Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aipengineer/awesome-ai-engineering-reads
Essential reads for every AI engineer interested in building AI apps.
https://github.com/aipengineer/awesome-ai-engineering-reads
List: awesome-ai-engineering-reads
ai ai-engineer ai-engineering aiengineer aiengineering awesome awesome-list awesome-lists
Last synced: 3 months ago
JSON representation
Essential reads for every AI engineer interested in building AI apps.
- Host: GitHub
- URL: https://github.com/aipengineer/awesome-ai-engineering-reads
- Owner: aipengineer
- Created: 2023-11-25T00:30:59.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-02-29T16:10:17.000Z (10 months ago)
- Last Synced: 2024-09-25T18:01:09.729Z (3 months ago)
- Topics: ai, ai-engineer, ai-engineering, aiengineer, aiengineering, awesome, awesome-list, awesome-lists
- Homepage: https://aipengineer.substack.com
- Size: 117 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-ai-engineering-reads - Essential reads for every AI engineer interested in building AI apps. (Other Lists / Monkey C Lists)
README
# Awesome AI Engineer Reads
[ποΈ Building and Deploying LLMs](#building-and-deploying-llms)
[:balance_scale: Evaluating LLM + Retrieval](#evaluating-llm-plus-retrieval)
[:mag: LLM + Retrieval](#llm-and-retrieval)
[:computer: LLM Applications](#llm-applications)
[:brain: LLM Architectures and Models](#llm-architectures-and-models)
[:briefcase: LLM Business](#llm-business)
[:bar_chart: LLM Data](#llm-data)
[:rocket: LLM Deployment ](#llm-deployment)
[:jigsaw: LLM Embeddings](#llm-embeddings)
[:wrench: LLM Engineering](#llm-engineering)
[:trophy: LLM Engineering Best Practices](#llm-engineering-best-practices)
[:balance_scale: LLM Ethics and Governance](#llm-ethics-and-governance)
[:microscope: LLM Evaluation](#llm-evaluation)
[:ticket: LLM Events](#llm-events)
[:exploding_head: LLM Hype](#llm-hype)
[:thinking: LLM Inference](#llm-inference)
[:building_construction: LLM Infrastructure](#llm-infrastructure)
[:loudspeaker: LLM Marketing](#llm-marketing)
[:newspaper: LLM Newsletters](#llm-newsletters)
[:1234: LLM Numbers](#llm-numbers)
[:eyes: LLM Observability](#llm-observability)
[:speech_balloon: LLM Opinions and Critiques](#llm-opinions-and-critiques)
[:pencil: LLM Prompting](#llm-prompting)
[:notebook_with_decorative_cover: LLM Research and Publications](#llm-research-and-publications)
[:fishing_pole_and_fish: LLM Retriever Models](#llm-retriever-models)
[:moneybag: LLM Startups and Funding](#llm-startups-and-funding)
[:green_book: LLM Tutorials and Courses](#llm-tutorials-and-courses)
[:unlock: Open LLM Models](#open-llm-models)
[:wrench: Open LLM Tools](#open-llm-tools)
[:desktop_computer: Self-Hosted LLMs](#self-hosted-llms)
[:hammer_and_wrench: Tools and Frameworks](#tools-and-frameworks)
[:weight_lifting: Training and Fine-tuning LLMs](#training-and-fine-tuning-llms)
[:grey_question: Uncategorized](#uncategorized)
## Building and Deploying LLMs
- [Scaling Kubernetes to 7,500 nodes](https://openai.com/research/scaling-kubernetes-to-7500-nodes)
- [All the Hard Stuff Nobody Talks About when Building Products with LLMs](https://www.honeycomb.io/blog/hard-stuff-nobody-talks-about-llm)
- [All the Hard Stuff Nobody Talks About when Building Products with LLMs](https://www.honeycomb.io/blog/hard-stuff-nobody-talks-about-llm)
- [Building LLM applications for production](https://huyenchip.com/2023/04/11/llm-engineering.html)
- [Efficiently Scaling and Deploying LLMs](https://home.mlops.communiy/home/videos/efficiently-scaling-and-deploying-llms)
- [LLMs in Production - Part III](https://home.mlops.community/public/events/llms-in-production-part-iii-2023-10-03)## Training and Fine-tuning LLMs
- [How to train your own Large Language Models](https://blog.replit.com/llm-training)
- [Training Compute-Optimal Large Language Models](https://arxiv.org/abs/2203.15556)
- [Opt-175B Logbook](https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf)
- [Fine-Tuning LLMs: Best Practices and When to Go Small](https://home.mlops.community/home/videos/fine-tuning-llms-best-practices-and-when-to-go-small-2023-06-02)
- [Finetuning Large Language Models](https://www.deeplearning.ai/short-courses/finetuning-large-language-models/)
- [GPT-3.5 Turbo fine-tuning and API updates](https://openai.com/blog/gpt-3-5-turbo-fine-tuning-and-api-updates)
- [Fine-tuning in Your Voice Webinar](https://www.youtube.com/watch?v=MJm49TAyz5w)## LLM Architectures and Models
- [A Survey of Large Language Models](https://arxiv.org/abs/2303.18223)
- [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)
- [Introducing Code Llama, a state-of-the-art large language model for coding](https://ai.meta.com/blog/code-llama-large-language-model-coding/)
- [Spread Your Wings: Falcon 180B is here](https://huggingface.co/blog/falcon-180b)
- [BLOOM: A 176B-Parameter Open-Access Multilingual Language Model](https://arxiv.org/pdf/2211.05100.pdf?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)## Tools and Frameworks
- [LangChain: Enabling LLMs to Use Tools](https://drive.google.com/file/d/1Z9wxwZRG8JOMkUfwDw7fD8sbijQ32J7W/view)
- [Langchain Tutorials](https://github.com/gkamradt/langchain-tutorials)
- [LangChain cookbook](https://github.com/langchain-ai/langchain/tree/master/cookbook)
- [fairseq2](https://github.com/facebookresearch/fairseq2)
- [seamless_communication](https://github.com/facebookresearch/seamless_communication)## LLM Applications
- [Automatic Generation of Visualizations and Infographics with LLMs](https://microsoft.github.io/lida/)
- [Introducing AudioCraft: A Generative AI Tool For Audio and Music](https://about.fb.com/news/2023/08/audiocraft-generative-ai-for-music-and-audio/)
- [An example of LLM prompting for programming](https://martinfowler.com/articles/2023-chatgpt-xu-hao.html)
- [Human-centric & Coherent Whole Program Synthesis aka your own personal junior developer](https://github.com/smol-ai/developer)
- [GPT Engineer](https://github.com/AntonOsika/gpt-engineer/)## LLM Evaluation
- [Holistic Evaluation of Language Models](https://github.com/stanford-crfm/helm)
- [chatgpt-evaluation-01-2023](https://github.com/CLARIN-PL/chatgpt-evaluation-01-2023)
- [Evaluating chatGPT](https://ehudreiter.com/2023/04/04/evaluating-chatgpt/)
- [PromptBench: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts](https://arxiv.org/pdf/2306.04528.pdf)## LLM Prompting
- [Prompt Engineering](https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/)
- ["Prompt injection explained, with video, slides, and a transcript"](https://simonwillison.net/2023/May/2/prompt-injection-explained/)
- [Delimiters wonβt save you from prompt injection](https://simonwillison.net/2023/May/11/delimiters-wont-save-you/)
- [You probably don't know how to do Prompt Engineering](https://gist.github.com/Hellisotherpeople/45c619ee22aac6865ca4bb328eb58faf)
- [ChatGPT Prompt Engineering for Developers](https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/2/guidelines)
- [Learn Prompting](https://learnprompting.org/docs/category/-basics)## LLM Research and Publications
- [A Survey of Large Language Models](https://arxiv.org/abs/2303.18223)
- [Challenges and Applications of Large Language Models](https://arxiv.org/abs/2307.10169)
- [Large Language Models as Optimizers](https://arxiv.org/abs/2309.03409)
- [Multimodal Foundation Models: From Specialists to General-Purpose Assistants](https://arxiv.org/pdf/2309.10020.pdf)
- [Scaling Laws for Neural Language Models](https://arxiv.org/abs/2001.08361?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)
- [Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)
- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)## LLM Embeddings
- [FlagEmbedding](https://huggingface.co/BAAI/bge-large-en-v1.5)
- [One Embedder, Any Task: Instruction-Finetuned Text Embeddings](https://github.com/xlang-ai/instructor-embedding)
- [OpenAI GPT-3 Text Embeddings - Really a new state-of-the-art in dense text embeddings?](https://medium.com/@nils_reimers/openai-gpt-3-text-embeddings-really-a-new-state-of-the-art-in-dense-text-embeddings-6571fe3ec9d9)
- [Getting creative with embeddings](https://wattenberger.com/thoughts/yay-embeddings-math)
- [What are embeddings?](https://vickiboykis.com/what_are_embeddings/)## LLM Retriever Models
- [Vector Databases and Large Language Models](https://drive.google.com/file/d/1SWUJEM8ZtsOPqrqW3b-Nn8HooPe9mgv8/view)
- [Large Language Models with Semantic Search](https://www.deeplearning.ai/short-courses/large-language-models-semantic-search/)
- [MultiVector Retriever](https://python.langchain.com/docs/modules/data_connection/retrievers/multi_vector)
- [Fine-Tuning LLaMA for Multi-Stage Text Retrieval](https://arxiv.org/pdf/2310.08319.pdf)## LLM plus Retrieval
- [Making Retrieval Augmented Generation Better with @jamesbriggs](https://www.youtube.com/watch?v=Q-uEhJMu3ak)
- [Harnessing Retrieval Augmented Generation With Langchain](https://betterprogramming.pub/harnessing-retrieval-augmented-generation-with-langchain-2eae65926e82)
- [Knowledge Retrieval Architecture for LLMβs (2023)](https://mattboegner.com/knowledge-retrieval-architecture-for-llms/)
- [How do domain-specific chatbots work? An Overview of Retrieval Augmented Generation (RAG)](https://scriv.ai/guides/retrieval-augmented-generation-overview/)
- [LangChain "Advanced Retrieval" Webinar](https://www.crowdcast.io/c/kqz7nl8nps42)
- [TWIML-RAG - a TWIML generative_ai community project.](https://github.com/TWIML/TWIML-RAG)## Evaluating LLM plus Retrieval
- [Evaluation & Hallucination Detection for Abstractive Summaries](https://eugeneyan.com/writing/abstractive/)
- [Building And Troubleshooting An Advanced LLM Query Engine](https://www.youtube.com/watch?v=_zDDErOaUqc)
- [Advanced RAG 02 - Parent Document Retriever](https://www.youtube.com/watch?v=wQEl0GGxPcM)## LLM Inference
- [Easy-to-use headless React Hooks to run LLMs in the browser with WebGPU. As simple as useLLM().](https://github.com/r2d4/react-llm)
- [Inference Experiments with LLaMA v2 7b](https://github.com/djliden/inference-experiments/tree/main/llama2)
- [OpenAI's Code Interpreter in your terminal, running locally](https://github.com/KillianLucas/open-interpreter)
- [Discover, download, and run local LLMs](https://lmstudio.ai/)## LLM Data
- [Want High Performing LLMs? Hint: It is All About Your Data](https://home.mlops.community/home/videos/want-high-performing-llms-hint-it-is-all-about-your-data)
- [How LlamaIndex Can Bring the Power of LLM's to Your Data](https://drive.google.com/file/d/1qo_DqCilZdtCyQE1dpdJeJnav0fgunax/view)
- [How to Create Custom Datasets To Train Llama-2](https://www.youtube.com/watch?v=z2QE12p3kMM)
- [Data Copilot](https://github.com/Modulos/data_copilot)## LLM Observability
- [AI Observability & Evaluation - Evaluate, troubleshoot, and fine tune your LLM, CV, and NLP models in a notebook.](https://github.com/Arize-ai/phoenix)
## LLM Opinions and Critiques
- [Why Chatbots Are Not the Future](https://wattenberger.com/thoughts/boo-chatbots)
## LLM Tutorials and Courses
- [Finetuning Large Language Models](https://www.deeplearning.ai/short-courses/finetuning-large-language-models/)
- [Large Language Models with Semantic Search](https://www.deeplearning.ai/short-courses/large-language-models-semantic-search/)
- [How Business Thinkers Can Start Building AI Plugins With Semantic Kernel](https://www.deeplearning.ai/short-courses/microsoft-semantic-kernel/)
- [LLM Bootcamp - Spring 2023](https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/)
- [LLM Bootcamp - Spring 2023](https://fullstackdeeplearning.com/llm-bootcamp/spring-2023/)
- [Generative AI for Beginners - A Course](https://github.com/microsoft/generative-ai-for-beginners/tree/main)
- [Artificial Intelligence for Beginners - A Curriculum](https://github.com/microsoft/ai-for-beginners)
- [Introduction to Deep Learning](https://sebastianraschka.com/blog/2021/dl-course.html#l19-self-attention-and-transformer-networks)## LLM Engineering
- [Reflections on AI Engineer Summit 2023](https://eugeneyan.com/writing/aieng-reflections/)
- [AI Engineer Summit - Building Blocks for LLM Systems & Products](https://eugeneyan.com/speaking/ai-eng-summit/)## LLM Engineering Best Practices
- [All the Hard Stuff Nobody Talks About when Building Products with LLMs](https://www.honeycomb.io/blog/hard-stuff-nobody-talks-about-llm)
- [Building Defensible Products with LLMs](https://drive.google.com/file/d/1AOX4urZL1ac20MhnvEY2saDUmyR2vAOD/view)
- [What Is ChatGPT Doing ... and Why Does It Work?](https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/)
- [Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges](https://arxiv.org/abs/2103.11251)## Open LLM Models
- [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)
- [BLOOM: A 176B-Parameter Open-Access Multilingual Language Model](https://arxiv.org/pdf/2211.05100.pdf?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)## Open LLM Tools
- [LangChain: Enabling LLMs to Use Tools](https://drive.google.com/file/d/1Z9wxwZRG8JOMkUfwDw7fD8sbijQ32J7W/view)
- [Langchain Tutorials](https://github.com/gkamradt/langchain-tutorials)
- [LangChain cookbook](https://github.com/langchain-ai/langchain/tree/master/cookbook)
- [fairseq2](https://github.com/facebookresearch/fairseq2)
- [seamless_communication](https://github.com/facebookresearch/seamless_communication)## Self-Hosted LLMs
- [Why host your own LLM?](http://marble.onl/posts/why_host_your_own_llm.html)
- [How is LLaMa.cpp possible?](https://finbarr.ca/how-is-llama-cpp-possible/)
- [Discover, download, and run local LLMs](https://lmstudio.ai/)## LLM Deployment
- [Deploying AI-driven apps on Vercel](https://vercel.com/blog/deploying-ai-applications)
- [Solving the Last Mile Problem of Foundation Models with Data-Centric AI](https://home.mlops.community/home/videos/solving-the-last-mile-problem-of-foundation-models-with-data-centric-ai)
- [Taking LangChain Apps to Production with LangChain-serve](https://drive.google.com/file/d/14AY8DUlgvaLy73XOffYuTrqaweA2NH9w/view)## LLM Infrastructure
- [Age of Industrialized AI](https://docs.google.com/presentation/d/1yOwISoa-ujVK5ImC1aP2JoJslVWAe4GsQlih29TTQ5g/edit#slide=id.g2078c9f2667_0_62)
- [DevTools for Large Language Models: Unlocking the Future of AI-Driven Applications](https://docs.google.com/presentation/d/1kML0Q7CnRPp1eEByGqziGOpvGlcQD8j-/edit#slide=id.p1)
- [Large Language Model at Scale](https://home.mlops.community/home/videos/large-language-model-at-scale)## LLM Events
- ["AI Agents Hackathon Develop your own AI agent within 48 hours!"](https://lablab.ai/event/ai-agents-hackathon)
## LLM Numbers
- [Numbers every LLM Developer should know](https://github.com/ray-project/llm-numbers)
## LLM Hype
- [Anti-hype LLM reading list](https://gist.github.com/veekaybee/be375ab33085102f9027853128dc5f0e)
- [ChatGPT Resources](https://gist.github.com/veekaybee/6f8885e9906aa9c5408ebe5c7e870698)## LLM Newsletters
- [β¨ Flashier Attention, π€ Gzip Classifiers](https://nlpnewsletter.substack.com/p/flashier-attention-gzip-classifiers)
## LLM Ethics and Governance
- [Constitutional AI: Harmlessness from AI Feedback](https://arxiv.org/abs/2212.08073?utm_source=www.turingpost.com&utm_medium=newsletter&utm_campaign=where-are-you-in-fmops-infrastructure-stack-tell-us)
- [A guidance language for controlling large language models.](https://github.com/guidance-ai/guidance)## LLM Startups and Funding
- [The AI Startup Litmus Test](https://www.nfx.com/post/ai-startup-litmus-test)
- [Generative AI Strategy](https://huyenchip.com/2023/06/07/generative-ai-strategy.html)
- [Lessons from 139 YC AI startups (S23)](https://www.reddit.com/r/ycombinator/comments/16h9lxu/lessons_from_139_yc_ai_startups_s23/?share_id=FzwJ8S6GOz1SkuG9WDY8y&utm_content=2&utm_medium=ios_app&utm_name=ioscss&utm_source=share&utm_term=1)## LLM Business
- [2023: The State of Generative AI in the Enterprise](https://menlovc.com/2023-the-state-of-generative-ai-in-the-enterprise-report/)
- [Takeaways & lessons from 250k+ LLM calls on 100k corporate docs](https://www.credal.ai/blog/takeaways-from-using-llms-on-corporate-documents)## LLM Marketing
- [Your Success with Generative AI May Come Down to These UX Decisions](https://www.emcap.com/thoughts/your-success-with-generative-ai-may-come-down-to-these-ux-decisions/)
## Uncategorized
https://github.com/yeagerai/yeagerai-agent
https://github.com/homanp/superagent
https://github.com/homanp/langchain-ui
https://github.com/0xpayne/gpt-migrate
https://github.com/shinework/photoshot
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2305.10601
https://news.ycombinator.com/item?id=36645575
https://github.com/prefecthq/marvin
https://github.com/eth-sri/lmql
https://arxiv.org/pdf/2212.06094.pdf
https://github.com/mlc-ai/web-llm
https://github.com/Atome-FE/llama-node
https://github.com/go-skynet/LocalAI
https://localai.io
https://www.cursor.so/blog/llama-inference
https://www.geoffreylitt.com/2023/03/25/llm-end-user-programming.html
https://every.to/chain-of-thought/what-comes-after-saas
https://github.com/axilla-io/axgen
https://www.axilla.io/
https://github.com/f/awesome-chatgpt-prompts/blob/main/README.md
https://magrawala.substack.com/p/unpredictable-black-boxes-are-terrible
https://dl.acm.org/doi/10.1145/267505.267514
https://www.youtube.com/@gklitt/videos
https://www.inkandswitch.com
https://idl.cs.washington.edu/files/2019-AgencyPlusAutomation-PNAS.pdf
https://simonwillison.net/2023/Mar/27/ai-enhanced-development/
https://www.robinsloan.com/notes/home-cooked-app/
https://dl.acm.org/doi/10.1145/2593882.2593896
https://wattenberger.com/thoughts/boo-chatbots
https://www.geoffreylitt.com/2023/07/25/building-personal-tools-on-the-fly-with-llms.html
https://web.mit.edu/6.031/www/sp22/
https://www.youtube.com/watch?v=bJ3i4K3hefI
https://github.com/tianlinxu312/Everything-about-LLMs
https://arxiv.org/abs/2311.04205
https://arxiv.org/abs/2309.04269
https://arxiv.org/abs/2310.11511
https://arxiv.org/pdf/2310.07064
https://arxiv.org/abs/2309.15217
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2310.06692
https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2212.10071
https://arxiv.org/abs/2301.12726
https://arxiv.org/abs/2305.01879
https://arxiv.org/abs/2305.02301
https://arxiv.org/abs/2212.00193
https://arxiv.org/abs/2305.13888
https://arxiv.org/abs/2306.09299
https://arxiv.org/abs/2207.00112
https://arxiv.org/abs/2307.00526
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2210.07558
https://arxiv.org/abs/2311.12023
https://arxiv.org/abs/2311.11696
https://arxiv.org/abs/2311.09179
https://arxiv.org/abs/2311.08598
https://arxiv.org/abs/2311.05556
https://cset.georgetown.edu/publication/techniques-to-make-large-language-models-smaller-an-explainer
https://arxiv.org/abs/2304.01089
https://arxiv.org/abs/2304.07493
https://arxiv.org/abs/2304.09145
https://arxiv.org/pdf/2306.02272
https://arxiv.org/abs/2307.09782
https://arxiv.org/abs/2303.08302
https://arxiv.org/abs/2306.07629
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2308.15987v1
https://arxiv.org/abs/2309.01885
https://arxiv.org/abs/2309.02784
https://arxiv.org/abs/2309.05516
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2306.08543
https://arxiv.org/abs/2306.13649
https://arxiv.org/abs/2305.14864
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.11916
https://arxiv.org/abs/2212.10670
https://arxiv.org/abs/2210.06726
https://arxiv.org/abs/2212.08410
https://arxiv.org/abs/2305.14152
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2306.00978
https://www.ben-evans.com/benedictevans/2023/10/5/unbundling-ai
https://www.coatue.com/blog/perspective/ai-the-coming-revolution-2023
https://arxiv.org/pdf/2308.07633
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2305.18403
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2305.14152
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2206.09557
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2206.01861
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2305.14152
https://arxiv.org/abs/2305.17888
https://arxiv.org/abs/2306.03078
https://arxiv.org/pdf/2311.10122
https://arxiv.org/pdf/2311.10093
https://arxiv.org/pdf/2311.08263
https://arxiv.org/pdf/2311.07575
https://arxiv.org/pdf/2311.06783
https://arxiv.org/pdf/2311.09210v1
https://arxiv.org/pdf/2311.10709
https://arxiv.org/pdf/2311.07361
https://arxiv.org/pdf/2311.07989
https://arxiv.org/pdf/2311.02462
https://arxiv.org/abs/2311.05232
https://arxiv.org/pdf/2311.03285v1
https://arxiv.org/pdf/2311.05556
https://arxiv.org/pdf/2311.05437
https://arxiv.org/pdf/2311.05348
https://arxiv.org/pdf/2311.04257
https://arxiv.org/pdf/2311.04219
https://arxiv.org/pdf/2311.03356
https://arxiv.org/pdf/2311.05657
https://arxiv.org/pdf/2311.05997
https://arxiv.org/pdf/2311.04254
https://arxiv.org/pdf/2311.03301
https://arxiv.org/pdf/2311.04400
https://arxiv.org/pdf/2311.04145
[Universal Language Model Fine-tuning for Text Classification](https://arxiv.org/pdf/1801.06146.pdf)
https://idratherbewriting.com/blog/writing-full-length-articles-with-claude-ai
https://www.oliverwyman.com/our-expertise/insights/2023/nov/impact-of-artificial-intelligence-in-financial-services.html
https://www.youtube.com/watch?v=zjkBMFhNj_g
https://towardsdatascience.com/recreating-andrej-karpathys-weekend-project-a-movie-search-engine-9b270d7a92e4
https://streamlit.io/generative-ai
https://www.youtube.com/watch?app=desktop&v=1RxOYLa69Vw
https://www.bentoml.com/blog/announcing-open-llm-an-open-source-platform-for-running-large-language-models-in-production
https://www.pinecone.io/learn/chunking-strategies/
https://blog.llamaindex.ai/evaluating-the-ideal-chunk-size-for-a-rag-system-using-llamaindex-6207e5d3fec5
https://amatriain.net/blog/hallucinations
https://amatriain.net/blog/PromptEngineering
https://realpython.com/chromadb-vector-database/
https://github.com/zilliztech/VectorDBBench
https://qdrant.tech/benchmarks/
https://docs.ragas.io/en/latest/index.html
https://towardsdatascience.com/10-ways-to-improve-the-performance-of-retrieval-augmented-generation-systems-5fa2cee7cd5c
https://medium.com/@kelvin.lu.au/disadvantages-of-rag-5024692f2c53
https://towardsdatascience.com/the-untold-side-of-rag-addressing-its-challenges-in-domain-specific-searches-808956e3ecc8
https://www.anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-llm-applications-part-1
https://github.com/BuilderIO/gpt-crawler
https://www.secondstate.io/articles/mistral-7b-instruct-v0.1/
https://github.com/stas00/ml-engineering/tree/master
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2309.00267
https://github.com/karpathy/llama2.c/blob/master/run.c
https://github.com/ggerganov/llama.cpp
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
https://arxiv.org/abs/2203.02155
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/1706.03762
https://old.reddit.com/r/LocalLLaMA/comments/1atquor/im_open_sourcing_our_rag_backend_our_cqh_gql_chs/
https://ravinkumar.com/GenAiGuidebook/
https://towardsdatascience.com/advanced-retrieval-augmented-generation-from-theory-to-llamaindex-implementation-4de1464a9930
https://srush.github.io/annotated-mamba/hard.html