Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/aspirincode/awesome-ai4molconformation-md
List of molecules (small molecules, RNA, peptide, protein, enzymes, antibody, and PPIs) conformations and molecular dynamics (force fields) using generative artificial intelligence and deep learning
https://github.com/aspirincode/awesome-ai4molconformation-md
List: awesome-ai4molconformation-md
active-learning amber enzymes flow force-fields gan gnns gromacs llm lstm-neural-networks molecular-dynamics neural-network-potentials openmm ppi proteinconformations transformer vae
Last synced: 21 days ago
JSON representation
List of molecules (small molecules, RNA, peptide, protein, enzymes, antibody, and PPIs) conformations and molecular dynamics (force fields) using generative artificial intelligence and deep learning
- Host: GitHub
- URL: https://github.com/aspirincode/awesome-ai4molconformation-md
- Owner: AspirinCode
- License: gpl-3.0
- Created: 2024-04-10T05:19:13.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-10-30T05:42:07.000Z (about 2 months ago)
- Last Synced: 2024-10-30T08:37:33.571Z (about 2 months ago)
- Topics: active-learning, amber, enzymes, flow, force-fields, gan, gnns, gromacs, llm, lstm-neural-networks, molecular-dynamics, neural-network-potentials, openmm, ppi, proteinconformations, transformer, vae
- Homepage:
- Size: 4.6 MB
- Stars: 117
- Watchers: 4
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-ai4molconformation-md - List of molecules (small molecules, RNA, peptide, protein, enzymes, antibody, and PPIs) conformations and molecular dynamics (force fields) using generative artificial intelligence and deep learning. (Other Lists / Monkey C Lists)
README
[![License: GPL](https://img.shields.io/badge/License-GPL-yellow)](https://github.com/AspirinCode/awesome-AI4MolConformation-MD)
## awesome-AI4MolConformation-MD
List of **molecules ( small molecules, RNA, peptide, protein, enzymes, antibody, and PPIs) conformations** and **molecular dynamics (force fields)** using **generative artificial intelligence** and **deep learning**![Protein Space and Conformations](https://github.com/AspirinCode/awesome-AI4MolConformation-MD/blob/main/figure/afpro.png)
**Updating ...**
## Menu
- [Deep Learning-molecular conformations](#deep-learning-molecular-conformations)
| Menu | Menu | Menu | Menu |
| ------ | :---------- | ------ | ------ |
| [Reviews](#reviews) | [Datasets and Package](#datasets-and-package) | [Molecular dynamics](#molecular-dynamics) | [Molecular Force Fields](#molecular-force-fields) |
| [MD Engines-Frameworks](#md-engines-frameworks) | [AI4MD Engines-Frameworks](#ai4md-engines-frameworks) | [MD Trajectory Processing-Analysis](#md-trajectory-processing-analysis) | [AI4MD](#ai4md) |
| [Neural Network Potentials](#neural-network-potentials) | [Free Energy Perturbation](#free-energy-perturbation) | [Ab Initio](#ab-initio) | |
| [AlphaFold-based](#alphaFold-based) | [GNN-based](#gnn-based) | [LSTM-based](#lstm-based) | [Transformer-based](#transformer-based) |
| [VAE-based](#vae-based) | [GAN-based](#gan-based) | [Flow-based](#flow-based) | [Diffusion-based](#diffusion-based) |
| [Score-Based](#score-Based) | [Energy-based](#energy-based) | [Bayesian-based](#bayesian-based) | [Active Learning-based](#active-learning-based) |
| [LLM-MD](#llm-md) | | | |- [Molecular conformational ensembles by methods](#molecular-conformational-ensembles-by-methods)
| Menu | Menu | Menu |
| ------ | :---------- | ------ |
| [Small molecule conformational ensembles](#small-molecule-conformational-ensembles) | [RNA conformational ensembles](#rna-conformational-ensembles) | [Peptide conformational ensembles](#peptide-conformational-ensembles) |
| [Protein conformational ensembles](#protein-conformational-ensembles) | [Enzymes conformational ensembles](#enzymes-conformational-ensembles) | [Antibody conformational ensembles](#antibody-conformational-ensembles) |
| [Ligand-Protein conformational ensembles](#ligand-protein-conformational-ensembles) | [RNA-Peptide conformational ensembles](#rna-peptide-conformational-ensembles) | [PPI conformational ensembles](#ppi-conformational-ensembles) |
| [Antibody-Protein conformational ensembles](#antibody-protein-conformational-ensembles) | | [Material ensembles](#material-ensembles) |## Reviews
* **Deep learning for intrinsically disordered proteins: From improved predictions to deciphering conformational ensembles** [2024]
Erdős, G., & Dosztányi, Z.
[Current opinion in structural biology (2024)](https://doi.org/10.1016/j.sbi.2024.102950)* **Recent advances in protein conformation sampling by combining machine learning with molecular simulation** [2024]
Tang, Y., Yang, Z., Yao, Y., Zhou, Y., Tan, Y., Wang, Z., Pan, T., Xiong, R., Sun, J. and Wei, G.
[Chinese Physics B. (2024)](https://iopscience.iop.org/article/10.1088/1674-1056/ad1a92)* **Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery** [2024]
Qian, Runtong, Jing Xue, You Xu, and Jing Huang.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c01024)* **The need to implement FAIR principles in biomolecular simulations** [2024]
Amaro, Rommie, Johan Åqvist, Ivet Bahar, Federica Battistini, Adam Bellaiche, Daniel Beltran, Philip C. Biggin et al.
[arXiv:2407.16584 (2024)](https://arxiv.org/abs/2407.16584)* **An overview about neural networks potentials in molecular dynamics simulation** [2024]
Martin‐Barrios, Raidel, Edisel Navas‐Conyedo, Xuyi Zhang, Yunwei Chen, and Jorge Gulín‐González.
[International Journal of Quantum Chemistry 124.11 (2024)](https://doi.org/10.1002/qua.27389)* **Artificial Intelligence Enhanced Molecular Simulations** [2023]
Zhang, Jun, Dechin Chen, Yijie Xia, Yu-Peng Huang, Xiaohan Lin, Xu Han, Ningxi Ni et al.
[J. Chem. Theory Comput. (2023)](https://doi.org/10.1021/acs.jctc.3c00214)* **Machine Learning Generation of Dynamic Protein Conformational Ensembles** [2023]
Zheng, Li-E., Shrishti Barethiya, Erik Nordquist, and Jianhan Chen.
[Molecules 28.10 (2023)](https://doi.org/10.3390/molecules28104047)## Datasets and Package
### Datasets
* **Molecular Quantum Chemical Data Sets and Databases for Machine Learning Potentials** [2024]
Antonio Mirarchi, Toni Giorgino, G. D. Fabritiis.
[ChemRxiv. (2024)](https://doi.org/10.26434/chemrxiv-2024-w3ld0-v2) | [code](https://github.com/Arif-PhyChem/datasets_and_databases_4_MLPs)* **mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics** [2024]
Antonio Mirarchi, Toni Giorgino, G. D. Fabritiis.
[ arXiv:2407.14794 (2024)](https://arxiv.org/abs/2407.14794) | [code](https://github.com/compsciencelab/mdCATH)### Package
**MMolearn**
a Python package streamlining the design of generative models of biomolecular dynamicshttps://github.com/LumosBio/MolData
## Molecular dynamics
### Molecular Force Fields
* **HessFit: A Toolkit to Derive Automated Force Fields from Quantum Mechanical Information** [2024]
Falbo, E. and Lavecchia, A.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c00540) | [code](https://github.com/emanuelefalbo/HessFit)* **A Euclidean transformer for fast and stable machine learned force fields** [2024]
Frank, J.T., Unke, O.T., Müller, KR. et al.
[Nat Commun 15, 6539 (2024)](https://doi.org/10.1038/s41467-024-50620-6) | [code](https://github.com/microsoft/AI2BMD/tree/ViSNet/chignolin_data)* **Differentiable simulation to develop molecular dynamics force fields for disordered proteins** [2024]
Greener, Joe G.
[Chemical Science 15.13 (2024)](https://doi.org/10.1039/D3SC05230C) | [code](https://github.com/greener-group/GB99dms)* **Grappa--A Machine Learned Molecular Mechanics Force Field** [2024]
Seute, Leif, Eric Hartmann, Jan Stühmer, and Frauke Gräter.
[arXiv:2404.00050 (2024)](https://arxiv.org/abs/2404.00050) | [code](https://github.com/graeter-group/grappa)* **An implementation of the Martini coarse-grained force field in OpenMM** [2023]
MacCallum, J. L., Hu, S., Lenz, S., Souza, P. C., Corradi, V., & Tieleman, D. P.
[Biophysical Journal 122.14 (2023)](https://doi.org/10.1016/j.bpj.2023.04.007)### MD Engines-Frameworks
* [Amber](http://ambermd.org/) - A suite of biomolecular simulation programs.
* [Gromacs](http://www.gromacs.org/) - A molecular dynamics package mainly designed for simulations of proteins, lipids and nucleic acids.
* [OpenMM](http://openmm.org/) - A toolkit for molecular simulation using high performance GPU code.
* [CHARMM](https://www.charmm.org/) - A molecular simulation program with broad application to many-particle systems.
* [HTMD](https://github.com/Acellera/htmd) - Programming Environment for Molecular Discovery.
* [ACEMD](https://www.acellera.com/acemd) - The next generation molecular dynamic simulation software.
* [NAMD](https://www.ks.uiuc.edu/Research/namd/) - A parallel molecular dynamics code for large biomolecular systems.
* [StreaMD](https://github.com/ci-lab-cz/streamd) - A tool to perform high-throughput automated molecular dynamics simulations.
* [BEMM-GEN](https://github.com/y4suda/BEMM-GEN) - A Toolkit for Generating a Biomolecular Environment-Mimicking Model for Molecular Dynamics Simulation.
* [BioSimSpace](https://github.com/OpenBioSim/biosimspace) - An interoperable Python framework for biomolecular simulation.### AI4MD Engines-Frameworks
* [OpenMM 8](https://github.com/openmm/openmm) - Molecular Dynamics Simulation with Machine Learning Potentials.
* [DeePMD-kit](https://github.com/deepmodeling/deepmd-kit) - A deep learning package for many-body potential energy representation and molecular dynamics.
* [TorchMD](https://github.com/torchmd/torchmd) - End-To-End Molecular Dynamics (MD) Engine using PyTorch.
* [TorchMD-NET](https://github.com/torchmd/torchmd-net) - TorchMD-NET provides state-of-the-art neural networks potentials (NNPs) and a mechanism to train them.
* [OpenMM-Torch](https://github.com/openmm/openmm-torch) - OpenMM plugin to define forces with neural networks.
* [AI2BMD](https://github.com/microsoft/AI2BMD) - AI-powered ab initio biomolecular dynamics simulation.
* [NeuralMD](https://github.com/chao1224/NeuralMD) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics.### MD Trajectory Processing-Analysis
* [MDAnalysis](https://www.mdanalysis.org/) - An object-oriented Python library to analyze trajectories from molecular dynamics (MD) simulations in many popular formats.
* [MDTraj](http://mdtraj.org/) - A python library that allows users to manipulate molecular dynamics (MD) trajectories.
* [PyTraj](https://amber-md.github.io/pytraj/) - A Python front-end package of the popular cpptraj program.
* [CppTraj](https://github.com/Amber-MD/cpptraj) - Biomolecular simulation trajectory/data analysis.
* [WEDAP](https://github.com/chonglab-pitt/wedap) - A Python Package for Streamlined Plotting of Molecular Simulation Data.
* [Melodia](https://github.com/rwmontalvao/Melodia_py) - A Python library for protein structure analysis.
* [MDANCE](https://github.com/mqcomplab/MDANCE) - A flexible n-ary clustering package that provides a set of tools for clustering Molecular Dynamics trajectories.
* [PENSA](https://github.com/drorlab/pensa) - A collection of python methods for exploratory analysis and comparison of biomolecular conformational ensembles.* **MDRefine: a Python package for refining Molecular Dynamics trajectories with experimental data** [2024]
Ivan Gilardoni, Valerio Piomponi, Thorben Fröhlking, Giovanni Bussi.
[ arXiv:2411.07798 (2024)](https://arxiv.org/abs/2411.07798) | [code](https://github.com/bussilab/MDRefine)* **NRIMD, a Web Server for Analyzing Protein Allosteric Interactions Based on Molecular Dynamics Simulation** [2024]
He, Yi, Shuang Wang, Shuai Zeng, Jingxuan Zhu, Dong Xu, Weiwei Han, and Juexin Wang.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c00783) | [web](https://nrimd.luddy.indianapolis.iu.edu/)### Reference
https://github.com/ipudu/awesome-molecular-dynamics
### Visualization
* [VMD](http://www.ks.uiuc.edu/Research/vmd/) - A molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3-D graphics and built-in scripting.
* [NGLview](https://github.com/arose/nglview) - IPython widget to interactively view molecular structures and trajectories.
* [PyMOL](https://pymol.org/2/) - A user-sponsored molecular visualization system on an open-source foundation, maintained and distributed by Schrödinger.
* [Avogadro](https://avogadro.cc/) - An advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas.## AI4MD
* **A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics** [2024]
Shengchao Liu, Weitao Du, Hannan Xu, Yanjing Li, Zhuoxinran Li, Vignesh Bhethanabotla, Divin Yan, Christian Borgs, Anima Anandkumar, Hongyu Guo, Jennifer Chayes.
[arXiv:2401.15122 (2024)](https://arxiv.org/abs/2401.15122) | [code](https://github.com/chao1224/NeuralMD)* **Accelerating Molecular Dynamics Simulations with Quantum Accuracy by Hierarchical Classification** [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N'tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
[ChemRxiv. (2024)](https://doi.org/10.26434/chemrxiv-2024-20q1v) | [code](https://github.com/multiscale-modelling/humf)* **Machine learning of force fields towards molecular dynamics simulations of proteins at DFT accuracy** [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N'tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
[ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design (2024)](https://openreview.net/forum?id=hrvvIOx7EM) | [code](https://github.com/ACEsuit/mace-jax)* **Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity** [2024]
Jeffrey K Weber, Joseph A Morrone, Seung-gu Kang, Leili Zhang, Lijun Lang, Diego Chowell, Chirag Krishna, Tien Huynh, Prerana Parthasarathy, Binquan Luan, Tyler J Alban, Wendy D Cornell, Timothy A Chan.
[Briefings in Bioinformatics (2024)](https://doi.org/10.1093/bib/bbad504) | [code](https://github.com/BiomedSciAI)* **Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments** [2024]
Unke, Oliver T., Martin Stöhr, Stefan Ganscha, Thomas Unterthiner, Hartmut Maennel, Sergii Kashubin, Daniel Ahlin et al.
[Science Advances 10.14 (2024)](https://www.science.org/doi/10.1126/sciadv.adn4397) | [data](https://zenodo.org/records/10720941)* **DeePMD-kit v2: A software package for deep potential models** [2023]
Zeng, Jinzhe, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Marián Rynik et al.
[The Journal of Chemical Physics 159.5 (2023)](https://doi.org/10.1063/5.0155600) | [code](https://github.com/deepmodeling/deepmd-kit)* **DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics** [2018]
Wang, Han, Linfeng Zhang, Jiequn Han, and E. Weinan.
[Computer Physics Communications 228 (2018)](https://doi.org/10.1016/j.cpc.2018.03.016) | [code](https://github.com/deepmodeling/deepmd-kit)### Neural Network Potentials
* **General-purpose machine-learned potential for 16 elemental metals and their alloys** [2024]
Song, K., Zhao, R., Liu, J. et al.
[Nat Commun 15, 10208 (2024)](https://doi.org/10.1038/s41467-024-54554-x) | [code](https://github.com/brucefan1983/GPUMD)* **Ab initio Accuracy Neural Network Potential for Drug-like Molecules** [2024]
Yang M, Zhang D, Wang X, Zhang L, Zhu T, Wang H.
[ChemRxiv. (2024)](https://doi.org/10.26434/chemrxiv-2024-sq8nh) | [data](https://www.aissquare.com/datasets/detail?pageType=datasets&name=Drug%28drug-like-molecule%29_DPA_v1_0&id=143)* **HH130: a standardized database of machine learning interatomic potentials, datasets, and its applications in the thermal transport of half-Heusler thermoelectrics** [2024]
Yang, Yuyan, Yifei Lin, Shengnan Dai, Yifan Zhu, Jinyang Xi, Lili Xi, Xiaokun Gu, David J. Singh, Wenqing Zhang, and Jiong Yang.
[Digital Discovery (2024)](https://doi.org/10.1039/D4DD00240G) | [data](http://www.mathub3d.net)* **Efficient Training of Neural Network Potentials for Chemical and Enzymatic Reactions by Continual Learning** [2024]
Lei Y-K, Yagi K, Sugita Y.
[ChemRxiv. (2024)](https://doi.org/10.26434/chemrxiv-2024-xkxd5)* **Learning together: Towards foundation models for machine learning interatomic potentials with meta-learning** [2024]
Allen, A.E.A., Lubbers, N., Matin, S. et al.
[npj Comput Mater 10, 154 (2024)](https://doi.org/10.1038/s41524-024-01339-x)* **Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning** [2024]
Sharma, A., Sanvito, S.
[npj Comput Mater 10, 237 (2024)](https://doi.org/10.1038/s41524-024-01427-y) | [code](https://github.com/asharma-ms/MOF_MLP_2024)* **Molecular Simulations with a Pretrained Neural Network and Universal Pairwise Force Fields** [2024]
Kabylda A, Frank JT, Dou SS, Khabibrakhmanov A, Sandonas LM, Unke OT, et al.
[ChemRxiv. (2024)](https://doi.org/10.26434/chemrxiv-2024-bdfr0) | [code](https://github.com/general-molecular-simulations/so3lr)* **AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics** [2024]
Mirarchi, Antonio, Raul P. Pelaez, Guillem Simeon, and Gianni De Fabritiis.
[arXiv:2409.17852 (2024)](https://arxiv.org/abs/2409.17852) | [code](https://github.com/compsciencelab/amaro)* **Revisiting Aspirin Polymorphic Stability Using a Machine Learning Potential** [2024]
Hattori, Shinnosuke, and Qiang Zhu.
[ACS Omega (2024)](https://doi.org/10.1021/acsomega.4c04782)* **Enhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials** [2024]
Sabanés Zariquiey, F., Galvelis, R., Gallicchio, E., Chodera, J.D., Markland, T.E. and De Fabritiis, G.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.3c02031) | [code](https://github.com/compsciencelab/ATM_benchmark/tree/main/ATM_With_NNPs)* **Universal-neural-network-potential molecular dynamics for lithium metal and garnet-type solid electrolyte interface** [2024]
Iwasaki, R., Tanibata, N., Takeda, H. et al.
[Commun Mater 5, 148 (2024)](https://doi.org/10.1038/s43246-024-00595-0)* **The Potential of Neural Network Potentials** [2024]
Duignan, Timothy T.
[ACS Physical Chemistry Au 4.3 (2024)](https://doi.org/10.1021/acsphyschemau.4c00004)* **AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs** [2024]
Anstine, Dylan, Roman Zubatyuk, and Olexandr Isayev.
[chemrxiv-2023-296ch-v2 (2024)](https://doi.org/10.26434/chemrxiv-2023-296ch-v2) | [code](https://github.com/isayevlab/aimnet2)* **NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics** [2023]
Galvelis, R., Varela-Rial, A., Doerr, S., Fino, R., Eastman, P., Markland, T.E., Chodera, J.D. and De Fabritiis, G.
[J. Chem. Inf. Model. (2023)](https://doi.org/10.1021/acs.jcim.3c00773) | [code](https://github.com/openmm/nnpops)* **Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements** [2022]
Takamoto, S., Shinagawa, C., Motoki, D. et al.
[Nat Commun 13, 2991 (2022)](https://doi.org/10.1038/s41467-022-30687-9) | [data](https://doi.org/10.6084/m9.figshare.19658538)* **Teaching a neural network to attach and detach electrons from molecules** [2021]
Zubatyuk, R., Smith, J.S., Nebgen, B.T. et al.
[Nat Commun 12, 4870 (2021)](https://doi.org/10.1038/s41467-021-24904-0) | [code](https://github.com/isayevlab/aimnetnse)* **Four Generations of High-Dimensional Neural Network Potentials** [2021]
Behler, Jorg.
[Chemical Reviews 121.16 (2021)](https://doi.org/10.1021/acs.chemrev.0c00868)* **DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models** [2020]
Zhang, Yuzhi, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and E. Weinan.
[Computer Physics Communications 253 (2020)](https://doi.org/10.1016/j.cpc.2020.107206) | [code](https://github.com/deepmodeling/dpgen)### Free Energy Perturbation
* **Comparison of Methodologies for Absolute Binding Free Energy Calculations of Ligands to Intrinsically Disordered Proteins** [2024]
Michail Papadourakis, Zoe Cournia, Antonia S. J. S. Mey, and Julien Michel.
[J. Chem. Theory Comput. (2024)](https://doi.org/10.1021/acs.jctc.4c00942) | [code](https://github.com/michellab/idpabfe)* **FEP-SPell-ABFE: An Open-Source Automated Alchemical Absolute Binding Free Energy Calculation Workflow for Drug Discovery** [2024]
Pengfei Li,Tingting Pu ,Ye Mei.
[ChemRxiv. (2024)](https://doi.org/10.26434/chemrxiv-2024-tkvrh) | [code](https://github.com/freeenergylab/FEP-SPell-ABFE)* **Studying the Collective Functional Response of a Receptor in Alchemical Ligand Binding Free Energy Simulations with Accelerated Solvation Layer Dynamics** [2024]
Wei Jiang.
[J. Chem. Theory Comput. (2024)](https://doi.org/10.1021/acs.jctc.4c00191)* **Alchemical Transformations and Beyond: Recent Advances and Real-World Applications of Free Energy Calculations in Drug Discovery** [2024]
Qian, Runtong, Jing Xue, You Xu, and Jing Huang.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c01024)* **Automated Adaptive Absolute Binding Free Energy Calculations** [2024]
Clark, Finlay, Graeme Robb, Daniel Cole, and Julien Michel.
[J. Chem. Theory Comput. (2024)](https://doi.org/10.1021/acs.jctc.4c00806) | [code](https://github.com/michellab/a3fe)* **Machine Learning Guided AQFEP: A Fast and Efficient Absolute Free Energy Perturbation Solution for Virtual Screening** [2024]
Crivelli-Decker, J.E., Beckwith, Z., Tom, G., Le, L., Khuttan, S., Salomon-Ferrer, R., Beall, J., Gómez-Bombarelli, R. and Bortolato, A.
[J. Chem. Theory Comput. (2024)](https://doi.org/10.1021/acs.jctc.4c00399) | [code](https://zenodo.org/records/12827945)* **The maximal and current accuracy of rigorous protein-ligand binding free energy calculations** [2023]
Ross, G.A., Lu, C., Scarabelli, G. et al.
[Commun Chem 6, 222 (2023)](https://doi.org/10.1038/s42004-023-01019-9) | [code](https://github.com/schrodinger/public_binding_free_energy_benchmark)### Ab Initio
* **Analytical ab initio hessian from a deep learning potential for transition state optimization** [2024]
KYuan, E.CY., Kumar, A., Guan, X. et al.
[Nat Commun 15, 8865 (2024)](https://doi.org/10.1038/s41467-024-52481-5) | [code](https://github.com/zadorlab/sella)## Deep Learning-molecular conformations
* **Molecular Simulations with a Pretrained Neural Network and Universal Pairwise Force Fields** [2024]
Kabylda A, Frank JT, Dou SS, Khabibrakhmanov A, Sandonas LM, Unke OT, et al.
[ChemRxiv. (2024)](https://doi.org/10.26434/chemrxiv-2024-bdfr0) | [code](https://github.com/general-molecular-simulations/so3lr)* **SpaiNN: Equivariant Message Passing for Excited-State Nonadiabatic Molecular Dynamics** [2024]
Mausenberger, Sascha, Carolin Müller, Alexandre Tkatchenko, Philipp Marquetand, Leticia González, and Julia Westermayr.
[Chemical Science (2024)](https://doi.org/10.1039/D4SC04164J) | [code](https://github.com/schnarc/SchNarc)* **GLOW: A Workflow Integrating Gaussian-Accelerated Molecular Dynamics and Deep Learning for Free Energy Profiling** [2022]
Do, Hung N., Jinan Wang, Apurba Bhattarai, and Yinglong Miao.
[J. Chem. Theory Comput. (2022)](https://doi.org/10.1021/acs.jctc.1c01055) | [code](https://github.com/MiaoLab20/GLOW)### AlphaFold-based
* **Modeling Protein Conformations by Guiding AlphaFold2 with Distance Distributions. Application to Double Electron Electron Resonance (DEER) Spectroscopy** [2024]
Tianqi Wu, Richard A. Stein, Te-Yu Kao, Benjamin Brown, Hassane S. Mchaourab
[bioRxiv. (2024)](https://doi.org/10.1101/2024.10.30.621127)* **AlphaFold-Multimer accurately captures interactions and dynamics of intrinsically disordered protein regions** [2024]
Alireza Omidi, Mads Harder Møller, Nawar Malhis, and Jörg Gsponer.
[bioRxiv. (2024)](https://doi.org/10.1073/pnas.2406407121) | [code](https://github.com/alirezaomidi/AFM-IDR)* **Harnessing AlphaFold to reveal hERG channel conformational state secrets** [2024]
Khoa Ngo, Pei-Chi Yang, Vladimir Yarov-Yarovoy, Colleen E. Clancy, Igor Vorobyov.
[bioRxiv. (2024)](https://doi.org/10.1101/2024.01.27.577468)* **AlphaFold2's training set powers its predictions of fold-switched conformations** [2024]
Joseph W. Schafer, Lauren Porter.
[bioRxiv. (2024)](https://doi.org/10.1101/2024.10.11.617857) | [data](https://github.com/porterll/CFold_AF2)* **AlphaFold2 Predicts Alternative Conformation Populations in Green Fluorescent Protein Variants** [2024]
Núñez-Franco, Reyes, M. Milagros Muriel-Olaya, Gonzalo Jiménez-Osés, and Francesca Peccati.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c01388) | [data](https://zenodo.org/records/13133811)* **AlphaFold Ensemble Competition Screens Enable Peptide Binder Design with Single-Residue Sensitivity** [2024]
Vosbein, Pernille, Paula Paredes Vergara, Danny T. Huang, and Andrew R. Thomson.
[ACS Chemical Biology (2024)](https://doi.org/10.1016/j.str.2024.09.001)* **Assessing AF2’s ability to predict structural ensembles of proteins** [2024]
Riccabona, Jakob R., Fabian C. Spoendlin, Anna-Lena M. Fischer, Johannes R. Loeffler, Patrick K. Quoika, Timothy P. Jenkins, James A. Ferguson et al.
[Structure (2024)](https://doi.org/10.1016/j.str.2024.09.001)* **AlphaFold with conformational sampling reveals the structural landscape of homorepeats** [2024]
Bonet, David Fernandez et al.
[Structure (2024)](https://doi.org/10.1016/j.str.2024.08.016) | [code]( https://doi.org/10.5281/zenodo.13255318)* **Structure prediction of alternative protein conformations** [2024]
Bryant, P., Noé, F.
[Nat Commun 15, 7328 (2024)](https://doi.org/10.1038/s41467-024-51507-2) | [code](https://github.com/patrickbryant1/Cfold)* **AlphaFold predictions of fold-switched conformations are driven by structure memorization** [2024]
Chakravarty, D., Schafer, J.W., Chen, E.A. et al.
[Nat Commun 15, 7296 (2024)](https://doi.org/10.1038/s41467-024-51801-z) | [code](https://github.com/ncbi/AF2_benchmark)* **Predicting protein conformational motions using energetic frustration analysis and AlphaFold2** [2024]
Xingyue Guan and Qian-Yuan Tang and Weitong Ren and Mingchen Chen and Wei Wang and Peter G. Wolynes and Wenfei Li.
[Proceedings of the National Academy of Sciences (2024)](https://doi.org/10.1073/pnas.2410662121)* **Leveraging Machine Learning and AlphaFold2 Steering to Discover State-Specific Inhibitors Across the Kinome** [2024]
Francesco Trozzi, Oanh Tran, Carmen Al Masri, Shu-Hang Lin, Balaguru Ravikumar, Rayees Rahman.
[bioRxiv (2024)](https://doi.org/10.1101/2024.08.16.608358)* **A resource for comparing AF-Cluster and other AlphaFold2 sampling methods** [2024]
Hannah K Wayment-Steele, Sergey Ovchinnikov, Lucy Colwell, Dorothee Kern.
[bioRxiv (2024)](https://doi.org/10.1101/2024.07.29.605333)* **Integration of AlphaFold with Molecular Dynamics for Efficient Conformational Sampling of Transporter Protein NarK** [2024]
Ohnuki, Jun, and Kei-ichi Okazaki.
[The Journal of Physical Chemistry B (2024)](https://doi.org/10.1021/acs.jpcb.4c02726)* **AFsample2: Predicting multiple conformations and ensembles with AlphaFold2** [2024]
Yogesh Kalakoti, Björn Wallner.
[bioRxiv (2024)](https://doi.org/10.1101/2024.05.28.596195) | [code](https://github.com/iamysk/AFsample2/)* **Prediction of Conformational Ensembles and Structural Effects of State-Switching Allosteric Mutants in the Protein Kinases Using Comparative Analysis of AlphaFold2 Adaptations with Sequence Masking and Shallow Subsampling** [2024]
Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Hao Tian, Sian Xiao, Peng Tao, Gennady Verkhivker.
[bioRxiv (2024)](https://doi.org/10.1101/2024.05.17.594786) | [code](https://zenodo.org/records/11204773)* **Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE** [2024]
Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary.
[ arXiv:2404.07102 (2024)](https://arxiv.org/abs/2404.07102)* **High-throughput prediction of protein conformational distributions with subsampled AlphaFold2** [2024]
Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C. et al.
[Nat Commun 15, 2464 (2024)](https://doi.org/10.1038/s41467-024-46715-9) | [code](https://github.com/GMdSilva/gms_natcomms_1705932980_data)* **AlphaFold Meets Flow Matching for Generating Protein Ensembles** [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
[arXiv:2402.04845 (2024)](https://arxiv.org/abs/2402.04845) | [code](https://github.com/bjing2016/alphaflow)* **Predicting multiple conformations via sequence clustering and AlphaFold2** [2024]
Wayment-Steele, H.K., Ojoawo, A., Otten, R. et al.
[Nature 625, 832–839 (2024)](https://doi.org/10.1038/s41586-023-06832-9) | [code](https://github.com/HWaymentSteele/AF_Cluster)* **AlphaFold2-RAVE: From Sequence to Boltzmann Ranking** [2023]
Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, and Pratyush Tiwary.
[J. Chem. Theory Comput. (2023)](https://pubs.acs.org/doi/10.1021/acs.jctc.3c00290)) | [code](https://github.com/tiwarylab/alphafold2rave)* **Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures** [2023]
Carmen Al-Masri, Francesco Trozzi, Shu-Hang Lin, Oanh Tran, Navriti Sahni, Marcel Patek, Anna Cichonska, Balaguru Ravikumar, Rayees Rahman.
[Bioinformatics Advances. (2023)](https://doi.org/10.1093/bioadv/vbad129)) | [code](https://github.com/Harmonic-Discovery/AF2-kinase-conformational-landscape)* **Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures** [2023]
Herrington, Noah B., David Stein, Yan Chak Li, Gaurav Pandey, and Avner Schlessinger.
[bioRxiv (2023)](https://doi.org/10.1101/2023.08.31.555779) | [code](https://github.com/schlessinger-lab/af2_kinase_conformations/)* **Sampling alternative conformational states of transporters and receptors with AlphaFold2** [2022]
Del Alamo, Diego, Davide Sala, Hassane S. Mchaourab, and Jens Meiler.
[Elife 11 (2022)](https://elifesciences.org/articles/75751) | [code](https://github.com/delalamo/af2_conformations)### GNN-based
* **AbFlex: Predicting the conformational flexibility of antibody CDRs** [2024]
Spoendlin, Fabian C., Wing Ki Wong, Guy Georges, Alexander Bujotzek, and Charlotte Deane.
[ICML'24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024)](https://openreview.net/forum?id=or4tArwd5a) | [code](https://openreview.net/forum?id=or4tArwd5a)* **RevGraphVAMP: A protein molecular simulation analysis model combining graph convolutional neural networks and physical constraints** [2024]
Huang, Ying, Huiling Zhang, Zhenli Lin, Yanjie Wei, and Wenhui Xi.
[bioRxiv (2024)](https://doi.org/10.1101/2024.03.11.584426) | [code](https://github.com/DS00HY/RevGraphVamp)### LSTM-based
* **Learning molecular dynamics with simple language model built upon long short-term memory neural network** [2020]
Tsai, ST., Kuo, EJ. & Tiwary, P.
[Nat Commun 11, 5115 (2020)](https://doi.org/10.1038/s41467-020-18959-8) | [code](https://github.com/tiwarylab/LSTM-predict-MD)### Transformer-based
* **Exploring the conformational ensembles of protein-protein complex with transformer-based generative model** [2024]
Wang, Jianmin, Xun Wang, Yanyi Chu, Chunyan Li, Xue Li, Xiangyu Meng, Yitian Fang, Kyoung Tai No, Jiashun Mao, and Xiangxiang Zeng.
[J. Chem. Theory Comput. (2024)](https://doi.org/10.1021/acs.jctc.4c00255) | [bioRxiv (2024)](https://doi.org/10.1101/2024.02.24.581708) | [code](https://github.com/AspirinCode/AlphaPPImd)* **Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers** [2024]
Chennakesavalu, Shriram, and Grant M. Rotskoff.
[The Journal of Physical Chemistry B (2024)](https://pubs.acs.org/doi/full/10.1021/acs.jpcb.3c08195) | [code](https://github.com/rotskoff-group/transformer-backmapping)* **Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks** [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
[arXiv:2206.04683 (2022)](https://arxiv.org/abs/2206.04683) | [code](https://github.com/dgattiwsu/MD_without_molecules)### VAE-based
* **Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning** [2024]
Talant Ruzmetov, Ta I Hung, Saisri Padmaja Jonnalagedda, Si-han Chen, Parisa Fasihianifard, Zhefeng Guo, Bir Bhanu, Chia-en A. Chang.
[bioRxiv. (2024)](https://doi.org/10.1101/2024.05.05.592587) | [data](https://github.com/chang-group/ICoN)* **Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy** [2024]
Hu, Yao, Hao Yang, Mingwei Li, Zhicheng Zhong, Yongqi Zhou, Fang Bai, and Qian Wang.
[Advanced Science (2024)](https://doi.org/10.1002/advs.202400884) | [code](https://github.com/qwang897/PATHpre)* **Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning** [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c00189) | [data](https://zenodo.org/records/10500539)* **Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling** [2024]
Sanaa Mansoor, Minkyung Baek, Hahnbeom Park, Gyu Rie Lee, and David Baker.
[J. Chem. Theory Comput. (2024)](https://pubs.acs.org/doi/10.1021/acs.jctc.3c01057)* **Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling** [2024]
Junjie Zhu, Zhengxin Li, Haowei Tong, Zhouyu Lu, Ningjie Zhang, Ting Wei and Hai-Feng Chen.
[Briefings in Bioinformatics. (2024)](https://academic.oup.com/bib/article/25/1/bbad429/7453435) | [code](https://github.com/Junjie-Zhu/Phanto-IDP)* **Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Auotencoder** [2023]
JunJie Zhu, NingJie Zhang, Ting Wei and Hai-Feng Chen.
[International Journal of Molecular Sciences. (2023)](https://www.mdpi.com/1422-0067/24/8/6896) | [code](https://github.com/Junjie-Zhu/VAE)* **Encoding the Space of Protein-protein Binding Interfaces by Artificial Intelligence** [2023]
Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu.
[bioRxiv (2023)](https://doi.org/10.1101/2023.09.08.556812)* **Artificial intelligence guided conformational mining of intrinsically disordered proteins** [2022]
Gupta, A., Dey, S., Hicks, A. et al.
[Commun Biol 5, 610 (2022)](https://doi.org/10.1038/s42003-022-03562-y) | [code](https://github.com/aaayushg/generative_IDPs)* **LAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories** [2022]
Tian, Hao, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, and Peng Tao
[J. Chem. Inf. Model. (2022)](https://doi.org/10.1021/acs.jcim.2c01213) | [code](https://github.com/smu-tao-group/LAST)* **Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks** [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
[arXiv:2206.04683 (2022)](https://arxiv.org/abs/2206.04683) | [code](https://github.com/dgattiwsu/MD_without_molecules)* **ProGAE: A Geometric Autoencoder-based Generative Model for Disentangling Protein Conformational Space** [2021]
Tatro, Norman Joseph, Payel Das, Pin-Yu Chen, Vijil Chenthamarakshan, and Rongjie Lai.
[ICLR (2022)](https://openreview.net/forum?id=LxhlyKH6VP)* **Explore protein conformational space with variational autoencoder** [2021]
Tian, Hao, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, and Peng Tao.
[Frontiers in molecular biosciences 8 (2021)](https://www.frontiersin.org/articles/10.3389/fmolb.2021.781635/full) | [code](https://github.com/smu-tao-group/protein-VAE)### GAN-based
* **Direct generation of protein conformational ensembles via machine learning** [2023]
Janson, G., Valdes-Garcia, G., Heo, L. et al.
[Nat Commun 14, 774 (2023)](https://doi.org/10.1038/s41467-023-36443-x) | [code](https://github.com/feiglab/idpgan)* **Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks** [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
[arXiv:2206.04683 (2022)](https://arxiv.org/abs/2206.04683) | [code](https://github.com/dgattiwsu/MD_without_molecules)### Flow-based
* **Generative Modeling of Molecular Dynamics Trajectories** [2024]
Jing, Bowen, Hannes Stark, Tommi Jaakkola, and Bonnie Berger.
[ICML'24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024)](https://openreview.net/forum?id=LbwM4VCDUU) | [code](https://github.com/bjing2016/mdgen)* **Frame-to-Frame Coarse-grained Molecular Dynamics with SE (3) Guided Flow Matching** [2024]
Li, Shaoning, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang
[arXiv:2405.00751 (2024)](https://arxiv.org/abs/2405.00751)* **AlphaFold Meets Flow Matching for Generating Protein Ensembles** [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
[arXiv:2402.04845 (2024)](https://arxiv.org/abs/2402.04845) | [code](https://github.com/bjing2016/alphaflow)### Diffusion-based
* **Deep learning of protein energy landscape and conformational dynamics from experimental structures in PDB** [2024]
Yike Tang, Mendi Yu, Ganggang Bai, Xinjun Li, Yanyan Xu, Buyong Ma.
[bioRxiv (2024)](https://doi.org/10.1101/2024.06.27.600251)* **4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment** [2024]
Cheng, Kaihui, Ce Liu, Qingkun Su, Jun Wang, Liwei Zhang, Yining Tang, Yao Yao, Siyu Zhu, and Yuan Qi.
[arXiv:2408.12419 (2024)](https://arxiv.org/abs/2408.12419)* **Generating Multi-state Conformations of P-type ATPases with a Diffusion Model** [2024]
Jingtian Xu, Yong Wang.
[bioRxiv (2024)](https://doi.org/10.1101/2024.08.07.607107) | [code](https://github.com/yongwangCPH/papers/tree/main/2024/PtypeATPaseGeneration)* **Transferable deep generative modeling of intrinsically disordered protein conformations** [2024]
Abdin, O., Kim, P.M.
[PLOS Computational Biology 20.5 (2024)](https://doi.org/10.1371/journal.pcbi.1012144) | [code](https://github.com/giacomo-janson/idpsam)* **Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion** [2024]
Janson, Giacomo, and Michael Feig.
[Nat Mach Intell 6, 775–786 (2024)](https://doi.org/10.1038/s42256-024-00860-4) | [code](https://gitlab.com/oabdin/pepflow)* **Accurate Conformation Sampling via Protein Structural Diffusion** [2024]
Fan, Jiahao, Ziyao Li, Eric Alcaide, Guolin Ke, Huaqing Huang, and Weinan E.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c00928) | [bioRxiv (2024)](https://doi.org/10.1101/2024.05.20.594916) | [code](https://github.com/PKUfjh/Uni-Fold/tree/ufconf)* **Accurate and Efficient Structural Ensemble Generation of Macrocyclic Peptides using Internal Coordinate Diffusion** [2023]
Grambow, Colin A., Hayley Weir, Nathaniel Diamant, Alex Tseng, Tommaso Biancalani, Gabriele Scalia and Kangway V Chuang.
[ arXiv:2305.19800 (2023)](https://arxiv.org/abs/2305.19800) | [code](https://github.com/genentech/ringer)### Score-based
* **Str2str: A score-based framework for zero-shot protein conformation sampling** [2024]
Lu, Jiarui, Bozitao Zhong, Zuobai Zhang, and Jian Tang.
[ICLR (2024)](https://openreview.net/forum?id=C4BikKsgmK) | [code](https://github.com/lujiarui/Str2Str)* **Score-based enhanced sampling for protein molecular dynamics** [2023]
Lu, Jiarui, Bozitao Zhong, and Jian Tang.
[arXiv:2306.03117 (2023)](https://arxiv.org/abs/2306.03117) | [code](https://github.com/lujiarui/Str2Str)### Energy-based
* **Energy-based models for atomic-resolution protein conformations** [2020]
Du, Yilun, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander Rives.
[ICLR (2020)](https://openreview.net/forum?id=S1e_9xrFvS) | [code](https://github.com/facebookresearch/protein-ebm)### Bayesian-based
* **Enabling Population Protein Dynamics Through Bayesian Modeling** [2024]
Sylvain Lehmann, Jérôme Vialaret, Audrey Gabelle, Luc Bauchet, Jean-Philippe Villemin, Christophe Hirtz, Jacques Colinge.
[Bioinformatics (2024)](https://doi.org/10.1093/bioinformatics/btae484)* **Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network** [2023]
Do, Hung N., and Yinglong Miao.
[bioRxiv(2023)](https://doi.org/10.1101/2023.03.25.534210) | [code](https://github.com/MiaoLab20/DBMD/)* **Deep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space** [2023]
Draizen, Eli J., Stella Veretnik, Cameron Mura, and Philip E. Bourne.
[bioRxiv(2023)](https://doi.org/10.1101/2022.07.29.501943) | [code](https://github.com/bouralab/DeepUrfold)### Active Learning-based
* **Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets** [2023]
Kleiman, Diego E., and Diwakar Shukla.
[J. Chem. Theory Comput. (2023)](https://doi.org/10.1021/acs.jctc.3c00040) | [code](https://github.com/ShuklaGroup/MaxEntVAMPNet)### LLM-MD
* **Structure Language Models for Protein Conformation Generation** [2024]
Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Chence Shi, Hongyu Guo, Yoshua Bengio, Jian Tang.
[ arXiv:2410.18403 (2024)](https://arxiv.org/abs/2410.18403) | [code](https://github.com/lujiarui/esmdiff)* **SeaMoon: Prediction of molecular motions based on language models** [2024]
Valentin Lombard, Dan Timsit, Sergei Grudinin, Elodie Laine.
[bioRxiv. (2024)](https://doi.org/10.1101/2024.09.23.614585) | [code](https://github.com/PhyloSofS-Team//seamoon)* **Molecular simulation with an LLM-agent** [2024]
MD-Agent is a LLM-agent based toolset for Molecular Dynamics.
[code](https://github.com/ur-whitelab/md-agent)## Molecular conformational ensembles by methods
### Small molecule conformational ensembles
* **Diffusion-based generative AI for exploring transition states from 2D molecular graphs** [2024]
Kim, S., Woo, J. & Kim, W.Y.
[Nat Commun 15, 341 (2024)](https://doi.org/10.1038/s41467-023-44629-6) | [code](https://github.com/seonghann/tsdiff)* **Physics-informed generative model for drug-like molecule conformers** [2024]
David C. Williams, Neil Imana.
[ arXiv:2403.07925. (2024)](https://arxiv.org/abs/2403.07925v1) | [code](https://github.com/nobiastx/diffusion-conformer)* **COSMIC: Molecular Conformation Space Modeling in Internal Coordinates with an Adversarial Framework** [2024]
Kuznetsov, Maksim, Fedor Ryabov, Roman Schutski, Rim Shayakhmetov, Yen-Chu Lin, Alex Aliper, and Daniil Polykovskiy.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.3c00989) | [code](https://github.com/insilicomedicine/COSMIC)* **Leveraging 2D Molecular Graph Pretraining for Improved 3D Conformer Generation with Graph Neural Networks** [2024]
Jiang, Runxuan, Tarun Gogineni, Joshua Kammeraad, Yifei He, Ambuj Tewari, and Paul M. Zimmerman.
[Computers & Chemical Engineering (2024)](https://doi.org/10.1016/j.compchemeng.2024.108622) | [code](https://github.com/m1k2zoo/2D-3DConformerGNN)* **DynamicsDiffusion: Generating and Rare Event Sampling of Molecular Dynamic Trajectories Using Diffusion Models** [2023]
Petersen, Magnus, Gemma Roig, and Roberto Covino.
[NeurIPS 2023 AI4Science (2023)](https://openreview.net/forum?id=pwYCCq4xAf)* **Generating Molecular Conformer Fields** [2023]
Yuyang Wang, Ahmed Elhag, Navdeep Jaitly, Joshua Susskind, Miguel Bautista.
[NeurIPS 2023 Generative AI and Biology (GenBio) Workshop (2023)]https://openreview.net/forum?id=Od1KtMeAYo)* **On Accelerating Diffusion-based Molecular Conformation Generation in SE(3)-invariant Space** [2023]
Zhou, Z., Liu, R. and Yu, T.
[arXiv:2310.04915 (2023))](https://arxiv.org/abs/2310.04915)* **Molecular Conformation Generation via Shifting Scores** [2023]
Zhou, Zihan, Ruiying Liu, Chaolong Ying, Ruimao Zhang, and Tianshu Yu.
[arXiv:2309.09985 (2023)](https://arxiv.org/abs/2309.09985)* **EC-Conf: An Ultra-fast Diffusion Model for Molecular Conformation Generation with Equivariant Consistency** [2023]
Fan, Zhiguang, Yuedong Yang, Mingyuan Xu, and Hongming Chen.
[arXiv:2308.00237 (2023)](https://arxiv.org/abs/2308.00237)* **Prediction of Molecular Conformation Using Deep Generative Neural Networks** [2023]
Xu, Congsheng, Yi Lu, Xiaomei Deng, and Peiyuan Yu.
[Chinese Journal of Chemistry(2023)](https://doi.org/10.1002/cjoc.202300269)* **Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks** [2023]
Zhu, Yanqiao, Jeehyun Hwang, Keir Adams, Zhen Liu, Bozhao Nan, Brock Stenfors, Yuanqi Du et al.
[NeurIPS 2023 AI for Science Workshop. 2023 (2023)](https://openreview.net/forum?id=kFiMXnLH9x) | [code](https://github.com/SXKDZ/MARCEL)* **Deep-Learning-Assisted Enhanced Sampling for Exploring Molecular Conformational Changes** [2023]
Haohao Fu, Han Liu, Jingya Xing, Tong Zhao, Xueguang Shao, and Wensheng Cai.
[J. Phys. Chem. B (2023)](https://doi.org/10.1021/acs.jpcb.3c05284)* **Torsional diffusion for molecular conformer generation** [2022]
Jing, Bowen, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola.
[NeurIPS. (2022)](https://proceedings.neurips.cc/paper_files/paper/2022/hash/994545b2308bbbbc97e3e687ea9e464f-Abstract-Conference.html) | [code](https://github.com/gcorso/torsional-diffusionf)* **GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation** [2022]
Xu, Minkai, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang.
[International Conference on Learning Representations. (2022)](https://openreview.net/forum?id=PzcvxEMzvQC) | [code](https://github.com/MinkaiXu/GeoDiff)* **Conformer-RL: A deep reinforcement learning library for conformer generation** [2022]
Jiang, Runxuan, Tarun Gogineni, Joshua Kammeraad, Yifei He, Ambuj Tewari, and Paul M. Zimmerman.
[Journal of Computational Chemistry 43.27 (2022)](https://doi.org/10.1002/jcc.26984) | [code](https://github.com/ZimmermanGroup/conformer-rl)* **Energy-inspired molecular conformation optimization** [2022]
Guan, Jiaqi, Wesley Wei Qian, Wei-Ying Ma, Jianzhu Ma, and Jian Peng.
[International Conference on Learning Representations. (2022)](https://openreview.net/forum?id=7QfLW-XZTl) | [code](https://github.com/guanjq/confopt_officialf)* **An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming** [2021]
Xu, Minkai, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael Gomez-Bombarelli, and Jian Tang.
[International Conference on Machine Learning. PMLR (2021)](http://proceedings.mlr.press/v139/xu21f.html) | [code](https://github.com/MinkaiXu/ConfVAE-ICML21)### RNA conformational ensembles
* **On the Power and Challenges of Atomistic Molecular Dynamics to Investigate RNA Molecules** [2024]
Muscat, Stefano, Gianfranco Martino, Jacopo Manigrasso, Marco Marcia, and Marco De Vivo.
[J. Chem. Theory Comput. (2024)](https://doi.org/10.1021/acs.jctc.4c00773)* **Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations** [2018]
Bottaro, S., Bussi, G., Kennedy, S.D., Turner, D.H. and Lindorff-Larsen, K.
[Science advances 4.5 (2018)](https://doi.org/10.1038/s41597-024-03698-y) | [code](https://github.com/sbottaro/rr) | [data](https://github.com/sbottaro/tetranucleotides_data)### Peptide conformational ensembles
* **CREMP: Conformer-rotamer ensembles of macrocyclic peptides for machine learning** [2024]
Grambow, C.A., Weir, H., Cunningham, C.N. et al.
[Sci Data 11, 859 (2024)](https://doi.org/10.1038/s41597-024-03698-y) | [code](https://github.com/Genentech/cremp)* **Direct conformational sampling from peptide energy landscapes through hypernetwork-conditioned diffusion** [2024]
Abdin, O., Kim, P.M.
[Nat Mach Intell 6, 775–786 (2024)](https://doi.org/10.1038/s42256-024-00860-4) | [code](https://gitlab.com/oabdin/pepflow)* **Accurate and Efficient Structural Ensemble Generation of Macrocyclic Peptides using Internal Coordinate Diffusion** [2023]
Grambow, Colin A., Hayley Weir, Nathaniel Diamant, Alex Tseng, Tommaso Biancalani, Gabriele Scalia and Kangway V Chuang.
[ arXiv:2305.19800 (2023)](https://arxiv.org/abs/2305.19800) | [code](https://github.com/genentech/ringer)### Protein conformational ensembles
* **Fast Sampling of Protein Conformational Dynamics** [2024]
Michael A. Sauer, Souvik Mondal, Brandon Neff, Sthitadhi Maiti, Matthias Heyden.
[ arXiv:2411.08154 (2024)](https://arxiv.org/abs/2411.08154)* **Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning** [2024]
Talant Ruzmetov, Ta I Hung, Saisri Padmaja Jonnalagedda, Si-han Chen, Parisa Fasihianifard, Zhefeng Guo, Bir Bhanu, Chia-en A. Chang.
[bioRxiv. (2024)](https://doi.org/10.1101/2024.05.05.592587) | [data](https://github.com/chang-group/ICoN)* **AlphaFold2's training set powers its predictions of fold-switched conformations** [2024]
Joseph W. Schafer, Lauren Porter.
[bioRxiv. (2024)](https://doi.org/10.1101/2024.10.11.617857) | [data](https://github.com/porterll/CFold_AF2)* **Exploring Protein Conformational Changes Using a Large-Scale Biophysical Sampling Augmented Deep Learning Strategy** [2024]
Hu, Yao, Hao Yang, Mingwei Li, Zhicheng Zhong, Yongqi Zhou, Fang Bai, and Qian Wang.
[Advanced Science (2024)](https://doi.org/10.1002/advs.202400884) | [code](https://github.com/qwang897/PATHpre)* **AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics** [2024]
Mirarchi, Antonio, Raul P. Pelaez, Guillem Simeon, and Gianni De Fabritiis.
[arXiv:2409.17852 (2024)](https://arxiv.org/abs/2409.17852) | [code](https://github.com/compsciencelab/amaro)* **Conformations of KRAS4B Affected by Its Partner Binding and G12C Mutation: Insights from GaMD Trajectory-Image Transformation-Based Deep Learning** [2024]
Chen, Jianzhong, Jian Wang, Wanchun Yang, Lu Zhao, and Guodong Hu.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c01174) | [code](https://github.com/jianzhong70/Visualiztion-for-MD-trajectory-analysis)* **Assessing AF2’s ability to predict structural ensembles of proteins** [2024]
Riccabona, Jakob R., Fabian C. Spoendlin, Anna-Lena M. Fischer, Johannes R. Loeffler, Patrick K. Quoika, Timothy P. Jenkins, James A. Ferguson et al.
[Structure (2024)](https://doi.org/10.1016/j.str.2024.09.001)* **Identifying protein conformational states in the Protein Data Bank: Toward unlocking the potential of integrative dynamics studies** [2024]
Ellaway, J. I., Anyango, S., Nair, S., Zaki, H. A., Nadzirin, N., Powell, H. R., ... & Velankar, S.
[Structural Dynamics (2024)](https://doi.org/10.1063/4.0000251)* **AlphaFold with conformational sampling reveals the structural landscape of homorepeats** [2024]
Bonet, David Fernandez et al.
[Structure (2024)](https://doi.org/10.1016/j.str.2024.08.016) | [code]( https://doi.org/10.5281/zenodo.13255318)* **Structure prediction of alternative protein conformations** [2024]
Bryant, P., Noé, F.
[Nat Commun 15, 7328 (2024)](https://doi.org/10.1038/s41467-024-51507-2) | [code](https://github.com/patrickbryant1/Cfold)* **Deep learning guided design of dynamic proteins** [2024]
Amy B. Guo, Deniz Akpinaroglu, Mark J.S. Kelly, Tanja Kortemme.
[bioRxiv. (2024)](https://doi.org/10.1101/2024.07.17.603962)* **AlphaFold predictions of fold-switched conformations are driven by structure memorization** [2024]
Chakravarty, D., Schafer, J.W., Chen, E.A. et al.
[Nat Commun 15, 7296 (2024)](https://doi.org/10.1038/s41467-024-51801-z) | [code](https://github.com/ncbi/AF2_benchmark)* **4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment** [2024]
Cheng, Kaihui, Ce Liu, Qingkun Su, Jun Wang, Liwei Zhang, Yining Tang, Yao Yao, Siyu Zhu, and Yuan Qi.
[arXiv:2408.12419 (2024)](https://arxiv.org/abs/2408.12419)* **Predicting protein conformational motions using energetic frustration analysis and AlphaFold2** [2024]
Xingyue Guan and Qian-Yuan Tang and Weitong Ren and Mingchen Chen and Wei Wang and Peter G. Wolynes and Wenfei Li.
[Proceedings of the National Academy of Sciences (2024)](https://doi.org/10.1073/pnas.2410662121)* **A resource for comparing AF-Cluster and other AlphaFold2 sampling methods** [2024]
Hannah K Wayment-Steele, Sergey Ovchinnikov, Lucy Colwell, Dorothee Kern.
[bioRxiv (2024)](https://doi.org/10.1101/2024.07.29.605333)* **Integration of AlphaFold with Molecular Dynamics for Efficient Conformational Sampling of Transporter Protein NarK** [2024]
Ohnuki, Jun, and Kei-ichi Okazaki.
[The Journal of Physical Chemistry B (2024)](https://doi.org/10.1021/acs.jpcb.4c02726)* **Transferable deep generative modeling of intrinsically disordered protein conformations** [2024]
Abdin, O., Kim, P.M.
[PLOS Computational Biology 20.5 (2024)](https://doi.org/10.1371/journal.pcbi.1012144) | [code](https://github.com/giacomo-janson/idpsam)* **AFsample2: Predicting multiple conformations and ensembles with AlphaFold2** [2024]
Yogesh Kalakoti, Björn Wallner.
[bioRxiv (2024)](https://doi.org/10.1101/2024.05.28.596195) | [code](https://github.com/iamysk/AFsample2/)* **Prediction of Conformational Ensembles and Structural Effects of State-Switching Allosteric Mutants in the Protein Kinases Using Comparative Analysis of AlphaFold2 Adaptations with Sequence Masking and Shallow Subsampling** [2024]
Nishank Raisinghani, Mohammed Alshahrani, Grace Gupta, Hao Tian, Sian Xiao, Peng Tao, Gennady Verkhivker.
[bioRxiv (2024)](https://doi.org/10.1101/2024.05.17.594786) | [code](https://zenodo.org/records/11204773)* **Empowering AlphaFold2 for protein conformation selective drug discovery with AlphaFold2-RAVE** [2024]
Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary.
[ arXiv:2404.07102 (2024)](https://arxiv.org/abs/2404.07102)* **High-throughput prediction of protein conformational distributions with subsampled AlphaFold2** [2024]
Monteiro da Silva, G., Cui, J.Y., Dalgarno, D.C. et al.
[Nat Commun 15, 2464 (2024)](https://doi.org/10.1038/s41467-024-46715-9) | [code](https://github.com/GMdSilva/gms_natcomms_1705932980_data)* **AlphaFold Meets Flow Matching for Generating Protein Ensembles** [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
[arXiv:2402.04845 (2024)](https://arxiv.org/abs/2402.04845) | [code](https://github.com/bjing2016/alphaflow)* **Predicting multiple conformations via sequence clustering and AlphaFold2** [2024]
Wayment-Steele, H.K., Ojoawo, A., Otten, R. et al.
[Nature 625, 832–839 (2024)](https://doi.org/10.1038/s41586-023-06832-9) | [code](https://github.com/HWaymentSteele/AF_Cluster)* **Data-Efficient Generation of Protein Conformational Ensembles with Backbone-to-Side-Chain Transformers** [2024]
Chennakesavalu, Shriram, and Grant M. Rotskoff.
[The Journal of Physical Chemistry B (2024)](https://pubs.acs.org/doi/full/10.1021/acs.jpcb.3c08195) | [code](https://github.com/rotskoff-group/transformer-backmapping)* **Frame-to-Frame Coarse-grained Molecular Dynamics with SE (3) Guided Flow Matching** [2024]
Li, Shaoning, Yusong Wang, Mingyu Li, Jian Zhang, Bin Shao, Nanning Zheng, and Jian Tang
[arXiv:2405.00751 (2024)](https://arxiv.org/abs/2405.00751)* **AlphaFold Meets Flow Matching for Generating Protein Ensembles** [2024]
Jing, Bowen, Bonnie Berger, and Tommi Jaakkola.
[arXiv:2402.04845 (2024)](https://arxiv.org/abs/2402.04845) | [code](https://github.com/bjing2016/alphaflow)* **Machine learning of force fields towards molecular dynamics simulations of proteins at DFT accuracy** [2024]
Brunken, Christoph, Sebastien Boyer, Mustafa Omar, Bakary N'tji Diallo, Karim Beguir, Nicolas Lopez Carranza, and Oliver Bent.
[ICLR 2024 Workshop on Generative and Experimental Perspectives for Biomolecular Design (2024)](https://openreview.net/forum?id=hrvvIOx7EM) | [code](https://github.com/ACEsuit/mace-jax)* **Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning** [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c00189) | [data](https://zenodo.org/records/10500539)* **Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling** [2024]
Sanaa Mansoor, Minkyung Baek, Hahnbeom Park, Gyu Rie Lee, and David Baker.
[J. Chem. Theory Comput. (2024)](https://pubs.acs.org/doi/10.1021/acs.jctc.3c01057)* **Phanto-IDP: compact model for precise intrinsically disordered protein backbone generation and enhanced sampling** [2024]
Junjie Zhu, Zhengxin Li, Haowei Tong, Zhouyu Lu, Ningjie Zhang, Ting Wei and Hai-Feng Chen.
[Briefings in Bioinformatics. (2024)](https://academic.oup.com/bib/article/25/1/bbad429/7453435) | [code](https://github.com/Junjie-Zhu/Phanto-IDP)* **Str2str: A score-based framework for zero-shot protein conformation sampling** [2024]
Lu, Jiarui, Bozitao Zhong, Zuobai Zhang, and Jian Tang.
[ICLR (2024)](https://openreview.net/forum?id=C4BikKsgmK) | [code](https://github.com/lujiarui/Str2Str)* **Enabling Population Protein Dynamics Through Bayesian Modeling** [2024]
Sylvain Lehmann, Jérôme Vialaret, Audrey Gabelle, Luc Bauchet, Jean-Philippe Villemin, Christophe Hirtz, Jacques Colinge.
[Bioinformatics (2024)](https://doi.org/10.1093/bioinformatics/btae484)* **Deep Boosted Molecular Dynamics (DBMD): Accelerating molecular simulations with Gaussian boost potentials generated using probabilistic Bayesian deep neural network** [2023]
Do, Hung N., and Yinglong Miao.
[bioRxiv(2023)](https://doi.org/10.1101/2023.03.25.534210) | [code](https://github.com/MiaoLab20/DBMD/)* **Deep Generative Models of Protein Structure Uncover Distant Relationships Across a Continuous Fold Space** [2023]
Draizen, Eli J., Stella Veretnik, Cameron Mura, and Philip E. Bourne.
[bioRxiv(2023)](https://doi.org/10.1101/2022.07.29.501943) | [code](https://github.com/bouralab/DeepUrfold)* **Score-based enhanced sampling for protein molecular dynamics** [2023]
Lu, Jiarui, Bozitao Zhong, and Jian Tang.
[arXiv:2306.03117 (2023)](https://arxiv.org/abs/2306.03117) | [code](https://github.com/lujiarui/Str2Str)* **AlphaFold2-RAVE: From Sequence to Boltzmann Ranking** [2023]
Bodhi P. Vani, Akashnathan Aranganathan, Dedi Wang, and Pratyush Tiwary.
[J. Chem. Theory Comput. (2023)](https://pubs.acs.org/doi/10.1021/acs.jctc.3c00290)) | [code](https://github.com/tiwarylab/alphafold2rave)* **Investigating the conformational landscape of AlphaFold2-predicted protein kinase structures** [2023]
Carmen Al-Masri, Francesco Trozzi, Shu-Hang Lin, Oanh Tran, Navriti Sahni, Marcel Patek, Anna Cichonska, Balaguru Ravikumar, Rayees Rahman.
[Bioinformatics Advances. (2023)](https://doi.org/10.1093/bioadv/vbad129)) | [code](https://github.com/Harmonic-Discovery/AF2-kinase-conformational-landscape)* **Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures** [2023]
Herrington, Noah B., David Stein, Yan Chak Li, Gaurav Pandey, and Avner Schlessinger.
[bioRxiv (2023)](https://doi.org/10.1101/2023.08.31.555779) | [code](https://github.com/schlessinger-lab/af2_kinase_conformations/)* **Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets** [2023]
Kleiman, Diego E., and Diwakar Shukla.
[J. Chem. Theory Comput. (2023)](https://doi.org/10.1021/acs.jctc.3c00040) | [code](https://github.com/ShuklaGroup/MaxEntVAMPNet)* **Direct generation of protein conformational ensembles via machine learning** [2023]
Janson, G., Valdes-Garcia, G., Heo, L. et al.
[Nat Commun 14, 774 (2023)](https://doi.org/10.1038/s41467-023-36443-x) | [code](https://github.com/feiglab/idpgan)* **Enhancing Conformational Sampling for Intrinsically Disordered and Ordered Proteins by Variational Auotencoder** [2023]
JunJie Zhu, NingJie Zhang, Ting Wei and Hai-Feng Chen.
[International Journal of Molecular Sciences. (2023)](https://www.mdpi.com/1422-0067/24/8/6896) | [code](https://github.com/Junjie-Zhu/VAE)* **Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks** [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
[arXiv:2206.04683 (2022)](https://arxiv.org/abs/2206.04683) | [code](https://github.com/dgattiwsu/MD_without_molecules)* **Sampling alternative conformational states of transporters and receptors with AlphaFold2** [2022]
Del Alamo, Diego, Davide Sala, Hassane S. Mchaourab, and Jens Meiler.
[Elife 11 (2022)](https://elifesciences.org/articles/75751) | [code](https://github.com/delalamo/af2_conformations)* **Artificial intelligence guided conformational mining of intrinsically disordered proteins** [2022]
Gupta, A., Dey, S., Hicks, A. et al.
[Commun Biol 5, 610 (2022)](https://doi.org/10.1038/s42003-022-03562-y) | [code](https://github.com/aaayushg/generative_IDPs)* **LAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories** [2022]
Tian, Hao, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, and Peng Tao
[J. Chem. Inf. Model. (2022)](https://doi.org/10.1021/acs.jcim.2c01213) | [code](https://github.com/smu-tao-group/LAST)* **Molecular dynamics without molecules: searching the conformational space of proteins with generative neural networks** [2022]
Schwing, Gregory, Luigi L. Palese, Ariel Fernández, Loren Schwiebert, and Domenico L. Gatti.
[arXiv:2206.04683 (2022)](https://arxiv.org/abs/2206.04683) | [code](https://github.com/dgattiwsu/MD_without_molecules)* **ProGAE: A Geometric Autoencoder-based Generative Model for Disentangling Protein Conformational Space** [2021]
Tatro, Norman Joseph, Payel Das, Pin-Yu Chen, Vijil Chenthamarakshan, and Rongjie Lai.
[ICLR (2022)](https://openreview.net/forum?id=LxhlyKH6VP)* **Explore protein conformational space with variational autoencoder** [2021]
Tian, Hao, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, and Peng Tao.
[Frontiers in molecular biosciences 8 (2021)](https://www.frontiersin.org/articles/10.3389/fmolb.2021.781635/full) | [code](https://github.com/smu-tao-group/protein-VAE)* **Energy-based models for atomic-resolution protein conformations** [2020]
Du, Yilun, Joshua Meier, Jerry Ma, Rob Fergus, and Alexander Rives.
[ICLR (2020)](https://openreview.net/forum?id=S1e_9xrFvS) | [code](https://github.com/facebookresearch/protein-ebm)### Enzymes conformational ensembles
* **Generating Multi-state Conformations of P-type ATPases with a Diffusion Model** [2024]
Jingtian Xu, Yong Wang.
[bioRxiv (2024)](https://doi.org/10.1101/2024.08.07.607107) | [code](https://github.com/yongwangCPH/papers/tree/main/2024/PtypeATPaseGeneration)* **Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning** [2024]
Zhu, Yu, Jing Gu, Zhuoran Zhao, AW Edith Chan, Maria F. Mojica, Andrea M. Hujer, Robert A. Bonomo, and Shozeb Haider.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.4c00189) | [data](https://zenodo.org/records/10500539)### Antibody conformational ensembles
* **AbFlex: Predicting the conformational flexibility of antibody CDRs** [2024]
Spoendlin, Fabian C., Wing Ki Wong, Guy Georges, Alexander Bujotzek, and Charlotte Deane.
[ICML'24 Workshop ML for Life and Material Science: From Theory to Industry Applications (2024)](https://openreview.net/forum?id=or4tArwd5a) | [code](https://openreview.net/forum?id=or4tArwd5a)### Ligand-Protein conformational ensembles
* **A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics** [2024]
Shengchao Liu, Weitao Du, Hannan Xu, Yanjing Li, Zhuoxinran Li, Vignesh Bhethanabotla, Divin Yan, Christian Borgs, Anima Anandkumar, Hongyu Guo, Jennifer Chayes.
[arXiv:2401.15122 (2024)](https://arxiv.org/abs/2401.15122) | [code](https://github.com/chao1224/NeuralMD)* **Modeling protein-small molecule conformational ensembles with ChemNet** [2024]
Ivan Anishchenko, Yakov Kipnis, Indrek Kalvet, Guangfeng Zhou, Rohith Krishna, Samuel J. Pellock, Anna Lauko, Gyu Rie Lee, Linna An, Justas Dauparas, Frank DiMaio, David Baker.
[bioRxiv (2024)](https://doi.org/10.1101/2024.09.25.614868)* **MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery** [2024]
Siebenmorgen, T., Menezes, F., Benassou, S. et al.
[Nat Comput Sci 4, 367–378 (2024)](https://doi.org/10.1038/s43588-024-00627-2) | [code](https://github.com/t7morgen/misato-dataset)* **Enhancing Protein–Ligand Binding Affinity Predictions Using Neural Network Potentials** [2024]
Sabanés Zariquiey, F., Galvelis, R., Gallicchio, E., Chodera, J.D., Markland, T.E. and De Fabritiis, G.
[J. Chem. Inf. Model. (2024)](https://doi.org/10.1021/acs.jcim.3c02031) | [code](https://github.com/compsciencelab/ATM_benchmark/tree/main/ATM_With_NNPs)* **Assessment of molecular dynamics time series descriptors in protein-ligand affinity prediction** [2024]
Poziemski, Jakub, Artur Yurkevych, and Pawel Siedlecki.
[chemrxiv-2024-dxv36 (2024)](https://doi.org/10.26434/chemrxiv-2024-dxv36) | [code](https://github.com/JPoziemski/md_for_affinity_prediction)* **Pre-Training of Equivariant Graph Matching Networks with Conformation Flexibility for Drug Binding** [2022]
Wu, Fang, Shuting Jin, Yinghui Jiang, Xurui Jin, Bowen Tang, Zhangming Niu, Xiangrong Liu, Qiang Zhang, Xiangxiang Zeng, and Stan Z. Li.
[Advanced Science 9.33 (2022)](https://doi.org/10.1002/advs.202203796) | [code](https://github.com/smiles724/ProtMD)### PPI conformational ensembles
* **Computational screening of the effects of mutations on protein-protein off-rates and dissociation mechanisms by τRAMD** [2024]
D’Arrigo, G., Kokh, D.B., Nunes-Alves, A. et al.
[Commun Biol 7, 1159 (2024)](https://doi.org/10.1038/s42003-024-06880-5) | [code](https://github.com/HITS-MCM/tauRAMD)* **Quantifying conformational changes in the TCR:pMHC-I binding interface** [2024]
Benjamin McMaster, Christopher Thorpe, Jamie Rossjohn, Charlotte M. Deane, Hashem Koohy.
[bioRxiv (2024)](https://doi.org/10.1101/2024.08.13.607715) | [code](https://github.com/benjiemc/tcr-pmhc-interface-analysis)* **Exploring the conformational ensembles of protein-protein complex with transformer-based generative model** [2024]
Wang, Jianmin, Xun Wang, Yanyi Chu, Chunyan Li, Xue Li, Xiangyu Meng, Yitian Fang, Kyoung Tai No, Jiashun Mao, and Xiangxiang Zeng.
[J. Chem. Theory Comput. (2024)](https://doi.org/10.1021/acs.jctc.4c00255) | [bioRxiv (2024)](https://doi.org/10.1101/2024.02.24.581708) | [code](https://github.com/AspirinCode/AlphaPPImd)* **Encoding the Space of Protein-protein Binding Interfaces by Artificial Intelligence** [2023]
Su, Zhaoqian, Kalyani Dhusia, and Yinghao Wu.
[bioRxiv (2023)](https://doi.org/10.1101/2023.09.08.556812)* **Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-A2-peptide immunogenicity** [2024]
Jeffrey K Weber, Joseph A Morrone, Seung-gu Kang, Leili Zhang, Lijun Lang, Diego Chowell, Chirag Krishna, Tien Huynh, Prerana Parthasarathy, Binquan Luan, Tyler J Alban, Wendy D Cornell, Timothy A Chan.
[Briefings in Bioinformatics (2024)](https://doi.org/10.1093/bib/bbad504) | [code](https://github.com/BiomedSciAI)### RNA-Peptide conformational ensembles
* **Enhanced Sampling Simulations of RNA-peptide Binding using Deep Learning Collective Variables** [2024]
Nisha Kumari, Sonam Dhull, Tarak Karmakar.
[bioRxiv (2024)](https://doi.org/10.1101/2024.08.01.606277)### Antibody-Protein conformational ensembles
* **Using Short Molecular Dynamics Simulations to Determine the Important Features of Interactions in Antibody–Protein Complexes** [2024]
A. Clay Richard, Robert J. Pantazes.
[Proteins. (2024)](https://doi.org/10.1002/prot.26773)### Material ensembles
* **General-purpose machine-learned potential for 16 elemental metals and their alloys** [2024]
Song, K., Zhao, R., Liu, J. et al.
[Nat Commun 15, 10208 (2024)](https://doi.org/10.1038/s41467-024-54554-x) | [code](https://github.com/brucefan1983/GPUMD)* **Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning** [2024]
Sharma, A., Sanvito, S.
[npj Comput Mater 10, 237 (2024)](https://doi.org/10.1038/s41524-024-01427-y) | [code](https://github.com/asharma-ms/MOF_MLP_2024)* **Generative AI model trained by molecular dynamics for rapid mechanical design of architected graphene** [2024]
Milad Masrouri, Kamalendu Paul, Zhao Qin.
[Extreme Mechanics Letters (2024)](https://doi.org/10.1016/j.eml.2024.102230)* **Neural-network-based molecular dynamics simulations reveal that proton transport in water is doubly gated by sequential hydrogen-bond exchange** [2024]
Gomez, A., Thompson, W.H. & Laage, D.
[Nat. Chem. (2024)](https://doi.org/10.1038/s41557-024-01593-y) | [data](https://zenodo.org/records/11965260)* **Universal-neural-network-potential molecular dynamics for lithium metal and garnet-type solid electrolyte interface** [2024]
Iwasaki, R., Tanibata, N., Takeda, H. et al.
[Commun Mater 5, 148 (2024)](https://doi.org/10.1038/s43246-024-00595-0)