Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/araddon/qlbridge
A golang expression evaluator & Library to build SQL query engine based functionality.
https://github.com/araddon/qlbridge
expressionengine go golang query-engine sql sql-runtime
Last synced: 7 days ago
JSON representation
A golang expression evaluator & Library to build SQL query engine based functionality.
- Host: GitHub
- URL: https://github.com/araddon/qlbridge
- Owner: araddon
- License: mit
- Created: 2014-10-26T01:58:25.000Z (about 10 years ago)
- Default Branch: master
- Last Pushed: 2023-08-29T10:59:30.000Z (over 1 year ago)
- Last Synced: 2024-12-29T02:16:35.351Z (14 days ago)
- Topics: expressionengine, go, golang, query-engine, sql, sql-runtime
- Language: Go
- Homepage:
- Size: 7.65 MB
- Stars: 863
- Watchers: 18
- Forks: 78
- Open Issues: 36
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
- awesome-ccamel - araddon/qlbridge - A golang expression evaluator & Library to build SQL query engine based functionality. (Go)
- go-awesome - QLBridge - Go to the SQL runtime engine (Open source library / Interpreter)
- awesome-golang-repositories - qlbridge
README
QLBridge - Go SQL Runtime Engine
=====================================================A SQL execution engine for embedded use as a library for SQL or SQL-Like functionality.
Hackable, add datasources ("Storage" can be rest apis, or anything), and add functions. See usage in https://github.com/dataux/dataux
a federated Sql Engine mysql-compatible with backends (Elasticsearch, Google-Datastore, Mongo, Cassandra, Files).[![Code Coverage](https://codecov.io/gh/araddon/qlbridge/branch/master/graph/badge.svg)](https://codecov.io/gh/araddon/qlbridge)
[![GoDoc](https://godoc.org/github.com/araddon/qlbridge?status.svg)](http://godoc.org/github.com/araddon/qlbridge)
[![Build Status](https://travis-ci.org/araddon/qlbridge.svg?branch=master)](https://travis-ci.org/araddon/qlbridge)
[![Go ReportCard](https://goreportcard.com/badge/araddon/qlbridge)](https://goreportcard.com/report/araddon/qlbridge)### QLBridge Features and Goals
* expression engine for evaluation of single expressions
* execution of sql queries against your data, embedable, not coupled to storage layer
* extend VM with custom go functions, provide rich basic library of functions
* provide example backends (csv, elasticsearch, etc)### Dialects
* SQL [see examples](https://github.com/araddon/qlbridge/blob/master/exec/exec_test.go)
* FilterQL (just Where clause) with more of a DSL for filter [see examples](https://github.com/araddon/qlbridge/blob/master/vm/filterqlvm_test.go#L75)
* Simple Expressions [see examples](https://github.com/araddon/qlbridge/blob/master/vm/vm_test.go#L59)### Example of Expression Evaluation Engine
These expressions can be used stand-alone embedded usage in your app. But,
are the same expressions which might be columns, where, group-by clauses in SQL.
[see example](examples/expressions/main.go)
```go
func main() {// Add a custom function to the VM to make available to expression language
expr.FuncAdd("email_is_valid", &EmailIsValid{})// This is the evaluation context which will be the data-source
// to be evaluated against the expressions. There is a very simple
// interface you can use to create your own.
evalContext := datasource.NewContextSimpleNative(map[string]interface{}{
"int5": 5,
"str5": "5",
"created": dateparse.MustParse("12/18/2015"),
"bvalt": true,
"bvalf": false,
"user_id": "abc",
"urls": []string{"http://google.com", "http://nytimes.com"},
"hits": map[string]int64{"google.com": 5, "bing.com": 1},
"email": "[email protected]",
"emailbad": "bob",
"mt": map[string]time.Time{
"event0": dateparse.MustParse("12/18/2015"),
"event1": dateparse.MustParse("12/22/2015"),
},
})// Example list of expressions
exprs := []string{
"int5 == 5",
`6 > 5`,
`6 > 5.5`,
`(4 + 5) / 2`,
`6 == (5 + 1)`,
`2 * (3 + 5)`,
`todate("12/12/2012")`,
`created > "now-1M"`, // Date math
`created > "now-10y"`,
`user_id == "abc"`,
`email_is_valid(email)`,
`email_is_valid(emailbad)`,
`email_is_valid("not_an_email")`,
`EXISTS int5`,
`!exists(user_id)`,
`mt.event0 > now()`, // step into child of maps
`["portland"] LIKE "*land"`,
`email contains "bob"`,
`email NOT contains "bob"`,
`[1,2,3] contains int5`,
`[1,2,3,5] NOT contains int5`,
`urls contains "http://google.com"`,
`split("chicago,portland",",") LIKE "*land"`,
`10 BETWEEN 1 AND 50`,
`15.5 BETWEEN 1 AND "55.5"`,
`created BETWEEN "now-50w" AND "12/18/2020"`,
`toint(not_a_field) NOT IN ("a","b" 4.5)`,
`
OR (
email != "[email protected]"
AND (
NOT EXISTS not_a_field
int5 == 5
)
)`,
}for _, expression := range exprs {
// Same ast can be re-used safely concurrently
exprAst := expr.MustParse(expression)
// Evaluate AST in the vm
val, _ := vm.Eval(evalContext, exprAst)
v := val.Value()
u.Debugf("Output: %-35v T:%-15T expr: %s", v, v, expression)
}
}// Example of a custom Function, that we are making available in the Expression VM
type EmailIsValid struct{}func (m *EmailIsValid) Validate(n *expr.FuncNode) (expr.EvaluatorFunc, error) {
if len(n.Args) != 1 {
return nil, fmt.Errorf("Expected 1 arg for EmailIsValid(arg) but got %s", n)
}
return func(ctx expr.EvalContext, args []value.Value) (value.Value, bool) {
if args[0] == nil || args[0].Err() || args[0].Nil() {
return value.BoolValueFalse, true
}
if _, err := mail.ParseAddress(args[0].ToString()); err == nil {
return value.BoolValueTrue, true
}return value.BoolValueFalse, true
}, nil
}
func (m *EmailIsValid) Type() value.ValueType { return value.BoolType }```
### Example SQL Runtime for Reading a Csv via Stdio, FileSee example in [qlcsv](https://github.com/araddon/qlbridge/tree/master/examples/qlcsv)
folder for a CSV reader, parser, evaluation engine.```sh
./qlcsv -sql 'select
user_id, email, item_count * 2, yy(reg_date) > 10
FROM stdin where email_is_valid(email);' < users.csv```
```gofunc main() {
if sqlText == "" {
u.Errorf("You must provide a valid select query in argument: --sql=\"select ...\"")
return
}// load all of our built-in functions
builtins.LoadAllBuiltins()// Add a custom function to the VM to make available to SQL language
expr.FuncAdd("email_is_valid", &EmailIsValid{})// We are registering the "csv" datasource, to show that
// the backend/sources can be easily created/added. This csv
// reader is an example datasource that is very, very simple.
exit := make(chan bool)
src, _ := datasource.NewCsvSource("stdin", 0, bytes.NewReader([]byte("##")), exit)
schema.RegisterSourceAsSchema("example_csv", src)db, err := sql.Open("qlbridge", "example_csv")
if err != nil {
panic(err.Error())
}
defer db.Close()rows, err := db.Query(sqlText)
if err != nil {
u.Errorf("could not execute query: %v", err)
return
}
defer rows.Close()
cols, _ := rows.Columns()// this is just stupid hijinx for getting pointers for unknown len columns
readCols := make([]interface{}, len(cols))
writeCols := make([]string, len(cols))
for i := range writeCols {
readCols[i] = &writeCols[i]
}
fmt.Printf("\n\nScanning through CSV: (%v)\n\n", strings.Join(cols, ","))
for rows.Next() {
rows.Scan(readCols...)
fmt.Println(strings.Join(writeCols, ", "))
}
fmt.Println("")
}// Example of a custom Function, that we are adding into the Expression VM
//
// select
// user_id AS theuserid, email, item_count * 2, reg_date
// FROM stdin
// WHERE email_is_valid(email)
type EmailIsValid struct{}func (m *EmailIsValid) Validate(n *expr.FuncNode) (expr.EvaluatorFunc, error) {
if len(n.Args) != 1 {
return nil, fmt.Errorf("Expected 1 arg for EmailIsValid(arg) but got %s", n)
}
return func(ctx expr.EvalContext, args []value.Value) (value.Value, bool) {
if args[0] == nil || args[0].Err() || args[0].Nil() {
return value.BoolValueFalse, true
}
if _, err := mail.ParseAddress(args[0].ToString()); err == nil {
return value.BoolValueTrue, true
}return value.BoolValueFalse, true
}, nil
}
func (m *EmailIsValid) Type() value.ValueType { return value.BoolType }```
[x]QL languages are making a comeback. It is still an easy, approachable
way of working with data. Also, we see more and more ql's that are xql'ish but
un-apologetically non-standard. This matches our observation that
data is stored in more and more formats in more tools, services that aren't
traditional db's but querying that data should still be easy. Examples
[Influx](http://influxdb.com/docs/v0.8/api/query_language.html),
[GitQL](https://github.com/cloudson/gitql),
[Presto](http://prestosql.io/),
[Hive](https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Select),
[CQL](http://www.datastax.com/documentation/cql/3.1/cql/cql_intro_c.html),
[yql](https://developer.yahoo.com/yql/),
[ql.io](http://ql.io/), etcProjects that access non-sql data via [x]ql
----------------------------------------------------
* http://prestosql.io/
* https://crate.io/docs/current/sql/index.html
* http://senseidb.com/
* http://influxdb.com/docs/v0.8/api/query_language.html
* https://github.com/crosbymichael/dockersql
* http://harelba.github.io/q/
* https://github.com/dinedal/textql
* https://github.com/cloudson/gitql
* https://github.com/brendandburns/ksqlGo Script/VM interpreters
---------------------------------------
* https://github.com/robpike/ivy
* https://github.com/yuin/gopher-lua
* https://github.com/SteelSeries/golisp
* [Complete List](https://github.com/golang/go/wiki/Projects#virtual-machines-and-languages)