https://github.com/anas436/multiple-linear-regression-with-python
https://github.com/anas436/multiple-linear-regression-with-python
jupyterlab linear-models matplotlib-pyplot numpy pandas pylab python3 scikit-learn sklearn
Last synced: 28 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/anas436/multiple-linear-regression-with-python
- Owner: Anas436
- Created: 2022-08-12T16:24:21.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-08-12T16:27:54.000Z (over 3 years ago)
- Last Synced: 2025-02-01T15:30:40.463Z (12 months ago)
- Topics: jupyterlab, linear-models, matplotlib-pyplot, numpy, pandas, pylab, python3, scikit-learn, sklearn
- Language: Jupyter Notebook
- Homepage:
- Size: 50.8 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Multiple-Linear-Regression-with-Python
## Objectives
After completing this lab you will be able to:
* Use scikit-learn to implement Multiple Linear Regression
* Create a model, train it, test it and use the model
Table of contents
Understanding the Data
### `FuelConsumption.csv`:
We have downloaded a fuel consumption dataset, **`FuelConsumption.csv`**, which contains model-specific fuel consumption ratings and estimated carbon dioxide emissions for new light-duty vehicles for retail sale in Canada. [Dataset source](http://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64?utm_medium=Exinfluencer&utm_source=Exinfluencer&utm_content=000026UJ&utm_term=10006555&utm_id=NA-SkillsNetwork-Channel-SkillsNetworkCoursesIBMDeveloperSkillsNetworkML0101ENSkillsNetwork20718538-2022-01-01)
* **MODELYEAR** e.g. 2014
* **MAKE** e.g. Acura
* **MODEL** e.g. ILX
* **VEHICLE CLASS** e.g. SUV
* **ENGINE SIZE** e.g. 4.7
* **CYLINDERS** e.g 6
* **TRANSMISSION** e.g. A6
* **FUELTYPE** e.g. z
* **FUEL CONSUMPTION in CITY(L/100 km)** e.g. 9.9
* **FUEL CONSUMPTION in HWY (L/100 km)** e.g. 8.9
* **FUEL CONSUMPTION COMB (L/100 km)** e.g. 9.2
* **CO2 EMISSIONS (g/km)** e.g. 182 --> low --> 0