Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/Xamber/Varis

Golang Neural Network
https://github.com/Xamber/Varis

golang machine-learning neural-network perceptron

Last synced: about 2 months ago
JSON representation

Golang Neural Network

Awesome Lists containing this project

README

        


Gopher from internet =)

# Varis
Neural Networks with GO

[![Build Status](https://travis-ci.org/Xamber/Varis.svg?branch=master)](https://travis-ci.org/Xamber/Varis)
[![Go Report Card](https://goreportcard.com/badge/github.com/Xamber/Varis)](https://goreportcard.com/report/github.com/Xamber/Varis)
[![API Reference](https://camo.githubusercontent.com/915b7be44ada53c290eb157634330494ebe3e30a/68747470733a2f2f676f646f632e6f72672f6769746875622e636f6d2f676f6c616e672f6764646f3f7374617475732e737667)](https://godoc.org/github.com/Xamber/Varis)
[![codecov](https://codecov.io/gh/Xamber/Varis/branch/master/graph/badge.svg)](https://codecov.io/gh/Xamber/Varis)
[![MIT License](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/xamber/Varis/blob/master/LICENSE.md)
[![Release](https://img.shields.io/github/tag/xamber/varis.svg?label=latest)](https://github.com/Xamber/Varis/releases/tag/release-0.1)

## About Package
Some time ago I decided to learn Go language and neural networks.
So it's my variation of Neural Networks library. I tried to make library for programmers (not for mathematics).

For now Varis is 0.1 version.

I would be happy if someone can find errors and give advices.
Thank you. Artem.

## Main features
- All neurons and synapses are goroutines.
- Golang channels for connecting neurons.
- No dependencies

## Installation
go get github.com/Xamber/Varis

## Usage
```go
package main

import (
"github.com/Xamber/Varis"
)

func main() {
net := varis.CreatePerceptron(2, 3, 1)

dataset := varis.Dataset{
{varis.Vector{0.0, 0.0}, varis.Vector{1.0}},
{varis.Vector{1.0, 0.0}, varis.Vector{0.0}},
{varis.Vector{0.0, 1.0}, varis.Vector{0.0}},
{varis.Vector{1.0, 1.0}, varis.Vector{1.0}},
}

trainer := varis.PerceptronTrainer{
Network: &net,
Dataset: dataset,
}

trainer.BackPropagation(10000)
varis.PrintCalculation = true

net.Calculate(varis.Vector{0.0, 0.0}) // Output: [0.9816677167418877]
net.Calculate(varis.Vector{1.0, 0.0}) // Output: [0.02076530509106318]
net.Calculate(varis.Vector{0.0, 1.0}) // Output: [0.018253250887023762]
net.Calculate(varis.Vector{1.0, 1.0}) // Output: [0.9847884089930481]
}

```
## Roadmap 0.2-0.5
- Add locks
- Add training channels
- Improve speed
- Add error return to functions.
- Create more tests and benchmarks.
- Create server and cli realization for use Varis as a application

## Alternatives
[gonn](https://github.com/fxsjy/gonn) | [go-mind](https://github.com/stevenmiller888/go-mind) | [go-perceptron-go](https://github.com/made2591/go-perceptron-go)