Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/YIWEI-CHEN/awesome-automated-machine-learning
A curated list of awesome automated machine learning resources
https://github.com/YIWEI-CHEN/awesome-automated-machine-learning
List: awesome-automated-machine-learning
automated-deep-learning automated-feature-engineering automated-machine-learning automated-model-selection automl neural-architecture-search
Last synced: 16 days ago
JSON representation
A curated list of awesome automated machine learning resources
- Host: GitHub
- URL: https://github.com/YIWEI-CHEN/awesome-automated-machine-learning
- Owner: YIWEI-CHEN
- License: mit
- Created: 2019-03-25T19:09:51.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-10-18T04:08:10.000Z (about 5 years ago)
- Last Synced: 2024-04-10T15:58:01.012Z (9 months ago)
- Topics: automated-deep-learning, automated-feature-engineering, automated-machine-learning, automated-model-selection, automl, neural-architecture-search
- Size: 29.3 KB
- Stars: 7
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-automated-machine-learning - A curated list of awesome automated machine learning resources. (Other Lists / Monkey C Lists)
README
# Awesome Automated Machine Learning [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
A curated list of awesome automated machine learning resources.
Inspired by [awesome-deep-vision](https://github.com/kjw0612/awesome-deep-vision),
[awesome-adversarial-machine-learning](https://github.com/yenchenlin/awesome-adversarial-machine-learning),
[awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers)
[awesome-architecture-search](https://github.com/markdtw/awesome-architecture-search), and
[awesome-NAS](https://github.com/D-X-Y/awesome-NAS).Please feel free to [pull requests](https://github.com/YIWEI-CHEN/awesome-automated-machine-learning/pulls)
or [open an issue](https://github.com/YIWEI-CHEN/awesome-automated-machine-learning/issues) to add papers.
Markdown format:
```markdown
- Paper Name [[pdf]](link) [[code]](link)
- Author 1, Author 2, Author 3. Conference Year
```## Table of Contents
- [Automated Feature Engieerning](#automated-feature-engineering)
- [Exploration and Reduction](#exploration-and-reduction)
- [Reinforcement Learning](#reinforcement-learning)
- [Automated Model Selection and Learning](#automated-model-selection-and-learning)
- [Bayesian Optimization](#bayesian-optimization)
- [Evolutionary Algorithm](#evolutionary-algorithm)
- [Gradient-based Optimization](#gradient-based-optimization)
- [Automated Deep Learning](#automated-deep-learning)
- [Bayesian Optimization](#bayesian-optimization)
- [Reinforcement Learning](#reinforcement-learning)
- [Evolutionary Algorithm](#evolutionary-algorithm)
- [Gradient-based Optimization](#gradient-based-optimization)
- [Test Performance on CIFAR-10](#test-performance-on-cifar-10)
- [Survey](#survey)
- [Related Resources](#related-resources)## Automated Feature Engineering
### Exploration and Reduction
- Deep Feature Synthesis: Towards Automating Data Science Endeavors
[[pdf]](https://ieeexplore.ieee.org/document/7344858)
[[code]](https://github.com/Featuretools/featuretools)
- James Max Kanter, Kalyan Veeramachaneni.
- ExploreKit: Automatic Feature Generation and Selection
[[pdf]](https://ieeexplore.ieee.org/document/7837936)
[[code]](https://github.com/giladkatz/ExploreKit)
- Gilad Katz, Eui Chul Richard Shin, Dawn Song. ICDM 2016
### Reinforcement Learning
- Feature Engineering for Predictive Modeling using Reinforcement Learning
[[pdf]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16564/16719)
- Udayan Khurana, Horst Samulowitz, Deepak Turaga, AAAI 2018## Automated Model Selection and Learning
### Bayesian Optimization
- Efficient and Robust Automated Machine Learning
[[pdf]](https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf)
[[code]](https://github.com/automl/auto-sklearn)
- Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, Frank Hutter. NIPS 2015
- Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classification Algorithms
[[pdf]](http://www.cs.ubc.ca/labs/beta/Projects/autoweka/papers/autoweka.pdf)
[[code]](https://github.com/automl/autoweka)
- Chris Thornton, Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown. KDD 2013### Evolutionary Algorithm
- Automating Biomedical Data Science Through Tree-Based Pipeline Optimization
[[pdf]](https://link.springer.com/chapter/10.1007/978-3-319-31204-0_9)
[[code]](https://github.com/EpistasisLab/tpot)
- Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, Jason H. Moore.
EvoApplications 2016### Gradient-based Optimization
- TODO## Automated Deep Learning
### Bayesian Optimization
- Auto-Keras: Efficient Neural Architecture Search with Network Morphism
[[pdf]](https://arxiv.org/abs/1806.10282)
[[code]](https://github.com/jhfjhfj1/autokeras)
- Haifeng Jin, Qingquan Song, Xia Hu. arXiv 1806### Reinforcement Learning
- Neural Architecture Search with Reinforcement Learning (NAS)
[[pdf]](https://arxiv.org/abs/1611.01578)
[[unofficial code]](https://github.com/titu1994/neural-architecture-search)
- Barret Zoph and Quoc V. Le. ICLR 2017
- Learning Transferable Architectures for Scalable Image Recognition (NASNet)
[[pdf]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.pdf)
[[nasnet]](https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet)
- Barret Zoph, Vijay Vasudevan, Jonathan Shlens, Quoc V. Le. CVPR 2018
- Efficient Neural Architecture Search via Parameter Sharing (ENAS)
[[pdf]](http://proceedings.mlr.press/v80/pham18a.html)
[[code]](https://github.com/melodyguan/enas)
- Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, Jeff Dean. ICML 2018
- Path-Level Network Transformation for Efficient Architecture Search (PathLevel-EAS)
[[pdf]](http://proceedings.mlr.press/v80/cai18a/cai18a.pdf)
[[code]](https://github.com/han-cai/PathLevel-EAS)
- Han Cai, Jiacheng Yang, Weinan Zhang, Song Han,Yong Yu. ICML 2018
### Evolutionary Algorithm
- Large-Scale Evolution of Image Classifiers (LargeEvoNet)
[[pdf]](http://proceedings.mlr.press/v70/real17a)
[[code]](https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet)
- Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V. Le,
Alex Kurakin. ICML 2017
- Regularized Evolution for Image Classifier Architecture Search (AmoebaNet)
[[pdf]](https://arxiv.org/abs/1802.01548)
[[code]](https://github.com/tensorflow/tpu/tree/master/models/official/amoeba_net)
[[code]](https://colab.research.google.com/github/google-research/google-research/blob/master/evolution/regularized_evolution_algorithm/regularized_evolution.ipynb)
- Esteban Real, Alok Aggarwal, Yanping Huang, Quoc V Le. AAAI 2019
### Gradient-based Optimization
- DARTS: Differentiable Architecture Search
[[pdf]](https://openreview.net/pdf?id=S1eYHoC5FX)
[[code]](https://github.com/quark0/darts)
- Hanxiao Liu, Karen Simonyan, Yiming Yang. ICLR 2019
- ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
[[pdf]](https://openreview.net/pdf?id=HylVB3AqYm)
[[code]](https://github.com/MIT-HAN-LAB/ProxylessNAS)
- Han Cai, Ligeng Zhu, Song Han. ICLR 2019## Survey
- Techniques for Automated Machine Learning [[pdf]](https://arxiv.org/abs/1907.08908)
- Yi-Wei Chen, Qingquan Song, Xia Hu. arXiv 1907
- Neural Architecture Search: A Survey [[pdf]](https://arxiv.org/abs/1808.05377)
- Thomas Elsken, Jan Hendrik Metzen, Frank Hutter. arXiv 1808
- Taking Human out of Learning Applications: A Survey on Automated Machine Learning
[[pdf]](https://arxiv.org/abs/1810.13306)
- Yao Quanming, Wang Mengshuo, Jair Escalante Hugo, Guyon Isabelle, Hu Yi-Qi, Li Yu-Feng, Tu Wei-Wei, Yang Qiang,
Yu Yang. arXiv 1810## Related Resources
- [hibayesian/awesome-automl-papers](https://github.com/hibayesian/awesome-automl-papers)
- [markdtw/awesome-architecture-search](https://github.com/markdtw/awesome-architecture-search)
- [AutoML.org/Literature on Neural Architecture Search](https://www.ml4aad.org/automl/literature-on-neural-architecture-search/)
- [D-X-Y/awesome-NAS](https://github.com/D-X-Y/awesome-NAS)
- [weiaicunzai/awesome-image-classification](https://github.com/weiaicunzai/awesome-image-classification)
- [ChanChiChoi/awesome-automl](https://github.com/ChanChiChoi/awesome-automl)
- [songzhaozhe/Model-Architecture-Search-Paper-List](https://github.com/songzhaozhe/Model-Architecture-Search-Paper-List)