Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/awesome-spectral-indices/awesome-ASI
A curated list of Awesome Spectral Indices (ASI) resources
https://github.com/awesome-spectral-indices/awesome-ASI
List: awesome-ASI
earth-engine earth-observation geographical-information-system gis google-earth-engine javascript landsat modis python r remote-sensing sentinel spectral-index spectral-indices
Last synced: 16 days ago
JSON representation
A curated list of Awesome Spectral Indices (ASI) resources
- Host: GitHub
- URL: https://github.com/awesome-spectral-indices/awesome-ASI
- Owner: awesome-spectral-indices
- License: mit
- Created: 2022-12-17T16:19:30.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-12-17T16:40:25.000Z (about 1 year ago)
- Last Synced: 2024-11-25T18:02:06.075Z (26 days ago)
- Topics: earth-engine, earth-observation, geographical-information-system, gis, google-earth-engine, javascript, landsat, modis, python, r, remote-sensing, sentinel, spectral-index, spectral-indices
- Homepage:
- Size: 378 KB
- Stars: 19
- Watchers: 2
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-ASI - A curated list of Awesome Spectral Indices (ASI) resources. (Other Lists / Monkey C Lists)
README
A curated list of Awesome Spectral Indices (ASI) resources
## Table of Contents
- [Official Resources](#official-resources)
- [Python](#python)
- [Julia](#julia)
- [R](#r)
- [Google Earth Engine](#google-earth-engine)
- [Apps](#apps)
- [YouTube](#youtube)
- [Tutorials](#tutorials)
- [Podcasts](#podcasts)
- [Blogs](#blogs)
- [Datasets](#datasets)
- [Companies and Software](#companies-and-software)
- [Papers](#papers)
- [Attribution](#attribution)-----------------------------------
## Official Resources
- [Awesome Spectral Indices](https://github.com/awesome-spectral-indices/awesome-spectral-indices) - Official GitHub Repository
- [Espectro](https://github.com/awesome-spectral-indices/espectro) - Official Streamlit Web App [![Espectro](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/davemlz/espectro/main/espectro.py)
- [spectral](https://github.com/awesome-spectral-indices/spectral) - Official Google Earth Engine Module
- [spyndex](https://github.com/awesome-spectral-indices/spyndex) - Official Python Package
- [SpectralIndices.jl](https://github.com/awesome-spectral-indices/SpectralIndices.jl) - Official Julia Package-----------------------------------
## Python
- [eoreader](https://github.com/sertit/eoreader) - Remote-sensing opensource python library reading optical and SAR sensors, loading and stacking bands, clouds, DEM and spectral indices in a sensor-agnostic way.
- [openeo-python-client](https://github.com/Open-EO/openeo-python-client) - Python client API for OpenEO. ASI provided as experimental feature.
- [spyndex](https://github.com/awesome-spectral-indices/spyndex) - Official ASI Python Package. Spectral Indices can be computed for Python objects with third party libraries (e.g., `numpy`, `pandas`, `xarray`, `dask`).-----------------------------------
## Julia
- [SpectralIndices.jl](https://github.com/awesome-spectral-indices/SpectralIndices.jl) - Official ASI Julia Package. Spectral Indices can be computed for Python objects with third party libraries (e.g., `DataFrames`, `YAXArrays`).-----------------------------------
## R
- [rgeeExtra](https://github.com/r-earthengine/rgeeExtra) - An R package for high-level functions to process spatial and simple Earth Engine objects. ASI is available through the `spectralIndices()` function.
-----------------------------------
## Google Earth Engine
### Python
- [eeExtra](https://github.com/r-earthengine/ee_extra) - A ninja Python package that unifies the Google Earth Engine ecosystem. Provides ASI methods for `eemont` and `rgeeExtra`.
- [eemont](https://github.com/davemlz/eemont) - A Python package that extends Google Earth Engine. ASI is available through the `spectralIndices()` method.
- [spyndex](https://github.com/awesome-spectral-indices/spyndex) - Official ASI Python Package. Spectral Indices can be computed for Google Earth Engine objects.### JavaScript
- [spectral](https://github.com/awesome-spectral-indices/spectral) - Official ASI Google Earth Engine Module. Deploys ASI for the Code Editor.
### R
- [rgeeExtra](https://github.com/r-earthengine/rgeeExtra) - An R package for high-level functions to process spatial and simple Earth Engine objects. ASI is available through the `spectralIndices()` function.
-----------------------------------
## Apps
### Streamlit
- [Espectro](https://github.com/awesome-spectral-indices/espectro) - Official Streamlit Web App GitHub Repository [![Espectro](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/davemlz/espectro/main/espectro.py)
### Visualization
- [LexCube](https://www.lexcube.org/?!s2flx_sen2flux_de-hai_l3a/kndvi/0-194/0-510/0-510) - Leipzig Explorer of Earth Data Cubes. Provides an interactive ASI example for a Sentinel-2 data cube.
### Miscellaneous
- [openEO Web Editor](https://github.com/Open-EO/openeo-web-editor) - Web-based UI for OpenEO. A wizard provides an easy way to generate products based on ASI.
-----------------------------------
## YouTube
### Google Earth Engine
- [ktmagar's YT | Awesome Spectral Indices in Earth Engine](https://www.youtube.com/watch?v=GJuoBp6B3fU&ab_channel=ktmagar%27sYT)
- [Open Source Remote Sensing & GIS | GEE tutorial 3: Compute multiple spectral indices easily in Google Earth Engine](https://www.youtube.com/watch?v=b7lCNNJOfZY&ab_channel=OpenSourceRemoteSensing%26GIS)
- [geodose video | How to Calculate Various Spectral Indices in Google Earth Engine Quickly](https://www.youtube.com/watch?v=Vkx-mh6Wr50&ab_channel=geodosevideo)
- [MasterGIS | MasterGIS Days 2021 🌎: Procesamiento y visualización de datos geoespaciales con GEE](https://youtu.be/MU28078U14Y?t=1641) [Spanish]### Miscellaneous
- [openEO | openEO Web Editor Wizard](https://www.youtube.com/watch?v=iAmybwE425k&ab_channel=openEO)
-----------------------------------
## Tutorials
### Python
- [David Montero Loaiza | Python Built-in Types](https://spyndex.readthedocs.io/en/latest/tutorials/python_builtin.html)
- [David Montero Loaiza | Numpy](https://spyndex.readthedocs.io/en/latest/tutorials/numpy.html)
- [David Montero Loaiza | Pandas](https://spyndex.readthedocs.io/en/latest/tutorials/pandas.html)
- [David Montero Loaiza | Xarray](https://spyndex.readthedocs.io/en/latest/tutorials/xarray.html)
- [David Montero Loaiza | Geopandas](https://spyndex.readthedocs.io/en/latest/tutorials/geopandas.html)
- [David Montero Loaiza | Dask](https://spyndex.readthedocs.io/en/latest/tutorials/dask.html)
- [David Montero Loaiza | Earth Engine](https://spyndex.readthedocs.io/en/latest/tutorials/ee.html)
- [David Montero Loaiza | Planetary Computer](https://spyndex.readthedocs.io/en/latest/tutorials/pc.html)
- [Digital Earth Africa | Calculating band indices with Spyndex packages](https://docs.digitalearthafrica.org/en/latest/sandbox/notebooks/Frequently_used_code/Calculating_band_indices_Spyndex.html)### Google Earth Engine
#### Python
- [David Montero Loaiza | Computing Spectral Indices in Landsat 8](https://eemont.readthedocs.io/en/latest/tutorials/004-Computing-Spectral-Indices-Landsat-8.html)
- [David Montero Loaiza | Computing Spectral Indices for MODIS](https://eemont.readthedocs.io/en/latest/tutorials/012-Spectral-Indices-MODIS-MOD09GA.html)
- [David Montero Loaiza | Spectral Indices From the Awesome Spectral Indices for GEE](https://eemont.readthedocs.io/en/latest/tutorials/016-Spectral-Indices-From-Awesome-Spectral-Indices-List.html)
- [David Montero Loaiza | Access to Awesome Spectral Indices v0.0.3](https://eemont.readthedocs.io/en/latest/tutorials/030-Awesome-Spectral-Indices-v003.html)
- [David Montero Loaiza | Monthly Global kNDVI using eemont and wxee](https://eemont.readthedocs.io/en/latest/tutorials/032-Combining-eemont-wxee.html)
- [David Montero Loaiza | Landsat-9](https://eemont.readthedocs.io/en/latest/tutorials/035-Landsat-9.html)
- [Aaron Zuspan | Combining wxee and eemont](https://wxee.readthedocs.io/en/latest/examples/eemont.html)#### JavaScript
- [David Montero Loaiza | Example 1: Exploring spectral indices](https://code.earthengine.google.com/6f438f939672318555b8e1ae55257020)
- [David Montero Loaiza | Example 2: Computing One Index](https://code.earthengine.google.com/378462b0d7b6dd8e523e02b349e67508)
- [David Montero Loaiza | Example 3: Computing Multiple Indices](https://code.earthengine.google.com/94523fdbc4ff80b77e76e7c05983c276)
- [David Montero Loaiza | Example 4: Computing Kernel Indices](https://code.earthengine.google.com/45399b947d0b1db532f1d2e6dd86d42a)
- [David Montero Loaiza | Example 5: Mapping Indices Over an Image Collection](https://code.earthengine.google.com/9c303e11f1c4a04a1c9c2dfbeaf2abee)-----------------------------------
## Podcasts
- [Scene From Above | S11E2: Disruption](https://scenefromabove.podbean.com/e/s11e2-disruption/)
-----------------------------------
## Blogs
- [geodose | How to Calculate Various Spectral Indices in Google Earth Engine Quickly](https://www.geodose.com/2022/10/how-to-calculate-various-spectral-indices-gee-quick.html)
- [Akis Karagiannis | Spectral Reflectance Newsletter #5
](https://medium.com/spectral-reflectance/spectral-reflectance-newsletter-5-e38d99fd582a)
- [scicrop | O uso dos Ãndices vegetativos e do sensoriamento remoto na agricultura](https://scicrop.com/2022/03/01/o-uso-dos-indices-vegetativos-e-do-sensoriamento-remoto-na-agricultura/) [Portuguese]
- [Cursos de Teledetección | Lanzamiento de una nueva versión de "Awesome Spectral Indices" para Google Earth Engine (GEE)](https://www.cursosteledeteccion.com/lanzamiento-de-una-nueva-version-de-awesome-spectral-indices-para-google-earth-engine-gee/) [Español]-----------------------------------
## Datasets
- [UniNa - Machine Learning 22/23 - MiniContest n1 | Above Ground Biomass estimation from Sentinel-2](https://www.kaggle.com/competitions/unina-machine-learning-2223/data)
-----------------------------------
## Companies and Software
- [Agriobs | "Agriobs is an application that accesses multiple sources of imagery with dynamic presentation and reporting tools."](https://agriobs.com/)
- [OpenEO | "openEO develops an open API to connect R, Python, JavaScript and other clients to big Earth observation cloud back-ends in a simple and unified way-"](https://openeo.org/)-----------------------------------
## Papers
### Official Papers
- [A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research](https://www.nature.com/articles/s41597-023-02096-0) - **How to cite.** Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., and Wieneke, S.: A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research, Scientific Data 10, 197, https://doi.org/10.1038/s41597-023-02096-0, 2023.
- [spectral: Awesome Spectral Indices deployed via the Google Earth Engine JavaScript API](https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022) - **How to cite.** Montero, D., Aybar, C., Mahecha, M. D., and Wieneke, S.: SPECTRAL: AWESOME SPECTRAL INDICES DEPLOYED VIA THE GOOGLE EARTH ENGINE JAVASCRIPT API, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4/W1-2022, 301–306, https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-301-2022, 2022.### ASI Citations
- [Deep Learning on Synthetic Data Enables the Automatic
Identification of Deficient Forested Windbreaks in the
Paraguayan Chaco](https://doi.org/10.3390/rs14174327) - **How to cite.** Kriese, J.; Hoeser, T.; Asam, S.; Kacic, P.; Da Ponte, E.; Gessner, U. Deep Learning on Synthetic Data Enables the Automatic Identification of Deficient Forested Windbreaks in the Paraguayan Chaco. Remote Sens. 2022, 14, 4327. https://doi.org/10.3390/rs14174327
- [BUSINESS INTELLIGENCE THROUGH MACHINE LEARNING FROM SATELLITE REMOTE SENSING DATA](https://ir.lib.uth.gr/xmlui/bitstream/handle/11615/59406/25458.pdf) - **How to cite.** Kyriakos, C. 2022. BUSINESS INTELLIGENCE THROUGH MACHINE LEARNING FROM SATELLITE REMOTE SENSING DATA. Diploma Thesis, University of Thessaly.-----------------------------------
## Attribution
The repository banner was created on top of [this photo](https://www.pexels.com/es-es/foto/luces-oscuro-colorido-arcoiris-11734794/) by [Evie Shaffer](https://www.pexels.com/es-es/@evie-shaffer-1259279/).