 | [Cityscapes](https://deepmind.google/) |
| StreetHazards | Image | 12 | Segmentation | 7,656 | [StreetHazards](https://www.v7labs.com/open-datasets/streethazards-dataset) |
| PACS | Image | 7*4 | Domain Classification | 9,991 | [PACS](https://domaingeneralization.github.io/) |
| BRACS | Medical Image | 7 | Classification | 4,539 | [BRACS](https://www.bracs.icar.cnr.it/) |
| BACH | Medical Image | 4 | Classification | 400 | [BACH](https://iciar2018-challenge.grand-challenge.org/) |
| CAME-Lyon16 | Medical Image | 2 | Anomaly Detection | 360 | [CAME-Lyon16](https://camelyon16.grand-challenge.org/) |
| Chest X-Ray | Medical Image | 2 | Anomaly Detection | 5,856 | [Chest X-Ray](https://data.mendeley.com/datasets/rscbjbr9sj/2) |
| BCCD | Medical Image | 4,888 | Object Detection | 364 | [BCCD](https://github.com/Shenggan/BCCD_Dataset) |
| TJU600 | Palm-Vein Image | 600 | Classification | 12,000 | [TJU600](https://cslinzhang.github.io/ContactlessPalm/) |
| VERA220 | Palm-Vein Image | 220 | Classification | 2,200 | [VERA220](https://www.idiap.ch/en/scientific-research/data/vera-palmvein) |
| CoNLL2003 | Text | 4 | Classification | 2,302 | [CoNLL2003](https://data.deepai.org/conll2003.zip) |
| 20 Newsgroups | Text | 20 | OOD Detection | 20,000 | [20 Newsgroups](http://qwone.com/~jason/20Newsgroups/) |
| WOS | Text | 134 | OOD Detection | 46,985 | [WOS](http://archive.ics.uci.edu/index.php) |
| SST-2 | Text | 2 | Sentiment Understanding | 68,800 | [SST-2](https://github.com/YJiangcm/SST-2-sentiment-analysis) |
| Cora | Graph | 7 | Node Classification | 2,708 | [Cora](https://github.com/phanein/deepwalk) |
| Citeseer | Graph | 6 | Node Classification | 3,312 | [Citeseer](https://csxstatic.ist.psu.edu/) |
| PubMed | Graph | 3 | Node Classification | 19,717 | [PubMed](https://pubmed.ncbi.nlm.nih.gov) |
| BlogCatalog | Graph | 39 | Node Classification | 10,312 | [BlogCatalog](https://figshare.com/articles/dataset/BlogCatalog_dataset/11923611?file=22349970) |
| Google Commands | Speech | 30 | Classification | 65,000 | [Google Commands](https://research.google/blog/launching-the-speech-commands-dataset/) |
| VoxCeleb2 | Speech | 6,112 | Sound Classification | 1,000,000+ | [VoxCeleb2](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/) |
| VCTK | Speech | 110 | Enhancement | 44,000 | [VCTK](https://datashare.ed.ac.uk/handle/10283/2791) |
| ModelNet40 | 3D Point Cloud | 40 | Classification | 12,311 | [ModelNet40](https://modelnet.cs.princeton.edu/) |
| ScanObjectNN | 3D Point Cloud | 15 | Classification | 15,000 | [ScanObjectNN](https://hkust-vgd.github.io/scanobjectnn/) |
| ShapeNet | 3D Point Cloud | 16 | Recognition, Classification | 16,880 | [ShapeNet](https://shapenet.org/) |
| KITTI360 | 3D Point Cloud | 80,256 | Detection, Segmentation | 14,999 | [KITTI360](https://www.cvlibs.net/datasets/kitti/) |
| UCF101 | Video | 101 | Action Recognition | 13,320 | [UCF101](https://www.crcv.ucf.edu/research/data-sets/ucf101/) |
| Kinetics400 | Video | 400 | Action Recognition | 260,000 | [Kinetics400](https://deepmind.google/) |
| Airfoil | Tabular | - | Regression | 1,503 | [Airfoil](https://archive.ics.uci.edu/dataset/291/airfoil+self+noise) |
| NO2 | Tabular | - | Regression | 500 | [NO2](https://drive.google.com/drive/folders/1pTRT7fA-hq6p1F7ZX5oJ0tg_I1RRG6OW) |
| Exchange-Rate | Timeseries | - | Regression | 7,409 | [Exchange-Rate](https://github.com/laiguokun/multivariate-time-series-data) |
| Electricity | Timeseries | - | Regression | 26,113 | [Electricity](https://github.com/laiguokun/multivariate-time-series-data) |

(back to top)

## Contribution

Feel free to send [pull requests](https://github.com/Westlake-AI/openmixup/pulls) to add more links with the following Markdown format. Note that the abbreviation, the code link, and the figure link are optional attributes.

```markdown
* **TITLE**

*AUTHER*

PUBLISH'YEAR [[Paper](link)] [[Code](link)]

ABBREVIATION Framework



```

## Citation

If you feel that our work has contributed to your research, please cite it, thanks. 🥰

```markdown
@article{jin2024survey,
title={A Survey on Mixup Augmentations and Beyond},
author={Jin, Xin and Zhu, Hongyu and Li, Siyuan and Wang, Zedong and Liu, Zicheng and Yu, Chang and Qin, Huafeng and Li, Stan Z},
journal={arXiv preprint arXiv:2409.05202},
year={2024}
}
```

Current contributors include: Siyuan Li ([@Lupin1998](https://github.com/Lupin1998)), Xin Jin ([@JinXins](https://github.com/JinXins)), Zicheng Liu ([@pone7](https://github.com/pone7)), and Zedong Wang ([@Jacky1128](https://github.com/Jacky1128)). We thank all contributors for `Awesome-Mixup`!

(back to top)

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Acknowledgement

This repository is built using the [OpenMixup](https://github.com/Westlake-AI/openmixup) library and [Awesome README](https://github.com/matiassingers/awesome-readme) repository.

## Related Project

- [OpenMixup](https://github.com/Westlake-AI/openmixup): CAIRI Supervised, Semi- and Self-Supervised Visual Representation Learning Toolbox and Benchmark.
- [Awesome-Mix](https://github.com/ChengtaiCao/Awesome-Mix): An awesome list of papers for `A Survey of Mix-based Data Augmentation: Taxonomy, Methods, Applications, and Explainability, we categorize them based on our proposed taxonomy`.
- [survery-image-mixing-and-deleting-for-data-augmentation](https://github.com/humza909/survery-image-mixing-and-deleting-for-data-augmentation): An awesome list of papers for `Survey: Image Mixing and Deleting for Data Augmentation`.
- [awesome-mixup](https://github.com/demoleiwang/awesome-mixup): A collection of awesome papers about mixup.
- [awesome-mixed-sample-data-augmentation](https://github.com/JasonZhang156/awesome-mixed-sample-data-augmentation): A collection of awesome things about mixed sample data augmentation.
- [data-augmentation-review](https://github.com/AgaMiko/data-augmentation-review): List of useful data augmentation resources.
- [Awesome-Mixup](https://arxiv.org/abs/2409.05202): An awesome list of papers for `A Survey on Mixup Augmentations and Beyond`.