Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/azizp128/data-science-awesome-reference
Daftar referensi tautan-tautan berguna untuk mempelajari tentang Data Science, Machine Learning, dan lainnya. Reference list of useful links to learn about Data Science, Machine Learning and more.
https://github.com/azizp128/data-science-awesome-reference
List: data-science-awesome-reference
Last synced: 16 days ago
JSON representation
Daftar referensi tautan-tautan berguna untuk mempelajari tentang Data Science, Machine Learning, dan lainnya. Reference list of useful links to learn about Data Science, Machine Learning and more.
- Host: GitHub
- URL: https://github.com/azizp128/data-science-awesome-reference
- Owner: azizp128
- Created: 2020-07-04T06:52:13.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2021-12-10T08:14:09.000Z (about 3 years ago)
- Last Synced: 2024-08-02T08:03:39.773Z (5 months ago)
- Size: 260 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - data-science-awesome-reference - Daftar referensi tautan-tautan berguna untuk mempelajari tentang Data Science, Machine Learning, dan lainnya. Reference list of useful links to learn about Data Science, Machine Learning and more. (Other Lists / PowerShell Lists)
README
# Data-Science-Awesome-References
Daftar referensi tautan-tautan berguna untuk mempelajari tentang Data Science, Machine Learning, dan lainnya.Reference list of useful links to learn about Data Science, Machine Learning and more.
## MACHINE LEARNING
### Introduction
#### Articles
[Intro Data Science with Siuba](https://learn.siuba.org/intro-data-science/)[AI Expert Roadmap](https://i.am.ai/roadmap/#note)
[Introduction to AI](https://www.elementsofai.com/)
[Welcome to Introduction to Machine Learning for Coders! taught by Jeremy Howard](https://course18.fast.ai/ml.html)
[Machine Learning From Scratch](https://dafriedman97.github.io/mlbook/content/introduction.html)
[FOUNDATIONS OF MACHINE LEARNING by Bloomberg](https://bloomberg.github.io/foml/#homeworkslave)
[Introduction to Machine Learning](https://sebastianraschka.com/resources/ml-lectures-1/)
[Machine learning cheat sheet](https://github.com/soulmachine/machine-learning-cheat-sheet)
#### MOOC
[Create machine learning models by Microsoft](https://docs.microsoft.com/en-gb/learn/paths/create-machine-learn-models/)[Coursera : Machine Learning by AndrewNg](https://www.coursera.org/learn/machine-learning)
[Stanford CS 229 ― Machine Learning](https://stanford.edu/~shervine/teaching/cs-229/)
[Coursera Machine Learning Foundations: A Case Study Approach](http://bit.ly/2Y11VsB)
[Introduction to Data Science and Machine Learning](https://www.confetti.ai/)
[The Missing Semester of Your CS Education by MIT](https://missing.csail.mit.edu/)
[Stanford CS229: Machine Learning | Autumn 2018](https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU)
[Introduction to Machine Learning by Google](https://developers.google.com/machine-learning/crash-course/ml-intro)
[Tabular Data by Machine Learning University](https://www.youtube.com/playlist?list=PL8P_Z6C4GcuVQZCYf_ZnMoIWLLKGx9Mi2)
[Stat 451: Intro to Machine Learning (Fall 2020)](https://www.youtube.com/playlist?list=PLTKMiZHVd_2KyGirGEvKlniaWeLOHhUF3)
### ML Projects
[500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code](https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code)[Best open-access datasets for machine learning, data science, sentiment analysis, computer vision, natural language processing (NLP), clinical data, and others.](https://medium.com/towards-artificial-intelligence/best-datasets-for-machine-learning-data-science-computer-vision-nlp-ai-c9541058cf4f)
[Guide to Awesome Machine Learning Projects](https://github.com/dair-ai/awesome-ML-projects-guide)
[The Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
[ML X ART creative machine learning experiments](https://mlart.co/)
[ML ArtLine](https://github.com/vijishmadhavan/ArtLine)
[ML Example Projects by Paperwithcode](https://paperswithcode.com/)
[10 ML Beginner Projects](https://twitter.com/svpino/status/1331563952967475200)
### Supervised Learning
#### Regression
[Ten minutes to learn Linear regression for dummies!!!](https://medium.com/@venkateshpnk22/ten-minutes-to-learn-linear-regression-for-dummies-5469038f4781)[Statistics 101: Linear Regression, The Very Basics 📈](https://www.youtube.com/watch?v=ZkjP5RJLQF4)
[Linear Regression Concept](https://www.instagram.com/p/CH5bz1RDT7M/?igshid=1c0ubhbflm4mr)
[The Simple Linear Regression Explanation](https://twitter.com/oliverjumpertz/status/1346544095670525952)
#### Classification
[Machine Learning Decision Tree](https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/ml-decision-tree/tutorial/)[Classification with TensorFlow](https://www.tensorflow.org/tutorials/keras/classification)
[How to Get Started With Recommender Systems](https://machinelearningmastery.com/recommender-systems-resources/)
### Unsupervised Learning
#### NLP
[Machine Learning and NLP for Students and Practitioners](https://twitter.com/omarsar0/status/1344633106867884033)[Recommendations for Getting Started with NLP](https://elvissaravia.substack.com/p/my-recommendations-for-getting-started)
[Standford CS224n: Natural Language Processing with Deep Learning](http://web.stanford.edu/class/cs224n/)
[CMU Multilingual NLP 2020](https://www.youtube.com/playlist?list=PL8PYTP1V4I8CHhppU6n1Q9-04m96D9gt5)
[How to use ML to search photos by natural language?](https://twitter.com/haltakov/status/1351271372463497217)
[Tracking Progress in Natural Language Processing](http://nlpprogress.com/)
[NLP Best Practices](https://github.com/microsoft/nlp-recipes)
[Modern Deep Learning Techniques Applied to Natural Language Processing](https://nlpoverview.com/)
[Build, train and deploy state of the art models powered by the reference open source in natural language processing.](https://huggingface.co/)
[The Big Bad NLP Database](https://datasets.quantumstat.com/)
[A Survey of Surveys (NLP & ML)](https://github.com/NiuTrans/ABigSurvey)
### Neural Networks
[A Recipe for Training Neural Networks](http://karpathy.github.io/2019/04/25/recipe/)[Convolutional Neural Nets: Foundations, Computations, and New Applications by Cornell University](https://arxiv.org/abs/2101.04869)
[Non-linearities in Neural Networks](https://twitter.com/svpino/status/1351156045620588547)
### Deep Learning
[MIT 6.S191 Introduction to Deep Learning](http://introtodeeplearning.com/)[Literature of Deep Learning for Graphs](https://github.com/DeepGraphLearning/LiteratureDL4Graph)
[Awesome Pytorch List](https://github.com/bharathgs/Awesome-pytorch-list#tutorials-books--examples)
[ML Visuals](https://github.com/dair-ai/ml-visuals)
[Deep Learning (with PyTorch)](https://www.youtube.com/playlist?list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq)
[Deep Learning for Computer Vision](https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r)
[Lectures for UC Berkeley CS 285: Deep Reinforcement Learning.](https://www.youtube.com/playlist?list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc)
[Full Stack Deep Learning Youtube Channel](https://www.youtube.com/channel/UCVchfoB65aVtQiDITbGq2LQ)
## PROGRAMMING LANGUAGES
### PYTHON
#### Beginner
[Python Basics : Learn Python Programming](https://pythonbasics.org/)[Coursera Algorithms Specialization](https://www.coursera.org/specializations/algorithms)
[Google's Python Class](https://developers.google.com/edu/python)
[PYTHONINDO](https://www.pythonindo.com/)
[BELAJARPYTHON](https://belajarpython.com/tutorial/apa-itu-python)
[FreeCodeCamp Introduction to Python for Everybody](https://www.freecodecamp.org/learn/scientific-computing-with-python/python-for-everybody/)
[Python Getting Started](https://www.python.org/about/gettingstarted/)
[Python Basic Exercise for Beginners](https://pynative.com/python-basic-exercise-for-beginners/)
#### Intermediate
[Beginner Python exercises](http://www.practicepython.org/)[Edabit Python Challenges](https://edabit.com/challenges/python3)
[NumPy Illustrated: The Visual Guide to NumPy](https://medium.com/better-programming/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d)
[Learning Python for Data Analysis and Visualization](https://www.udemy.com/course/learning-python-for-data-analysis-and-visualization/)
[Code Combat](https://codecombat.com)
### ML With Python
[Introduction to TensorFlow](https://www.tensorflow.org/learn)[Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/)
[Lectures of Linear Algebra with Python](https://github.com/MacroAnalyst/Linear_Algebra_With_Python)
[Best-of Machine Learning with Python](https://github.com/ml-tooling/best-of-ml-python)
[Harvard CS109 Data Science](http://cs109.github.io/2015/pages/videos.html)
[Linear Regression in Python](https://realpython.com/linear-regression-in-python/)
[Coursera Statistics with Python Specialization](https://www.coursera.org/specializations/statistics-with-python)
[Introduction to Linear Algebra for Applied Machine Learning with Python](https://pabloinsente.github.io/intro-linear-algebra)
[Linear Regression for Absolute Beginners with Implementation in Python!](https://www.analyticsvidhya.com/blog/2020/10/linear-regression-for-absolute-beginners-with-implementation-in-python/)
## MATHEMATICS
### Linear Algebra
[Khan Academy : Linear Algebra](https://www.khanacademy.org/math/linear-algebra)[Ritchieng : Linear Algebra for Machine Learning](https://www.ritchieng.com/linear-algebra-machine-learning/)
[DIDL : Linear Algebra](https://d2l.ai/chapter_preliminaries/linear-algebra.html)
[Pabloinsente : Linear Algebra](https://pabloinsente.github.io/intro-linear-algebra)
[MIT Open Courseware : Linear Algebra](https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/)
[Mathematics for Machine Learning - Linear Algebra](https://www.youtube.com/playlist?list=PLiiljHvN6z1_o1ztXTKWPrShrMrBLo5P3)
### Statistics & Probability
[StatQuest : Statistics Fundamentals](https://www.youtube.com/playlist?list=PLblh5JKOoLUK0FLuzwntyYI10UQFUhsY9)[Udacity : Intro to Statistics](https://www.udacity.com/course/intro-to-statistics--st101)
[StatQuest : Linear Regression & Linear Model](https://www.youtube.com/playlist?list=PLblh5JKOoLUIzaEkCLIUxQFjPIlapw8nU)
[EDX Data Science: Probability](https://www.edx.org/course/data-science-probability)
[An Intuitive Introduction to Probability](https://www.coursera.org/learn/introductiontoprobability)
[Probabilistic Machine Learning: An Introduction](https://probml.github.io/pml-book/book1.html)
### Calculus
[EDX MathTrackX: Differential Calculus](https://courses.edx.org/courses/course-v1:AdelaideX+DiffTraX+1T2020/course/)[ML Glossary : Calculus](https://ml-cheatsheet.readthedocs.io/en/latest/calculus.html)
[Youtube Channel KALKULUS](https://www.youtube.com/playlist?list=PLBUHpBFmQyt4qp2bBOx67y2v0U1BmtPfS)
[Mathematics for Machine Learning - Multivariate Calculus by Imperial College London](https://www.youtube.com/playlist?list=PLiiljHvN6z193BBzS0Ln8NnqQmzimTW23)
[The Matrix Calculus You Need For Deep Learning by Cornell University](https://arxiv.org/abs/1802.01528)
### Additional
[Proof Index Mathematics Course](https://proofindex.com/)[Computer Science courses with video lectures](https://github.com/Developer-Y/cs-video-courses#math-for-computer-scientist)
[10 Machine Learning Youtube Videos by Santiago](https://twitter.com/svpino/status/1349685410600001542)
[Coursera Introduction to Complex Analysis](https://www.coursera.org/learn/complex-analysis)
[Coursera Information Theory](https://www.coursera.org/learn/information-theory)
[Coursera Data Mining Specialization](https://www.coursera.org/specializations/data-mining)
[Coursera Mathematics for Machine Learning Specialization](https://www.coursera.org/specializations/mathematics-machine-learning)
[MIT Missing Semester IAP 2020](https://www.youtube.com/playlist?list=PLyzOVJj3bHQuloKGG59rS43e29ro7I57J)
## Books
[The Hundred Page Machine Learning Book](http://themlbook.com/wiki/doku.php)[Ebook Programming Gratis by DeepTech](https://twitter.com/deeptech_id/status/1321669306535456768)
[Mathematics for Machine Learning Ebook Pdf](http://gwthomas.github.io/docs/math4ml.pdf)
[ML / AI Books Recommendation](https://twitter.com/galuhsahid/status/1344611529656684545)
[Bayesian Books Recommendation](https://twitter.com/ChadScherrer/status/1346565926934642690)
[Programming Recommendation Books](https://twitter.com/svpino/status/1334736188608028673)
[Rekomendasi Buku Python Bahasa Indonesia by DeepTech Twitter](https://twitter.com/pacmannai/status/1331918966722269191)
[Amazon Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD](https://www.amazon.com/gp/product/B08C2KM7NR/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=shiftedup-20&creative=9325&linkCode=as2&creativeASIN=B08C2KM7NR&linkId=238e2afdcd34172b28f0e6c18c88c574)
## Other References
[Data Science Learning Path](https://github.com/data-folks/data-science-learning-path)[Path to a free self-taught education in Data Science! by Open Source Society University](https://github.com/ossu/data-science)
[Course Recommendations for Introductory Machine Learning](https://elvissaravia.substack.com/p/course-recommendations-for-introductory)
[Homemade Machine Learning](https://github.com/trekhleb/homemade-machine-learning)
[Kumpulan kuliah bagus di Stanford untuk menjadi data scientist yang sakti mandraguna](https://twitter.com/aliakbars/status/1345761027246485504)
[Machine Learning, Deep Learning, and Computer Vision References](https://github.com/mheriyanto/Machine-Learning-and-Computer-Vision-References)
[15 Trending Data Science GitHub Repositories you can not miss in 2017](https://www.analyticsvidhya.com/blog/2017/12/15-data-science-repositories-github-2017/)
[10 Popular Data Science Resources on Github](https://towardsdatascience.com/10-popular-data-science-resources-on-github-7ae288ff4a75)
[Github Data-Science-References](https://github.com/ekosaputro09/Data-Science-References)
[Github Data Science Collected Resources](https://github.com/tirthajyoti/Data-science-best-resources)
[Github Data-Science-Resources](https://github.com/storieswithsiva/Data-Science-Resources)
[50 FREE Artificial Intelligence, Computer Science, Engineering and Programming Courses from the Ivy League Universities](https://twitter.com/LearnersBucket/status/1316983042146185218)