Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/attibalazs/awesome-remote-sensing

Collection of Remote Sensing Resources
https://github.com/attibalazs/awesome-remote-sensing

List: awesome-remote-sensing

Last synced: about 1 month ago
JSON representation

Collection of Remote Sensing Resources

Awesome Lists containing this project

README

        

# awesome-remote-sensing

Remote Sensing is a very exciting field full of potential.

[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)

## Introduction

* [Nasa Worldview](https://worldview.earthdata.nasa.gov)
* [Landsat Viewer](http://landsatappv1p3.s3-website-us-west-2.amazonaws.com/)
* [Urthecast Gallery](http://gallery.urthecast.com/)
* [Earth as Art](http://www.nasa.gov/pdf/703154main_earth_art-ebook.pdf)
* [100 Remote Sensing applications](http://gisgeography.com/100-earth-remote-sensing-applications-uses/)
* [EO Map](http://eoapp.eomap.com/)
* [Orbital Insights](https://orbitalinsight.com/)
* [Sentinel and Landsat Browser](https://remotepixel.ca/projects/satellitesearch.html)
* [DigitalGlobe Crowdsourced Detection](http://www.tomnod.com/)
* [Watching penguins and their poo from space](http://www.bbc.com/earth/story/20141210-surprising-use-of-penguin-poo)
* [Awesome Vegetation Index](https://github.com/px39n/Awesome-Vegetation-Index)
## Tools, Libraries

* [QGIS](http://qgis.org/en/site/) - open source GIS
* [Orfeo Toolbox](https://www.orfeo-toolbox.org/)
* [SNAP](http://step.esa.int/main/toolboxes/snap/) - open source earth observivation application
* [OSGeo4W](https://trac.osgeo.org/osgeo4w/) open source geospatial tools for Windows
* [GDAL](http://www.gdal.org/) geospatial analysis library

## Projects

* [OSMDeepOD](https://github.com/geometalab/OSMDeepOD) - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as "OSM-Crosswalk-Detection")
* [DeepOSM](https://github.com/trailbehind/DeepOSM) - detecting roads in satellite images using deep learning
* [Skynet-Data](https://github.com/developmentseed/skynet-data) - Data pipeline for machine learning with OpenStreetMap
* [CosmiqNet - Patrick Hagerty](https://gist.github.com/hagerty) - skeleton of convolutional neural network for detecting building outlines
* [Terrapattern on Github](https://github.com/CreativeInquiry/terrapattern) - satellite image pattern search
* [Terrapattern](http://www.terrapattern.com/about) - satellite image search based on patterns

## Data

* [Scihub Copernicus](https://scihub.copernicus.eu/)
* [NASA Earthdata](https://earthdata.nasa.gov/earth-observation-data)
* [15 Data Sources](http://gisgeography.com/free-satellite-imagery-data-list/)
* [AstroDigital](https://fetch.astrodigital.com)
* [Sentinel2 on AWS](https://aws.amazon.com/public-datasets/sentinel-2/)

## Courses

* [Futurelearn Monitoring Oceans from Space](https://www.futurelearn.com/courses/oceans-from-space/1)
* [Futurelearn Optical Earth Observation](https://www.futurelearn.com/courses/optical-earth-observation)
* [Futurelearn Monitoring Climate from Space](https://www.futurelearn.com/courses/climate-from-space)
* [Coursera Imager,Automation and Applications](https://www.coursera.org/learn/gis-applications)
* [Coursera Geospatial Analysis](https://www.coursera.org/learn/gis-capstone)
* [Learn Earth Observation](http://www.learn-eo.org/index.php)
* [Udacity Computer Vision](https://classroom.udacity.com/courses/ud810/)
* [PyimageSearch - Learn OpenCV](http://www.pyimagesearch.com/start-here-learn-computer-vision-opencv/)

## Object Detection

* [Neural net dreaming of cars](https://orbitalinsight.com/neural-net-dreams-cars/)
* [Tracking Oil Tanks](https://medium.com/from-the-macroscope/the-science-behind-the-signal-tracking-unknown-oil-tanks-around-the-world-9fc917e25795)
* [Object Detection on Spacenet data](https://medium.com/the-downlinq/object-detection-on-spacenet-5e691961d257#.b03fcas3i)
* [Object Detection from satellite imagery](https://medium.com/the-downlinq/object-detection-in-satellite-imagery-a-low-overhead-approach-part-ii-893f40122f92#.rcnyseewi)
* [Searching for aliens](http://www.machinalis.com/blog/searching-for-aliens/)
* [Blob detection using OpenCV](https://www.learnopencv.com/blob-detection-using-opencv-python-c/)
* [Mapping cemeteries using UAV](http://www.directionsmag.com/entry/uas-mapping-of-cemeteWetlandsthe-czech-republic/388595)
* [NVIDIA Object Detection using DIGITS](https://devblogs.nvidia.com/parallelforall/exploring-spacenet-dataset-using-digits/)
* [Object Detection using Detectnet Neural Network](https://devblogs.nvidia.com/parallelforall/detectnet-deep-neural-network-object-detection-digits/)
* [DigitalGlobe MLTools](https://github.com/DigitalGlobe/mltools)
* [DigitalGlobe DeepCore SDK](https://github.com/DigitalGlobe/DeepCore)

## Research

* [Python based object Image Analysis](http://www.mdpi.com/2072-4292/6/7/6111/htm)
* [Mapping regional economic activity from night-time light satellite imagery](http://www.sciencedirect.com/science/article/pii/S0921800905001254)
* [SSD - Multibox Detection](https://arxiv.org/abs/1512.02325)
* [Oil Spill Detection using SAR and Mathemtical Morphology](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.3086)
* [Oil Spill Detection using SAR](https://pdfs.semanticscholar.org/ed90/eb344aa14b91321fd30d44a806c0ff6e3b39.pdf)
* [Building Detection - Yuan 2016](https://arxiv.org/pdf/1602.06564v1.pdf)

## Books

* [QGis Python Programming Cookbook](https://www.packtpub.com/application-development/qgis-python-programming-cookbook)
* [Szeliszki - Computer Vision: Algorithms and Applications](http://szeliski.org/Book/)

## Computer Vision

* [Point Clouds](http://pointclouds.org)
* [Motion Detection](http://www.pyimagesearch.com/2015/05/25/basic-motion-detection-and-tracking-with-python-and-opencv/)

## Water Quality

* [Water Quality inland water](http://www.mcilvainecompany.com/Decision_Tree/subscriber/articles/Water_Quality_in_Slightly_Polluted_Inland_Water_Body.pdf)

## Misc

* [Building Detection in the Spacenet Satellite Imagery Dataset using Single Shot MultiBox Detector (SSD)](https://github.com/aurotripathy/ssd-spacenet)
* [Nimbix Scientific VMs on Demand](https://www.nimbix.net/nimbix-cloud-demand-pricing)
* [NASA Gibs](https://github.com/nasa-gibs)