Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/azizp128/data-science-awesome-reference

Daftar referensi tautan-tautan berguna untuk mempelajari tentang Data Science, Machine Learning, dan lainnya. Reference list of useful links to learn about Data Science, Machine Learning and more.
https://github.com/azizp128/data-science-awesome-reference

List: data-science-awesome-reference

Last synced: 16 days ago
JSON representation

Daftar referensi tautan-tautan berguna untuk mempelajari tentang Data Science, Machine Learning, dan lainnya. Reference list of useful links to learn about Data Science, Machine Learning and more.

Awesome Lists containing this project

README

        

# Data-Science-Awesome-References
Daftar referensi tautan-tautan berguna untuk mempelajari tentang Data Science, Machine Learning, dan lainnya.

Reference list of useful links to learn about Data Science, Machine Learning and more.

## MACHINE LEARNING
### Introduction
#### Articles
[Intro Data Science with Siuba](https://learn.siuba.org/intro-data-science/)

[AI Expert Roadmap](https://i.am.ai/roadmap/#note)

[Introduction to AI](https://www.elementsofai.com/)

[Welcome to Introduction to Machine Learning for Coders! taught by Jeremy Howard](https://course18.fast.ai/ml.html)

[Machine Learning From Scratch](https://dafriedman97.github.io/mlbook/content/introduction.html)

[FOUNDATIONS OF MACHINE LEARNING by Bloomberg](https://bloomberg.github.io/foml/#homeworkslave)

[Introduction to Machine Learning](https://sebastianraschka.com/resources/ml-lectures-1/)

[Machine learning cheat sheet](https://github.com/soulmachine/machine-learning-cheat-sheet)

#### MOOC
[Create machine learning models by Microsoft](https://docs.microsoft.com/en-gb/learn/paths/create-machine-learn-models/)

[Coursera : Machine Learning by AndrewNg](https://www.coursera.org/learn/machine-learning)

[Stanford CS 229 ― Machine Learning](https://stanford.edu/~shervine/teaching/cs-229/)

[Coursera Machine Learning Foundations: A Case Study Approach](http://bit.ly/2Y11VsB)

[Introduction to Data Science and Machine Learning](https://www.confetti.ai/)

[The Missing Semester of Your CS Education by MIT](https://missing.csail.mit.edu/)

[Stanford CS229: Machine Learning | Autumn 2018](https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU)

[Introduction to Machine Learning by Google](https://developers.google.com/machine-learning/crash-course/ml-intro)

[Tabular Data by Machine Learning University](https://www.youtube.com/playlist?list=PL8P_Z6C4GcuVQZCYf_ZnMoIWLLKGx9Mi2)

[Stat 451: Intro to Machine Learning (Fall 2020)](https://www.youtube.com/playlist?list=PLTKMiZHVd_2KyGirGEvKlniaWeLOHhUF3)

### ML Projects
[500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code](https://github.com/ashishpatel26/500-AI-Machine-learning-Deep-learning-Computer-vision-NLP-Projects-with-code)

[Best open-access datasets for machine learning, data science, sentiment analysis, computer vision, natural language processing (NLP), clinical data, and others.](https://medium.com/towards-artificial-intelligence/best-datasets-for-machine-learning-data-science-computer-vision-nlp-ai-c9541058cf4f)

[Guide to Awesome Machine Learning Projects](https://github.com/dair-ai/awesome-ML-projects-guide)

[The Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)

[ML X ART creative machine learning experiments](https://mlart.co/)

[ML ArtLine](https://github.com/vijishmadhavan/ArtLine)

[ML Example Projects by Paperwithcode](https://paperswithcode.com/)

[10 ML Beginner Projects](https://twitter.com/svpino/status/1331563952967475200)

### Supervised Learning
#### Regression
[Ten minutes to learn Linear regression for dummies!!!](https://medium.com/@venkateshpnk22/ten-minutes-to-learn-linear-regression-for-dummies-5469038f4781)

[Statistics 101: Linear Regression, The Very Basics 📈](https://www.youtube.com/watch?v=ZkjP5RJLQF4)

[Linear Regression Concept](https://www.instagram.com/p/CH5bz1RDT7M/?igshid=1c0ubhbflm4mr)

[The Simple Linear Regression Explanation](https://twitter.com/oliverjumpertz/status/1346544095670525952)

#### Classification
[Machine Learning Decision Tree](https://www.hackerearth.com/practice/machine-learning/machine-learning-algorithms/ml-decision-tree/tutorial/)

[Classification with TensorFlow](https://www.tensorflow.org/tutorials/keras/classification)

[How to Get Started With Recommender Systems](https://machinelearningmastery.com/recommender-systems-resources/)

### Unsupervised Learning
#### NLP
[Machine Learning and NLP for Students and Practitioners](https://twitter.com/omarsar0/status/1344633106867884033)

[Recommendations for Getting Started with NLP](https://elvissaravia.substack.com/p/my-recommendations-for-getting-started)

[Standford CS224n: Natural Language Processing with Deep Learning](http://web.stanford.edu/class/cs224n/)

[CMU Multilingual NLP 2020](https://www.youtube.com/playlist?list=PL8PYTP1V4I8CHhppU6n1Q9-04m96D9gt5)

[How to use ML to search photos by natural language?](https://twitter.com/haltakov/status/1351271372463497217)

[Tracking Progress in Natural Language Processing](http://nlpprogress.com/)

[NLP Best Practices](https://github.com/microsoft/nlp-recipes)

[Modern Deep Learning Techniques Applied to Natural Language Processing](https://nlpoverview.com/)

[Build, train and deploy state of the art models powered by the reference open source in natural language processing.](https://huggingface.co/)

[The Big Bad NLP Database](https://datasets.quantumstat.com/)

[A Survey of Surveys (NLP & ML)](https://github.com/NiuTrans/ABigSurvey)

### Neural Networks
[A Recipe for Training Neural Networks](http://karpathy.github.io/2019/04/25/recipe/)

[Convolutional Neural Nets: Foundations, Computations, and New Applications by Cornell University](https://arxiv.org/abs/2101.04869)

[Non-linearities in Neural Networks](https://twitter.com/svpino/status/1351156045620588547)

### Deep Learning
[MIT 6.S191 Introduction to Deep Learning](http://introtodeeplearning.com/)

[Literature of Deep Learning for Graphs](https://github.com/DeepGraphLearning/LiteratureDL4Graph)

[Awesome Pytorch List](https://github.com/bharathgs/Awesome-pytorch-list#tutorials-books--examples)

[ML Visuals](https://github.com/dair-ai/ml-visuals)

[Deep Learning (with PyTorch)](https://www.youtube.com/playlist?list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq)

[Deep Learning for Computer Vision](https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r)

[Lectures for UC Berkeley CS 285: Deep Reinforcement Learning.](https://www.youtube.com/playlist?list=PL_iWQOsE6TfURIIhCrlt-wj9ByIVpbfGc)

[Full Stack Deep Learning Youtube Channel](https://www.youtube.com/channel/UCVchfoB65aVtQiDITbGq2LQ)

## PROGRAMMING LANGUAGES
### PYTHON
#### Beginner
[Python Basics : Learn Python Programming](https://pythonbasics.org/)

[Coursera Algorithms Specialization](https://www.coursera.org/specializations/algorithms)

[Google's Python Class](https://developers.google.com/edu/python)

[PYTHONINDO](https://www.pythonindo.com/)

[BELAJARPYTHON](https://belajarpython.com/tutorial/apa-itu-python)

[FreeCodeCamp Introduction to Python for Everybody](https://www.freecodecamp.org/learn/scientific-computing-with-python/python-for-everybody/)

[Python Getting Started](https://www.python.org/about/gettingstarted/)

[Python Basic Exercise for Beginners](https://pynative.com/python-basic-exercise-for-beginners/)

#### Intermediate
[Beginner Python exercises](http://www.practicepython.org/)

[Edabit Python Challenges](https://edabit.com/challenges/python3)

[NumPy Illustrated: The Visual Guide to NumPy](https://medium.com/better-programming/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d)

[Learning Python for Data Analysis and Visualization](https://www.udemy.com/course/learning-python-for-data-analysis-and-visualization/)

[Code Combat](https://codecombat.com)

### ML With Python
[Introduction to TensorFlow](https://www.tensorflow.org/learn)

[Machine Learning Crash Course](https://developers.google.com/machine-learning/crash-course/)

[Lectures of Linear Algebra with Python](https://github.com/MacroAnalyst/Linear_Algebra_With_Python)

[Best-of Machine Learning with Python](https://github.com/ml-tooling/best-of-ml-python)

[Harvard CS109 Data Science](http://cs109.github.io/2015/pages/videos.html)

[Linear Regression in Python](https://realpython.com/linear-regression-in-python/)

[Coursera Statistics with Python Specialization](https://www.coursera.org/specializations/statistics-with-python)

[Introduction to Linear Algebra for Applied Machine Learning with Python](https://pabloinsente.github.io/intro-linear-algebra)

[Linear Regression for Absolute Beginners with Implementation in Python!](https://www.analyticsvidhya.com/blog/2020/10/linear-regression-for-absolute-beginners-with-implementation-in-python/)

## MATHEMATICS
### Linear Algebra
[Khan Academy : Linear Algebra](https://www.khanacademy.org/math/linear-algebra)

[Ritchieng : Linear Algebra for Machine Learning](https://www.ritchieng.com/linear-algebra-machine-learning/)

[DIDL : Linear Algebra](https://d2l.ai/chapter_preliminaries/linear-algebra.html)

[Pabloinsente : Linear Algebra](https://pabloinsente.github.io/intro-linear-algebra)

[MIT Open Courseware : Linear Algebra](https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/)

[Mathematics for Machine Learning - Linear Algebra](https://www.youtube.com/playlist?list=PLiiljHvN6z1_o1ztXTKWPrShrMrBLo5P3)

### Statistics & Probability
[StatQuest : Statistics Fundamentals](https://www.youtube.com/playlist?list=PLblh5JKOoLUK0FLuzwntyYI10UQFUhsY9)

[Udacity : Intro to Statistics](https://www.udacity.com/course/intro-to-statistics--st101)

[StatQuest : Linear Regression & Linear Model](https://www.youtube.com/playlist?list=PLblh5JKOoLUIzaEkCLIUxQFjPIlapw8nU)

[EDX Data Science: Probability](https://www.edx.org/course/data-science-probability)

[An Intuitive Introduction to Probability](https://www.coursera.org/learn/introductiontoprobability)

[Probabilistic Machine Learning: An Introduction](https://probml.github.io/pml-book/book1.html)

### Calculus
[EDX MathTrackX: Differential Calculus](https://courses.edx.org/courses/course-v1:AdelaideX+DiffTraX+1T2020/course/)

[ML Glossary : Calculus](https://ml-cheatsheet.readthedocs.io/en/latest/calculus.html)

[Youtube Channel KALKULUS](https://www.youtube.com/playlist?list=PLBUHpBFmQyt4qp2bBOx67y2v0U1BmtPfS)

[Mathematics for Machine Learning - Multivariate Calculus by Imperial College London](https://www.youtube.com/playlist?list=PLiiljHvN6z193BBzS0Ln8NnqQmzimTW23)

[The Matrix Calculus You Need For Deep Learning by Cornell University](https://arxiv.org/abs/1802.01528)

### Additional
[Proof Index Mathematics Course](https://proofindex.com/)

[Computer Science courses with video lectures](https://github.com/Developer-Y/cs-video-courses#math-for-computer-scientist)

[10 Machine Learning Youtube Videos by Santiago](https://twitter.com/svpino/status/1349685410600001542)

[Coursera Introduction to Complex Analysis](https://www.coursera.org/learn/complex-analysis)

[Coursera Information Theory](https://www.coursera.org/learn/information-theory)

[Coursera Data Mining Specialization](https://www.coursera.org/specializations/data-mining)

[Coursera Mathematics for Machine Learning Specialization](https://www.coursera.org/specializations/mathematics-machine-learning)

[MIT Missing Semester IAP 2020](https://www.youtube.com/playlist?list=PLyzOVJj3bHQuloKGG59rS43e29ro7I57J)

## Books
[The Hundred Page Machine Learning Book](http://themlbook.com/wiki/doku.php)

[Ebook Programming Gratis by DeepTech](https://twitter.com/deeptech_id/status/1321669306535456768)

[Mathematics for Machine Learning Ebook Pdf](http://gwthomas.github.io/docs/math4ml.pdf)

[ML / AI Books Recommendation](https://twitter.com/galuhsahid/status/1344611529656684545)

[Bayesian Books Recommendation](https://twitter.com/ChadScherrer/status/1346565926934642690)

[Programming Recommendation Books](https://twitter.com/svpino/status/1334736188608028673)

[Rekomendasi Buku Python Bahasa Indonesia by DeepTech Twitter](https://twitter.com/pacmannai/status/1331918966722269191)

[Amazon Deep Learning for Coders with fastai and PyTorch: AI Applications Without a PhD](https://www.amazon.com/gp/product/B08C2KM7NR/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=shiftedup-20&creative=9325&linkCode=as2&creativeASIN=B08C2KM7NR&linkId=238e2afdcd34172b28f0e6c18c88c574)

## Other References
[Data Science Learning Path](https://github.com/data-folks/data-science-learning-path)

[Path to a free self-taught education in Data Science! by Open Source Society University](https://github.com/ossu/data-science)

[Course Recommendations for Introductory Machine Learning](https://elvissaravia.substack.com/p/course-recommendations-for-introductory)

[Homemade Machine Learning](https://github.com/trekhleb/homemade-machine-learning)

[Kumpulan kuliah bagus di Stanford untuk menjadi data scientist yang sakti mandraguna](https://twitter.com/aliakbars/status/1345761027246485504)

[Machine Learning, Deep Learning, and Computer Vision References](https://github.com/mheriyanto/Machine-Learning-and-Computer-Vision-References)

[15 Trending Data Science GitHub Repositories you can not miss in 2017](https://www.analyticsvidhya.com/blog/2017/12/15-data-science-repositories-github-2017/)

[10 Popular Data Science Resources on Github](https://towardsdatascience.com/10-popular-data-science-resources-on-github-7ae288ff4a75)

[Github Data-Science-References](https://github.com/ekosaputro09/Data-Science-References)

[Github Data Science Collected Resources](https://github.com/tirthajyoti/Data-science-best-resources)

[Github Data-Science-Resources](https://github.com/storieswithsiva/Data-Science-Resources)

[50 FREE Artificial Intelligence, Computer Science, Engineering and Programming Courses from the Ivy League Universities](https://twitter.com/LearnersBucket/status/1316983042146185218)