Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/arjunbahuguna/awesome-ppdm
Privacy-preserving data-mining resources
https://github.com/arjunbahuguna/awesome-ppdm
List: awesome-ppdm
Last synced: 16 days ago
JSON representation
Privacy-preserving data-mining resources
- Host: GitHub
- URL: https://github.com/arjunbahuguna/awesome-ppdm
- Owner: arjunbahuguna
- Created: 2019-04-22T15:14:47.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-04-22T16:20:07.000Z (over 5 years ago)
- Last Synced: 2024-05-23T01:06:06.491Z (7 months ago)
- Size: 18.6 KB
- Stars: 5
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-ppdm - Privacy-preserving data-mining resources. (Other Lists / Monkey C Lists)
README
awesome - ppdm [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
=========
Resources for privacy-preserving data-mining.## Other Compilations
* [awesome-ppml](https://github.com/mortendahl/awesome-ppml)
* [awesome-homomorphic-encryption](https://github.com/jonaschn/awesome-he)
* [awesome-multiparty-computation](https://github.com/rdragos/awesome-mpc)
* [awesome-differential-privacy](https://github.com/menisadi/awesome-differential-privacy)## Workshopw
* [Theory and Practice of Multi-Party Computation Workshops](http://www.multipartycomputation.com/tpmpc-2019)
* [Simons Data Privacy Program 2019](https://simons.berkeley.edu/programs/privacy2019)
* [Deep Learning & Security Workshop, IEEE 2019](https://www.ieee-security.org/TC/SPW2019/DLS/)
* [Workshop on Security in Machine Learning, NeurIPS 2018](https://secml2018.github.io/)
* [Privacy-preserving Machine Learning, NeurIPS 2018](https://ppml-workshop.github.io/ppml/)
* [Deep Learning & Security Workshop, IEEE 2018](https://www.ieee-security.org/TC/SPW2018/DLS/)
* [Private Multi-party Machine Learning, NIPS 2016](https://pmpml.github.io/PMPML16/)
* [Workshop on Learning, Security and Privacy, ICML 2014](https://sites.google.com/site/learnsecprivacy2014/program)## Courses
* [by Vitaly Shmatikov](http://www.cs.cornell.edu/~shmat/teaching.html)
* [by Arvind Narayanan](http://randomwalker.info/teaching/)
* [by Reza Shokri (not public)](https://www.comp.nus.edu.sg/~reza/)
* [by Aaron Roth](https://www.cis.upenn.edu/~aaroth/)## Videos
* [AI Village 2018](https://www.youtube.com/watch?v=D09MkTeQfOQ&list=PL9fPq3eQfaaAMFXytVqYl1sfN_A14vrj7)
* [Goldwasser ON Crypto-ML](https://www.youtube.com/watch?v=bMJtCe1aK0w)
* [CAMLIS Conference](https://www.youtube.com/channel/UCmIY4lIVsotxeUDRCQb2ZXA/videos)
* [NeurIPS SecML 2018](https://www.youtube.com/watch?v=zbhQijVlGxg&list=PLFG9vaKTeJq4IpOje38YWA9UQu_COeNve)
* [Hacking Deep Learning 2018](https://www.youtube.com/playlist?list=PL8Vt-7cSFnw2_ewRERdxYPeme5sa4Eu4M)
* [Hacking Deep Learning 2019](https://www.youtube.com/playlist?list=PL8Vt-7cSFnw1dO9kc2_SQQRchzpQQDYXy)
* [ML in Cybersec playlist](https://www.youtube.com/watch?v=tukidI5vuBs&list=PLSRlqkflyPqR2Tc2_N4Ixb2N5bc43YdEM)
* [IEEE Deep Learning & Security Workshop 2018](https://www.youtube.com/playlist?list=PL0pRF4xvoD0liEIWyJ6kmXqGT7nbr2L3u)## Blogs
* [Cleverhans](http://www.cleverhans.io/)
* [OpenMined](https://blog.openmined.org/)
* [Dropout Labs](https://medium.com/dropoutlabs)
* [Mortendahl](https://mortendahl.github.io/)
* [Metaflow](https://blog.metaflow.fr/)# Resources from Twitter
* [Tutorials by Trask](https://twitter.com/iamtrask/status/1101894655631912960?s=19)
* [TF Frameworks for S&P](https://twitter.com/dropoutlabsai/status/1100110783424253952)
* [Code examples for tfencrypted](https://twitter.com/mortendahlcs/status/1118100102835519488?s=19)## Books
* [Interpretable ML book](https://christophm.github.io/interpretable-ml-book/)
* [Algorithmic Foundations of DP (PDF)](www.cis.upenn.edu/~aaroth/privacybook.html)
* [A Pragmatic Introduction to Secure Multi-Party Computation](https://securecomputation.org/)## Foundational Papers
* [Revealing Information while Preserving Privacy](www.cse.psu.edu/~ads22/privacy598/papers/dn03.pdf)
* [Calibrating Noise to Sensitivity in Private Data Analysis](https://journalprivacyconfidentiality.org/index.php/jpc/article/download/405/388)## Follow
* [Kobbi Nissim](https://dblp.org/pers/hd/n/Nissim:Kobbi)
* [Adrià Gascón](https://dblp.org/pers/hd/g/Gasc=oacute=n:Adri=agrave=)
* [Morten Dahl](https://dblp.org/pers/hd/d/Dahl:Morten)
* [Cynthia Dwork](https://dblp.org/pers/hd/d/Dwork:Cynthia)