Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ahmedbelgacem/awesome-datascience

A curated list of awesome python, machine learning, computer vision and data science resources, articles, guides, courses and books.
https://github.com/ahmedbelgacem/awesome-datascience

List: awesome-datascience

awesome-list data-science deep-learning machine-learning python

Last synced: 3 months ago
JSON representation

A curated list of awesome python, machine learning, computer vision and data science resources, articles, guides, courses and books.

Awesome Lists containing this project

README

        

# Awesome-Datascience
This is mainly a curated list of awesome python, machine learning, computer vision and data science resources, articles, guides, courses and books. Since there's a lot of awesome lists for frameworks and libraries out there, I may add libraries, software and frameworks I find awesome but that's not the purpose of this list.
This list will follow me along my journey and I will be updating it as I progress. I'm making this list for my personal use mainly but I'm sharing it here if it may help anyone.
Some of the courses are courses I had at my university that are available freely online.

- [Awesome Data Science](#awesome-datascience)
- [AI and games](#ai-and-games)
- [Computer Vision](#computer-vision)
- [Data Engineering](#data-engineering)
- [Deep Learning](#deep-learning)
- [Edge Computing](#edge-computing)
- [Exploratory Data Analysis](#exploratory-data-analysis)
- [Fundamentals](#fundamentals)
- [Graph Neural Networks](#graph-neural-networks)
- [Generative Learning](#generative-learning)
- [Information Retireval](#information-retrieval)
- [Machine Learning](#machine-learning)
- [Mathematics](#mathematics)
- [Natural Language Processing](#natural-language-processing)
- [Python](#python)
- [Pytorch](#pytorch)
- [Reinforcement Learning](#reinforcement-learning)
- [Statistics](#statistics)
# AI and games:
- [Intelligence artificielle, une approche ludique - Tristan Cazenave](https://basepub.dauphine.fr/handle/123456789/9340) (French Book)
- ## Monte Carlo Search
- [Monte Carlo Search - Tristan Cazenave](https://www.lamsade.dauphine.fr/~cazenave/MonteCarlo.pdf)
# Computer Vision:
- ## Classification:
- [An intuitive guide to deep network architectures](https://towardsdatascience.com/an-intuitive-guide-to-deep-network-architectures-65fdc477db41)
- ## Edge Detection:
- [Canny Edge Detection - Step by Step in Python](https://towardsdatascience.com/canny-edge-detection-step-by-step-in-python-computer-vision-b49c3a2d8123)
- [Quality Assessment Methods to Evaluate the Performance of Edge Detection Algorithms](https://ieeexplore.ieee.org/document/9454489)
- ## Object Detection:
- [Deep Learning Bible 4- Object Detection](https://wikidocs.net/book/8119)
- ## Semantic Segmentation:
- [A survey of loss functions for semantic segmentation](https://arxiv.org/pdf/2006.14822.pdf)
- ## Yolo:
- [Understand yolov8 structure](https://github.com/akashAD98/yolov8_in_depth)
- [YOLOv8: One Concept You Must Know in Object Detection — Letterbox](https://medium.com/mlearning-ai/letterbox-in-object-detection-77ee14e5ac46)
- [The dumb reason your fancy Computer Vision app isn’t working: Exif Orientation](https://medium.com/@ageitgey/the-dumb-reason-your-fancy-computer-vision-app-isnt-working-exif-orientation-73166c7d39da)
# Data Engineering:
- [Hadoop: The Definitive Guide](https://grut-computing.com/HadoopBook.pdf)
- [Data-Intensive Text Processing with MapReduce](http://www.iro.umontreal.ca/~nie/IFT6255/Books/MapReduce.pdf)
# Deep Learning:
- [Deep Learning Specialization - Andrew NG](https://www.coursera.org/specializations/deep-learning)
- [A Recipe for Training Neural Networks - Andrej Karpathy](http://karpathy.github.io/2019/04/25/recipe/?fbclid=IwAR14qzU0WPypUSd2cJDn8_3GVDh6VjIcHBHcVJsLN9t7HtUkUfxzrluaaYY)
- ## LSTM:
- [Understanding LSTM Networks](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
- [Illustrated Guide to LSTM’s and GRU’s: A step by step explanation](https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21)
- ## Multi-Task Learning:
- [Deep Multi-Task Learning — 3 Lessons Learned](https://towardsdatascience.com/deep-multi-task-learning-3-lessons-learned-7d0193d71fd6)
- [Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics](https://arxiv.org/pdf/1705.07115.pdf)
- [Multi-Task Learning with Pytorch and FastAI](https://towardsdatascience.com/multi-task-learning-with-pytorch-and-fastai-6d10dc7ce855)
- [Multi Task Learning with Homoscedastic Uncertainty Implementation](https://github.com/ranandalon/mtl)
- ## RNN:
- [Illustrated Guide to Recurrent Neural Networks](https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9)
- ## SPP:
- [Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition](https://arxiv.org/pdf/1406.4729v4.pdf)
# Edge computing:
- ## Machine Learning Compilers, optimizers and Gpu accelerated deep learning:
- [A friendly introduction to machine learning compilers and optimizers](https://huyenchip.com/2021/09/07/a-friendly-introduction-to-machine-learning-compilers-and-optimizers.html)
- [The Correct Way to Measure Inference Time of Deep Neural Networks](https://deci.ai/blog/measure-inference-time-deep-neural-networks/)
- ## TensorRT:
- [Profiling Deep Learning Networks And Automatic Mixed Precision For Optimization](https://on-demand.gputechconf.com/gtc-cn/2019/pdf/CN9620/presentation.pdf)
# Exploratory Data Analysis:
- ## Principal component analysis, Correspondence Analysis, Multiple Correspondence Analysis:
- [Analyse des données - Patrice Bertrand et Denis Pasquignon](https://www.ceremade.dauphine.fr/~pasquignon/analyse-des-donnees-M1.pdf) (French Course)
# Fundamentals:
- ## Docker:
- [Simplified guide to using Docker for local development environment](https://blog.atulr.com/docker-local-environment/)
- [Use the same Dockerfile for both local development and production with multi-stage builds](https://blog.atulr.com/docker-local-production-image/)
- [Introduction to docker - Datacamp](https://www.datacamp.com/courses/introduction-to-docker)
- ## Git:
- [Introduction to Git for Data Science](https://www.datacamp.com/courses/introduction-to-git)
- ## Web Scraping:
- [Web Scraping with Python](https://www.datacamp.com/courses/web-scraping-with-python)

# Graph Neural Networks:
- [Machine Learning with Graphs - Stanford University](http://web.stanford.edu/class/cs224w/index.html#content)
- [LiteratureDL4Graph, A comprehensive collection of recent papers on graph deep learning](https://github.com/DeepGraphLearning/LiteratureDL4Graph)
# Generative Learning:
- ## Variational Autoencoders:
- [The theory behind Latent Variable Models: formulating a Variational Autoencoder](https://theaisummer.com/latent-variable-models/#variational-autoencoders)
- [How to Generate Images using Autoencoders](https://theaisummer.com/Autoencoder/)
- ## Diffusion Models:
- [Diffusion Theory](https://github.com/mikonvergence/DiffusionFastForward/blob/master/notes/01-Diffusion-Theory.md)
- [How diffusion models work: the math from scratch](https://theaisummer.com/diffusion-models/?fbclid=IwAR1BIeNHqa3NtC8SL0sKXHATHklJYphNH-8IGNoO3xZhSKM_GYcvrrQgB0o)
# Information Retrieval:
- [Introduction to Information Retrieval - Cambridge University, Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze](https://nlp.stanford.edu/IR-book/information-retrieval-book.html)
- ## Semantic Search:
- [Semantic Search - Sentence Transformers Documentation](https://www.sbert.net/examples/applications/semantic-search/README.html) - A guide on using sbert for semantic search
# Machine Learning:
- [Machine Learning - Stanford University, Andrew NG](https://www.coursera.org/learn/machine-learning)
- [Python Machine Learning, 3rd Edition - Sebastian Raschka , Vahid Mirjalili](https://sebastianraschka.com/books/#python-machine-learning-3rd-edition)
- ## Boosting Algorithms:
- [Boosting algorithms explained](https://towardsdatascience.com/boosting-algorithms-explained-d38f56ef3f30)
- [A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning](https://machinelearningmastery.com/gentle-introduction-gradient-boosting-algorithm-machine-learning/)
- ## Preparing for a machine learning interview:
- [Introduction to Machine Learning Interviews](https://huyenchip.com/ml-interviews-book/)
- ### Machine Learning System Design:
- [Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications - Chip Huyen](https://www.amazon.com/Designing-Machine-Learning-Systems-Production-Ready/dp/1098107969)
- ## Support Vector Machines:
- [Support Vector Machines (SVM) - An overview](https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989)
# Mathematics:
- ## Optimization for Machine Learning:
- [Optimization for Machine Learning - Clément Royer](https://www.lamsade.dauphine.fr/%7Ecroyer/ensdocs/OML/PolyOML.pdf)
# Natural Language Processing:
- ## Transformers:
- [Attention is all you need](https://arxiv.org/abs/1706.03762)
- [Hugging Face Course](https://huggingface.co/course/chapter1/1)
# Python:
- [Learning Python: Powerful Object-Oriented Programming - Mark Lutz](https://www.amazon.com/Learning-Python-Powerful-Object-Oriented-Programming-ebook/dp/B00DDZPC9S/ref=as_li_ss_tl?crid=2OZ9IA8BKEZKO&dchild=1&keywords=python+programming+language&qid=1588165545&sprefix=python+progra,aps,315&sr=8-3&linkCode=sl1&tag=adilet-20&linkId=bbe99ec15d04e43dd44966d937725cad&language=en_US)
- ## Clean Code:
- [How to write beautiful python code with PEP 8](https://realpython.com/python-pep8/)
- [5 Different Meanings of Underscore in Python](https://towardsdatascience.com/5-different-meanings-of-underscore-in-python-3fafa6cd0379)
- [f-Strings: A New and Improved Way to Format Strings in Python](https://realpython.com/python-f-strings/#f-strings-a-new-and-improved-way-to-format-strings-in-python)
- [The Zen of Python](https://zen-of-python.info/)
- [Google Python Style Guide](https://google.github.io/styleguide/pyguide.html)
- [PEP8 online checker](http://pep8online.com)
- ## Data Structures:
- [Binary Tree](https://emre.me/data-structures/binary-tree/)
- [Binary Search Tree](https://emre.me/data-structures/binary-search-trees/)
- [Queue in Python](https://www.geeksforgeeks.org/queue-in-python/)
- [Sets in Python](https://realpython.com/python-sets/)
- ## Distribution:
- [How to create a Python library](https://medium.com/analytics-vidhya/how-to-create-a-python-library-7d5aea80cc3f)
- [How to upload your python package to PyPi](https://medium.com/@joel.barmettler/how-to-upload-your-python-package-to-pypi-65edc5fe9c56)
- ## Documentation:
- [Python Docstrings](https://www.datacamp.com/community/tutorials/docstrings-python)
- [Auto-documenting a python project using Sphinx](https://betterprogramming.pub/auto-documenting-a-python-project-using-sphinx-8878f9ddc6e9)
- ## Efficient Code:
- [Code Profiling](https://towardsdatascience.com/a-quick-and-easy-guide-to-code-profiling-in-python-58c0ed7e602b)
- [Python's Counter: The Pythonic Way to Count Objects](https://realpython.com/python-counter/)
- [Unpacking in Python](https://stackabuse.com/unpacking-in-python-beyond-parallel-assignment/)
- [Using the Python zip() Function for Parallel Iteration](https://realpython.com/python-zip-function/)
- ## Generators:
- [Python yield, Generators and Generator Expressions](https://www.programiz.com/python-programming/generator?fbclid=IwAR2aGKoKpvMJy2R-jINBQMM7qcOeBczS192k1c2TZYwiV7YAKc1XKhboS4k)
- [How to Use Generators and yield in Python](https://realpython.com/introduction-to-python-generators/)
- ## Metaclasses:
- [Python Metaclasses](https://www.godaddy.com/engineering/2018/12/20/python-metaclasses/)
- ## Tools and development environements:
- ### Jupyter Notebook
- [7 essential tips for writing with jupyter notebook](https://towardsdatascience.com/7-essential-tips-for-writing-with-jupyter-notebook-60972a1a8901)
- ## Preparing for a coding interview:
- [CP-Algorithms.com](https://cp-algorithms.com/)
- [Competitive Programmer’s Handbook - Antti Laaksonen (2018)](https://cses.fi/book/book.pdf)
- [Grokking LeetCode: A Smarter Way to Prepare for Coding Interviews](https://medium.com/interviewnoodle/grokking-leetcode-a-smarter-way-to-prepare-for-coding-interviews-e86d5c9fe4e1)
- [Interview School](https://interviews.school)
- [Introduction to Algorithms, 3rd Edition](https://www.amazon.com/dp/0262033844/ref=as_li_ss_tl?ie=UTF8&linkCode=sl1&tag=adilet-20&linkId=925f749322dc9e4485887dce6cbc8248&language=en_US)
- [Pramp - Mock interviews with peers](https://www.pramp.com/#/)
- ### Algorithms:
- [Dynamic Programming](https://emre.me/algorithms/dynamic-programming/)
- [Greedy Algorithms](https://emre.me/algorithms/greedy-algorithms/)
- ### Python implementation for different coding problem patterns:
- [Coding Patterns: In-place Reversal of a Linked List](https://emre.me/coding-patterns/in-place-reversal-of-a-linked-list/)
- [4 types of tree traversal algorithms (Java implementation)](https://towardsdatascience.com/4-types-of-tree-traversal-algorithms-d56328450846)
- [Coding Patterns: Depth First Search (DFS)](https://emre.me/coding-patterns/depth-first-search/)
- [Coding Patterns: Breadth First Search (BFS)](https://emre.me/coding-patterns/breadth-first-search/)
# Pytorch:
- [Pytorch 101: An applied tutorial](https://www.youtube.com/watch?v=_R-mvKBD5U8&list=PL98nY_tJQXZln8spB5uTZdKN08mYGkOf2&index=1)
- [Faster Deep Learning Training with PyTorch – a 2021 Guide](https://efficientdl.com/faster-deep-learning-in-pytorch-a-guide/)
# Reinforcement Learning:
- [Reinforcement Learning An Introduction - Richard S.Sutton, Andrew G. Barto](https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf)
- [Reinforcement Learning - Stéphane Airiau](https://www.lamsade.dauphine.fr/~airiau/Teaching/M2-IASDapp-RL/) (French Course)
# Statistics:
- ## Estimation, Confidence Interval, Hypothesis Testing:
- [Statistique mathématique - Vincent Rivoirard](https://www.ceremade.dauphine.fr/~rivoirar/Poly-L3-StatMath.pdf) (French Course)
- [The Bootstrap Method for Standard Errors and Confidence Intervals](https://www.dummies.com/article/academics-the-arts/science/biology/the-bootstrap-method-for-standard-errors-and-confidence-intervals-164614/)
- ## Monte Carlo Method:
- [Méthodes de Monte Carlo - Julien Stoehr](https://www.ceremade.dauphine.fr/~stoehr/data/medias/001/m1_monte_carlo/cm_monte_carlo.pdf) (French Course)