Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/benedekrozemberczki/awesome-decision-tree-papers
A collection of research papers on decision, classification and regression trees with implementations.
https://github.com/benedekrozemberczki/awesome-decision-tree-papers
List: awesome-decision-tree-papers
cart catboost classification-model classification-trees classifier decision-tree decision-tree-classifier decision-tree-learning decision-tree-model ensemble-learning gradient-boosting gradient-boosting-machine lightgbm machine-learning machine-learning-research random-forest regression-tree statistical-learning tree-ensemble xgboost
Last synced: 30 days ago
JSON representation
A collection of research papers on decision, classification and regression trees with implementations.
- Host: GitHub
- URL: https://github.com/benedekrozemberczki/awesome-decision-tree-papers
- Owner: benedekrozemberczki
- License: cc0-1.0
- Created: 2019-05-11T18:14:03.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2024-03-16T21:14:33.000Z (8 months ago)
- Last Synced: 2024-05-19T21:23:03.052Z (6 months ago)
- Topics: cart, catboost, classification-model, classification-trees, classifier, decision-tree, decision-tree-classifier, decision-tree-learning, decision-tree-model, ensemble-learning, gradient-boosting, gradient-boosting-machine, lightgbm, machine-learning, machine-learning-research, random-forest, regression-tree, statistical-learning, tree-ensemble, xgboost
- Language: Python
- Homepage:
- Size: 870 KB
- Stars: 2,339
- Watchers: 131
- Forks: 339
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- awesome-artificial-intelligence-research - Decision Tree
- fucking-awesome-awesomeness - Decision Tree Papers
- awesomeai - Decision Tree
- awesome-ai-awesomeness - Decision Tree
- awesome-awesome - awesome-decision-tree-papers - A collection of research papers on decision, classification and regression trees with implementations. (Other)
- awesome-deepnote - awesome-decision-tree-papers
- fucking-lists - awesome-decision-tree-papers
- awesome-ai-awesomeness - Decision Tree
- awesomelist - awesome-decision-tree-papers
- Awesome-Paper-List - Decision Tree
- more-awesome - Decision Tree Papers - Research papers on decision, classification and regression trees with implementations. (To Sort)
- awesome-lists-machine-learning - Decision Tree Research Papers
- awesome-machine-learning-resources - **[List - decision-tree-papers?style=social) (Table of Contents)
- collection - awesome-decision-tree-papers
- awesome-awesome - awesome-decision-tree-papers - A collection of research papers on decision, classification and regression trees with implementations. (Other)
- lists - awesome-decision-tree-papers
- awesome-awesomeness - Decision Tree Papers
- ultimate-awesome - awesome-decision-tree-papers - A collection of research papers on decision, classification and regression trees with implementations. (Other Lists / PowerShell Lists)
README
# Awesome Decision, Classification, and Regression Tree Research Papers
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
[![repo size](https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-decision-tree-papers.svg)](https://github.com/benedekrozemberczki/awesome-decision-tree-papers/archive/master.zip)
![License](https://img.shields.io/github/license/benedekrozemberczki/awesome-decision-tree-papers.svg?color=blue) [![benedekrozemberczki](https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)](https://twitter.com/intent/follow?screen_name=benrozemberczki)
A curated list of classification and regression tree research papers with implementations from the following conferences:
- Machine learning
* [NeurIPS](https://nips.cc/)
* [ICML](https://icml.cc/)
* [ICLR](https://iclr.cc/)
- Computer vision
* [CVPR](http://cvpr2019.thecvf.com/)
* [ICCV](http://iccv2019.thecvf.com/)
* [ECCV](https://eccv2018.org/)
- Natural language processing
* [ACL](http://www.acl2019.org/EN/index.xhtml)
* [NAACL](https://naacl2019.org/)
* [EMNLP](https://www.emnlp-ijcnlp2019.org/)
- Data
* [KDD](https://www.kdd.org/)
* [CIKM](http://www.cikmconference.org/)
* [ICDM](http://icdm2019.bigke.org/)
* [SDM](https://www.siam.org/Conferences/CM/Conference/sdm19)
* [PAKDD](http://pakdd2019.medmeeting.org)
* [PKDD/ECML](http://ecmlpkdd2019.org)
* [SIGIR](https://sigir.org/)
* [WWW](https://www2019.thewebconf.org/)
* [WSDM](www.wsdm-conference.org)
- Artificial intelligence
* [AAAI](https://www.aaai.org/)
* [AISTATS](https://www.aistats.org/)
* [ICANN](https://e-nns.org/icann2019/)
* [IJCAI](https://www.ijcai.org/)
* [UAI](http://www.auai.org/)Similar collections about [graph classification](https://github.com/benedekrozemberczki/awesome-graph-classification), [gradient boosting](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers), [fraud detection](https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), [Monte Carlo tree search](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and [community detection](https://github.com/benedekrozemberczki/awesome-community-detection) papers with implementations.
## 2022
- **Using MaxSAT for Efficient Explanations of Tree Ensembles (AAAI 2022)**
- Alexey Ignatiev, Yacine Izza, Peter J. Stuckey, João Marques-Silva
- [[Paper]](https://alexeyignatiev.github.io/assets/pdf/iisms-aaai22-preprint.pdf)- **FOCUS: Flexible Optimizable Counterfactual Explanations for Tree Ensembles (AAAI 2022)**
- Ana Lucic, Harrie Oosterhuis, Hinda Haned, Maarten de Rijke
- [[Paper]](https://a-lucic.github.io/talks/ICML_SMRL_focus.pdf)- **Explainable and Local Correction of Classification Models Using Decision Trees (AAAI 2022)**
- Hirofumi Suzuki, Hiroaki Iwashita, Takuya Takagi, Keisuke Goto, Yuta Fujishige, Satoshi Hara
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/20816)- **Robust Optimal Classification Trees against Adversarial Examples (AAAI 2022)**
- Daniël Vos, Sicco Verwer
- [[Paper]](https://arxiv.org/abs/2109.03857)- **Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values (AAAI 2022)**
- Haewon Jeong, Hao Wang, Flávio P. Calmon
- [[Paper]](https://arxiv.org/abs/2109.10431)- **Fast Sparse Decision Tree Optimization via Reference Ensembles (AAAI 2022)**
- Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen, Cynthia Rudin, Margo I. Seltzer
- [[Paper]](https://arxiv.org/abs/2112.00798)
- [[Code]](https://pypi.org/project/gosdt/)- **TransBoost: A Boosting-Tree Kernel Transfer Learning Algorithm for Improving Financial Inclusion (AAAI 2022)**
- Yiheng Sun, Tian Lu, Cong Wang, Yuan Li, Huaiyu Fu, Jingran Dong, Yunjie Xu
- [[Paper]](https://arxiv.org/abs/2112.02365)
- [[Code]](https://github.com/yihengsun/TransBoost)- **Counterfactual Explanation Trees: Transparent and Consistent Actionable Recourse with Decision Trees (AISTATS 2022)**
- Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike
- [[Paper]](https://proceedings.mlr.press/v151/kanamori22a.html)- **Accurate Shapley Values for explaining tree-based models (AISTATS 2022)**
- Salim I. Amoukou, Tangi Salaün, Nicolas J.-B. Brunel
- [[Paper]](https://arxiv.org/abs/2106.03820)- **A cautionary tale on fitting decision trees to data from additive models: generalization lower bounds (AISTATS 2022)**
- Yan Shuo Tan, Abhineet Agarwal, Bin Yu
- [[Paper]](https://arxiv.org/abs/2110.09626)
- [[Code]](https://github.com/aagarwal1996/additive_trees)- **Enterprise-Scale Search: Accelerating Inference for Sparse Extreme Multi-Label Ranking Trees (WWW 2022)**
- Philip A. Etter, Kai Zhong, Hsiang-Fu Yu, Lexing Ying, Inderjit S. Dhillon
- [[Paper]](https://arxiv.org/abs/2106.02697)- **MBCT: Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration (WWW 2022)**
- Siguang Huang, Yunli Wang, Lili Mou, Huayue Zhang, Han Zhu, Chuan Yu, Bo Zheng
- [[Paper]](https://arxiv.org/abs/2202.04348)- **Rethinking Conversational Recommendations: Is Decision Tree All You Need (CIKM 2022)**
- A S. M. Ahsan-Ul-Haque, Hongning Wang
- [[Paper]](https://arxiv.org/abs/2208.14614)- **A Neural Tangent Kernel Perspective of Infinite Tree Ensembles (ICLR 2022)**
- Ryuichi Kanoh, Mahito Sugiyama
- [[Paper]](https://openreview.net/forum?id=vUH85MOXO7h)
- **POETREE: Interpretable Policy Learning with Adaptive Decision Trees (ICLR 2022)**
- Alizée Pace, Alex Chan, Mihaela van der Schaar
- [[Paper]](https://arxiv.org/abs/2203.08057)- **Hierarchical Shrinkage: Improving the accuracy and interpretability of tree-based models (ICML 2022)**
- Abhineet Agarwal, Yan Shuo Tan, Omer Ronen, Chandan Singh, Bin Yu
- [[Paper]](https://arxiv.org/abs/2202.00858)- **Popular decision tree algorithms are provably noise tolerant (ICML 2022)**
- Guy Blanc, Jane Lange, Ali Malik, Li-Yang Tan
- [[Paper]](https://arxiv.org/abs/2206.08899)- **Robust Counterfactual Explanations for Tree-Based Ensembles (ICML 2022)**
- Sanghamitra Dutta, Jason Long, Saumitra Mishra, Cecilia Tilli, Daniele Magazzeni
- [[Paper]](https://proceedings.mlr.press/v162/dutta22a.html)- **Fast Provably Robust Decision Trees and Boosting (ICML 2022)**
- Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao, Zhi-Hua Zhou
- [[Paper]](https://proceedings.mlr.press/v162/guo22h.html)- **BAMDT: Bayesian Additive Semi-Multivariate Decision Trees for Nonparametric Regression (ICML 2022)**
- Zhao Tang Luo, Huiyan Sang, Bani K. Mallick
- [[Paper]](https://proceedings.mlr.press/v162/luo22a.html)- **Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees with Continuous Features (ICML 2022)**
- Rahul Mazumder, Xiang Meng, Haoyue Wang
- [[Paper]](https://arxiv.org/abs/2206.11844)- **A Tree-based Model Averaging Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources (ICML 2022)**
- Xiaoqing Tan, Chung-Chou H. Chang, Ling Zhou, Lu Tang
- [[Paper]](https://arxiv.org/abs/2103.06261)- **On Preferred Abductive Explanations for Decision Trees and Random Forests (IJCAI 2022)**
- Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis
- [[Paper]](https://www.ijcai.org/proceedings/2022/0091.pdf)- **Extending Decision Tree to Handle Multiple Fairness Criteria (IJCAI 2022)**
- Alessandro Castelnovo
- [[Paper]](https://www.ijcai.org/proceedings/2022/0822.pdf)- **Flexible Modeling and Multitask Learning using Differentiable Tree Ensembles (KDD 2022)**
- Shibal Ibrahim, Hussein Hazimeh, Rahul Mazumder
- [[Paper]](https://arxiv.org/abs/2205.09717)- **Integrity Authentication in Tree Models (KDD 2022)**
- Weijie Zhao, Yingjie Lao, Ping Li
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3534678.3539428)- **Retrieval-Based Gradient Boosting Decision Trees for Disease Risk Assessment (KDD 2022)**
- Handong Ma, Jiahang Cao, Yuchen Fang, Weinan Zhang, Wenbo Sheng, Shaodian Zhang, Yong Yu
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3534678.3539052)- **Improved feature importance computation for tree models based on the Banzhaf value (UAI 2022)**
- Adam Karczmarz, Tomasz Michalak, Anish Mukherjee, Piotr Sankowski, Piotr Wygocki
- [[Paper]](https://proceedings.mlr.press/v180/karczmarz22a.html)- **Learning linear non-Gaussian polytree models (UAI 2022)**
- Daniele Tramontano, Anthea Monod, Mathias Drton
- [[Paper]](https://arxiv.org/abs/2208.06701)## 2021
- **Online Probabilistic Label Trees (AISTATS 2021)**
- Kalina Jasinska-Kobus, Marek Wydmuch, Devanathan Thiruvenkatachari, Krzysztof Dembczyński
- [[Paper]](https://arxiv.org/abs/2007.04451)
- [[Code]](https://github.com/mwydmuch/napkinXC)- **Optimal Decision Trees for Nonlinear Metrics (AAAI 2021)**
- Emir Demirovic, Peter J. Stuckey
- [[Paper]](https://arxiv.org/abs/2009.06921)- **SAT-based Decision Tree Learning for Large Data Sets (AAAI 2021)**
- André Schidler, Stefan Szeider
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/16509)- **Parameterized Complexity of Small Decision Tree Learning (AAAI 2021)**
- Sebastian Ordyniak, Stefan Szeider
- [[Paper]](https://www.ac.tuwien.ac.at/files/tr/ac-tr-21-002.pdf)- **Counterfactual Explanations for Oblique Decision Trees: Exact - Efficient Algorithms (AAAI 2021)**
- Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada
- [[Paper]](https://arxiv.org/abs/2103.01096)- **Geometric Heuristics for Transfer Learning in Decision Trees (CIKM 2021)**
- Siddhesh Chaubal, Mateusz Rzepecki, Patrick K. Nicholson, Guangyuan Piao, Alessandra Sala
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3482259)- **Fairness-Aware Training of Decision Trees by Abstract Interpretation (CIKM 2021)**
- Francesco Ranzato, Caterina Urban, Marco Zanella
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3482342)- **Enabling Efficiency-Precision Trade-offs for Label Trees in Extreme Classification (CIKM 2021)**
- Tavor Z. Baharav, Daniel L. Jiang, Kedarnath Kolluri, Sujay Sanghavi, Inderjit S. Dhillon
- [[Paper]](https://arxiv.org/abs/2106.00730)- **Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees (ICLR 2021)**
- Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork
- [[Paper]](https://openreview.net/forum?id=Ut1vF_q_vC)- **NBDT: Neural-Backed Decision Tree (ICLR 2021)**
- Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Suzanne Petryk, Sarah Adel Bargal, Joseph E. Gonzalez
- [[Paper]](https://arxiv.org/abs/2004.00221)- **Versatile Verification of Tree Ensembles (ICML 2021)**
- Laurens Devos, Wannes Meert, Jesse Davis
- [[Paper]](https://arxiv.org/abs/2010.13880)- **Connecting Interpretability and Robustness in Decision Trees through Separation (ICML 2021)**
- Michal Moshkovitz, Yao-Yuan Yang, Kamalika Chaudhuri
- [[Paper]](https://arxiv.org/abs/2102.07048)- **Optimal Counterfactual Explanations in Tree Ensembles (ICML 2021)**
- Axel Parmentier, Thibaut Vidal
- [[Paper]](https://arxiv.org/abs/2106.06631)- **Efficient Training of Robust Decision Trees Against Adversarial Examples (ICML 2021)**
- Daniël Vos, Sicco Verwer
- [[Paper]](https://arxiv.org/abs/2012.10438)- **Learning Binary Decision Trees by Argmin Differentiation (ICML 2021)**
- Valentina Zantedeschi, Matt J. Kusner, Vlad Niculae
- [[Paper]](https://arxiv.org/pdf/2010.04627.pdf)
- **BLOCKSET (Block-Aligned Serialized Trees): Reducing Inference Latency for Tree ensemble Deployment (KDD 2021)**
- Meghana Madhyastha, Kunal Lillaney, James Browne, Joshua T. Vogelstein, Randal Burns
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3447548.3467368)- **ControlBurn: Feature Selection by Sparse Forests (KDD 2021)**
- Brian Liu, Miaolan Xie, Madeleine Udell
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3447548.3467387?sid=SCITRUS)- **Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression (KDD 2021)**
- Olivier Sprangers, Sebastian Schelter, Maarten de Rijke
- [[Paper]](https://dl.acm.org/doi/10.1145/3447548.3467278)- **Verifying Tree Ensembles by Reasoning about Potential Instances (SDM 2021)**
- Laurens Devos, Wannes Meert, Jesse Davis
- [[Paper]](https://arxiv.org/abs/2001.11905)## 2020
- **DTCA: Decision Tree-based Co-Attention Networks for Explainable Claim Verification (ACL 2020)**
- Lianwei Wu, Yuan Rao, Yongqiang Zhao, Hao Liang, Ambreen Nazir
- [[Paper]](https://arxiv.org/abs/2004.13455)- **Privacy-Preserving Gradient Boosting Decision Trees (AAAI 2020)**
- Qinbin Li, Zhaomin Wu, Zeyi Wen, Bingsheng He
- [[Paper]](https://arxiv.org/abs/1911.04209)- **Practical Federated Gradient Boosting Decision Trees (AAAI 2020)**
- Qinbin Li, Zeyi Wen, Bingsheng He
- [[Paper]](https://arxiv.org/abs/1911.04206)- **Efficient Inference of Optimal Decision Trees (AAAI 2020)**
- Florent Avellaneda
- [[Paper]](http://florent.avellaneda.free.fr/dl/AAAI20.pdf)
- [[Code]](https://github.com/FlorentAvellaneda/InferDT)- **Learning Optimal Decision Trees Using Caching Branch-and-Bound Search (AAAI 2020)**
- Gael Aglin, Siegfried Nijssen, Pierre Schaus
- [[Paper]](https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A223390/datastream/PDF_01/view)
- [[Code]](https://pypi.org/project/dl8.5/)- **Abstract Interpretation of Decision Tree Ensemble Classifiers (AAAI 2020)**
- Francesco Ranzato, Marco Zanella
- [[Paper]](https://www.math.unipd.it/~ranzato/papers/aaai20.pdf)
- [[Code]](https://github.com/abstract-machine-learning/silva)- **Scalable Feature Selection for (Multitask) Gradient Boosted Trees (AISTATS 2020)**
- Cuize Han, Nikhil Rao, Daria Sorokina, Karthik Subbian
- [[Paper]](http://proceedings.mlr.press/v108/han20a.html)- **Optimization Methods for Interpretable Differentiable Decision Trees Applied to Reinforcement Learning (AISTATS 2020)**
- Andrew Silva, Matthew C. Gombolay, Taylor W. Killian, Ivan Dario Jimenez Jimenez, Sung-Hyun Son
- [[Paper]](https://arxiv.org/abs/1903.09338)- **Exploiting Categorical Structure Using Tree-Based Methods (AISTATS 2020)**
- Brian Lucena
- [[Paper]](https://arxiv.org/abs/2004.07383)- **LdSM: Logarithm-depth Streaming Multi-label Decision Trees (AISTATS 2020)**
- Maryam Majzoubi, Anna Choromanska
- [[Paper]](https://arxiv.org/abs/1905.10428)
- **Oblique Decision Trees from Derivatives of ReLU Networks (ICLR 2020)**
- Guang-He Lee, Tommi S. Jaakkola
- [[Paper]](https://openreview.net/pdf?id=Bke8UR4FPB)
- [[Code]](https://github.com/guanghelee/iclr20-lcn)
- **Provable Guarantees for Decision Tree Induction: the Agnostic Setting (ICML 2020)**
- Guy Blanc, Jane Lange, Li-Yang Tan
- [[Paper]](https://arxiv.org/abs/2006.00743v1)- **Decision Trees for Decision-Making under the Predict-then-Optimize Framework (ICML 2020)**
- Adam N. Elmachtoub, Jason Cheuk Nam Liang, Ryan McNellis
- [[Paper]](https://arxiv.org/abs/2003.00360)- **The Tree Ensemble Layer: Differentiability meets Conditional Computation (ICML 2020)**
- Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, Rahul Mazumder
- [[Paper]](https://arxiv.org/abs/2002.07772)
- [[Code]](https://github.com/google-research/google-research/tree/master/tf_trees)- **Generalized and Scalable Optimal Sparse Decision Trees (ICML 2020)**
- Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, Margo I. Seltzer
- [[Paper]](https://arxiv.org/abs/2006.08690)
- [[Code]](https://github.com/xiyanghu/OSDT)- **Born-Again Tree Ensembles (ICML 2020)**
- Thibaut Vidal, Maximilian Schiffer
- [[Paper]](https://arxiv.org/abs/2003.11132)
- [[Code]](https://github.com/vidalt/BA-Trees)- **On Lp-norm Robustness of Ensemble Decision Stumps and Trees (ICML 2020)**
- Yihan Wang, Huan Zhang, Hongge Chen, Duane S. Boning, Cho-Jui Hsieh
- [[Paper]](https://arxiv.org/abs/2008.08755)- **Smaller, More Accurate Regression Forests Using Tree Alternating Optimization (ICML 2020)**
- Arman Zharmagambetov, Miguel Á. Carreira-Perpinan
- [[Paper]](http://proceedings.mlr.press/v119/zharmagambetov20a.html)
- **Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost (IJCAI 2020)**
- Hao Hu, Mohamed Siala, Emmanuel Hebrard, Marie-José Huguet
- [[Paper]](https://www.ijcai.org/Proceedings/2020/163)- **Speeding up Very Fast Decision Tree with Low Computational Cost (IJCAI 2020)**
- Jian Sun, Hongyu Jia, Bo Hu, Xiao Huang, Hao Zhang, Hai Wan, Xibin Zhao
- [[Paper]](https://www.ijcai.org/Proceedings/2020/0177.pdf)- **PyDL8.5: a Library for Learning Optimal Decision Trees (IJCAI 2020)**
- Gaël Aglin, Siegfried Nijssen, Pierre Schaus
- [[Paper]](https://www.ijcai.org/Proceedings/2020/0750.pdf)
- [[Code]](https://github.com/aia-uclouvain/pydl8.5)- **Geodesic Forests (KDD 2020)**
- Meghana Madhyastha, Gongkai Li, Veronika Strnadova-Neeley, James Browne, Joshua T. Vogelstein, Randal Burns
- [[Paper]](https://dl.acm.org/doi/pdf/10.1145/3394486.3403094)- **A Scalable MIP-based Method for Learning Optimal Multivariate Decision Trees (NeurIPS 2020)**
- Haoran Zhu, Pavankumar Murali, Dzung T. Phan, Lam M. Nguyen, Jayant Kalagnanam
- [[Paper]](https://arxiv.org/abs/2011.03375)- **Estimating Decision Tree Learnability with Polylogarithmic Sample Complexity (NeurIPS 2020)**
- Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan
- [[Paper]](https://arxiv.org/abs/2011.01584)
- **Universal Guarantees for Decision Tree Induction via a Higher-Order Splitting Criterion (NeurIPS 2020)**
- Guy Blanc, Neha Gupta, Jane Lange, Li-Yang Tan
- [[Paper]](https://arxiv.org/abs/2010.08633)- **Smooth And Consistent Probabilistic Regression Trees (NeurIPS 2020)**
- Sami Alkhoury, Emilie Devijver, Marianne Clausel, Myriam Tami, Éric Gaussier, Georges Oppenheim
- [[Paper]](https://papers.nips.cc/paper/2020/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf)- **An Efficient Adversarial Attack for Tree Ensembles (NeurIPS 2020)**
- Chong Zhang, Huan Zhang, Cho-Jui Hsieh
- [[Paper]](https://arxiv.org/abs/2010.11598)
- [[Code]](https://github.com/chong-z/tree-ensemble-attack)- **Decision Trees as Partitioning Machines to Characterize their Generalization Properties (NeurIPS 2020)**
- Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand
- [[Paper]](https://papers.nips.cc/paper/2020/file/d2a10b0bd670e442b1d3caa3fbf9e695-Paper.pdf)
- **Evidence Weighted Tree Ensembles for Text Classification (SIGIR 2020)**
- Md. Zahidul Islam, Jixue Liu, Jiuyong Li, Lin Liu, Wei Kang
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3397271.3401229)
## 2019- **Multi Level Deep Cascade Trees for Conversion Rate Prediction in Recommendation System (AAAI 2019)**
- Hong Wen, Jing Zhang, Quan Lin, Keping Yang, Pipei Huang
- [[Paper]](https://arxiv.org/pdf/1805.09484.pdf)
- **Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME (AAAI 2019)**
- Farhad Shakerin, Gopal Gupta
- [[Paper]](https://arxiv.org/abs/1808.00629)
- **Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making (AAAI 2019)**
- Sina Aghaei, Mohammad Javad Azizi, Phebe Vayanos
- [[Paper]](https://arxiv.org/abs/1903.10598)- **Desiderata for Interpretability: Explaining Decision Tree Predictions with Counterfactuals (AAAI 2019)**
- Kacper Sokol, Peter A. Flach
- [[Paper]](https://aaai.org/ojs/index.php/AAAI/article/view/5154)
- **Weighted Oblique Decision Trees (AAAI 2019)**
- Bin-Bin Yang, Song-Qing Shen, Wei Gao
- [[Paper]](https://aaai.org/ojs/index.php/AAAI/article/view/4505)- **Learning Optimal Classification Trees Using a Binary Linear Program Formulation (AAAI 2019)**
- Sicco Verwer, Yingqian Zhang
- [[Paper]](https://yingqianzhang.net/wp-content/uploads/2018/12/VerwerZhangAAAI-final.pdf)- **Optimization of Hierarchical Regression Model with Application to Optimizing Multi-Response Regression K-ary Trees (AAAI 2019)**
- Pooya Tavallali, Peyman Tavallali, Mukesh Singhal
- [[Paper]](https://aaai.org/ojs/index.php/AAAI/article/view/4447/4325)- **XBART: Accelerated Bayesian Additive Regression Trees (AISTATS 2019)**
- Jingyu He, Saar Yalov, P. Richard Hahn
- [[Paper]](https://arxiv.org/abs/1810.02215)- **Interaction Detection with Bayesian Decision Tree Ensembles (AISTATS 2019)**
- Junliang Du, Antonio R. Linero
- [[Paper]](https://arxiv.org/abs/1809.08524)
- **Adversarial Training of Gradient-Boosted Decision Trees (CIKM 2019)**
- Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei
- [[Paper]](https://www.dais.unive.it/~calzavara/papers/cikm19.pdf)- **Interpretable MTL from Heterogeneous Domains using Boosted Tree (CIKM 2019)**
- Ya-Lin Zhang, Longfei Li
- [[Paper]](https://dl.acm.org/citation.cfm?id=3357384.3358072)- **Interpreting CNNs via Decision Trees (CVPR 2019)**
- Quanshi Zhang, Yu Yang, Haotian Ma, Ying Nian Wu
- [[Paper]](https://arxiv.org/abs/1802.00121)
- **EDiT: Interpreting Ensemble Models via Compact Soft Decision Trees (ICDM 2019)**
- Jaemin Yoo, Lee Sael
- [[Paper]](https://github.com/leesael/EDiT/blob/master/docs/YooS19.pdf)
- [[Code]](https://github.com/leesael/EDiT)- **Fair Adversarial Gradient Tree Boosting (ICDM 2019)**
- Vincent Grari, Boris Ruf, Sylvain Lamprier, Marcin Detyniecki
- [[Paper]](https://arxiv.org/abs/1911.05369)- **Functional Transparency for Structured Data: a Game-Theoretic Approach (ICML 2019)**
- Guang-He Lee, Wengong Jin, David Alvarez-Melis, Tommi S. Jaakkola
- [[Paper]](http://proceedings.mlr.press/v97/lee19b/lee19b.pdf)
- **Incorporating Grouping Information into Bayesian Decision Tree Ensembles (ICML 2019)**
- Junliang Du, Antonio R. Linero
- [[Paper]](http://proceedings.mlr.press/v97/du19d.html)- **Adaptive Neural Trees (ICML 2019)**
- Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, Antonio Criminisi, Aditya V. Nori
- [[Paper]](https://arxiv.org/abs/1807.06699)
- [[Code]](https://github.com/rtanno21609/AdaptiveNeuralTrees)- **Robust Decision Trees Against Adversarial Examples (ICML 2019)**
- Hongge Chen, Huan Zhang, Duane S. Boning, Cho-Jui Hsieh
- [[Paper]](https://arxiv.org/abs/1902.10660)
- [[Code]](https://github.com/chenhongge/RobustTrees)
- **Learn Smart with Less: Building Better Online Decision Trees with Fewer Training Examples (IJCAI 2019)**
- Ariyam Das, Jin Wang, Sahil M. Gandhi, Jae Lee, Wei Wang, Carlo Zaniolo
- [[Paper]](https://www.ijcai.org/proceedings/2019/0306.pdf)
- **FAHT: An Adaptive Fairness-aware Decision Tree Classifier (IJCAI 2019)**
- Wenbin Zhang, Eirini Ntoutsi
- [[Paper]](https://arxiv.org/abs/1907.07237)
- [[Code]](https://github.com/vanbanTruong/FAHT)- **Inter-node Hellinger Distance based Decision Tree (IJCAI 2019)**
- Pritom Saha Akash, Md. Eusha Kadir, Amin Ahsan Ali, Mohammad Shoyaib
- [[Paper]](https://www.ijcai.org/proceedings/2019/0272.pdf)
- [[Matlab Code]](https://github.com/ZDanielsResearch/HellingerTreesMatlab)
- [[R Code]](https://github.com/kaustubhrpatil/HDDT)- **Gradient Boosting with Piece-Wise Linear Regression Trees (IJCAI 2019)**
- Yu Shi, Jian Li, Zhize Li
- [[Paper]](https://arxiv.org/abs/1802.05640)
- [[Code]](https://github.com/GBDT-PL/GBDT-PL)- **A Gradient-Based Split Criterion for Highly Accurate and Transparent Model Trees (IJCAI 2019)**
- Klaus Broelemann, Gjergji Kasneci
- [[Paper]](https://arxiv.org/abs/1809.09703)
- **Combining Decision Trees and Neural Networks for Learning-to-Rank in Personal Search (KDD 2019)**
- Pan Li, Zhen Qin, Xuanhui Wang, Donald Metzler
- [[Paper]](https://ai.google/research/pubs/pub48133/)
- **Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers (NeurIPS 2019)**
- Guang-He Lee, Yang Yuan, Shiyu Chang, Tommi S. Jaakkola
- [[Paper]](https://papers.nips.cc/paper/8737-tight-certificates-of-adversarial-robustness-for-randomly-smoothed-classifiers.pdf)
- [[Code]](https://github.com/guanghelee/Randomized_Smoothing)- **Partitioning Structure Learning for Segmented Linear Regression Trees (NeurIPS 2019)**
- Xiangyu Zheng, Song Xi Chen
- [[Paper]](https://papers.nips.cc/paper/8494-partitioning-structure-learning-for-segmented-linear-regression-trees)
- **Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS 2019)**
- Maksym Andriushchenko, Matthias Hein
- [[Paper]](https://arxiv.org/abs/1906.03526)
- [[Code]](https://github.com/max-andr/provably-robust-boosting)- **Optimal Decision Tree with Noisy Outcomes (NeurIPS 2019)**
- Su Jia, Viswanath Nagarajan, Fatemeh Navidi, R. Ravi
- [[Paper]](https://papers.nips.cc/paper/8592-optimal-decision-tree-with-noisy-outcomes.pdf)
- [[Code]](https://github.com/sjia1/ODT-with-noisy-outcomes)- **Regularized Gradient Boosting (NeurIPS 2019)**
- Corinna Cortes, Mehryar Mohri, Dmitry Storcheus
- [[Paper]](https://papers.nips.cc/paper/8784-regularized-gradient-boosting.pdf)- **Optimal Sparse Decision Trees (NeurIPS 2019)**
- Xiyang Hu, Cynthia Rudin, Margo Seltzer
- [[Paper]](https://papers.nips.cc/paper/8947-optimal-sparse-decision-trees.pdf)
- [[Code]](https://github.com/xiyanghu/OSDT)
- **MonoForest framework for tree ensemble analysis (NeurIPS 2019)**
- Igor Kuralenok, Vasilii Ershov, Igor Labutin
- [[Paper]](https://papers.nips.cc/paper/9530-monoforest-framework-for-tree-ensemble-analysis)
- [[Code]](https://github.com/xiyanghu/OSDT)- **Calibrating Probability Estimation Trees using Venn-Abers Predictors (SDM 2019)**
- Ulf Johansson, Tuwe Löfström, Henrik Boström
- [[Paper]](https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.4)
- **Fast Training for Large-Scale One-versus-All Linear Classifiers using Tree-Structured Initialization (SDM 2019)**
- Huang Fang, Minhao Cheng, Cho-Jui Hsieh, Michael P. Friedlander
- [[Paper]](https://epubs.siam.org/doi/pdf/10.1137/1.9781611975673.32)- **Forest Packing: Fast Parallel, Decision Forests (SDM 2019)**
- James Browne, Disa Mhembere, Tyler M. Tomita, Joshua T. Vogelstein, Randal Burns
- [[Paper]](https://epubs.siam.org/doi/abs/10.1137/1.9781611975673.6)
- **Block-distributed Gradient Boosted Trees (SIGIR 2019)**
- Theodore Vasiloudis, Hyunsu Cho, Henrik Boström
- [[Paper]](https://arxiv.org/abs/1904.10522)
- **Entity Personalized Talent Search Models with Tree Interaction Features (WWW 2019)**
- Cagri Ozcaglar, Sahin Cem Geyik, Brian Schmitz, Prakhar Sharma, Alex Shelkovnykov, Yiming Ma, Erik Buchanan
- [[Paper]](https://arxiv.org/abs/1902.09041)## 2018
- **Adapting to Concept Drift in Credit Card Transaction Data Streams Using Contextual Bandits and Decision Trees (AAAI 2018)**
- Dennis J. N. J. Soemers, Tim Brys, Kurt Driessens, Mark H. M. Winands, Ann Nowé
- [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16183/16394)- **MERCS: Multi-Directional Ensembles of Regression and Classification Trees (AAAI 2018)**
- Elia Van Wolputte, Evgeniya Korneva, Hendrik Blockeel
- [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16875/16735)
- [[Code]](https://github.com/eliavw/mercs-v5)- **Differential Performance Debugging With Discriminant Regression Trees (AAAI 2018)**
- Saeid Tizpaz-Niari, Pavol Cerný, Bor-Yuh Evan Chang, Ashutosh Trivedi
- [[Paper]](https://arxiv.org/abs/1711.04076)
- [[Code]](https://github.com/cuplv/DPDEBUGGER)- **Estimating the Class Prior in Positive and Unlabeled Data Through Decision Tree Induction (AAAI 2018)**
- Jessa Bekker, Jesse Davis
- [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16776)- **MDP-Based Cost Sensitive Classification Using Decision Trees (AAAI 2018)**
- Shlomi Maliah, Guy Shani
- [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17128)- **Generative Adversarial Image Synthesis With Decision Tree Latent Controller (CVPR 2018)**
- Takuhiro Kaneko, Kaoru Hiramatsu, Kunio Kashino
- [[Paper]](https://arxiv.org/abs/1805.10603)
- [[Code]](https://github.com/LynnHo/DTLC-GAN-Tensorflow)- **Enhancing Very Fast Decision Trees with Local Split-Time Predictions (ICDM 2018)**
- Viktor Losing, Heiko Wersing, Barbara Hammer
- [[Paper]](https://www.techfak.uni-bielefeld.de/~hwersing/LosingHammerWersing_ICDM2018.pdf)
- [[Code]](https://github.com/ICDM2018Submission/VFDT-split-time-prediction)
- **Realization of Random Forest for Real-Time Evaluation through Tree Framing (ICDM 2018)**
- Sebastian Buschjäger, Kuan-Hsun Chen, Jian-Jia Chen, Katharina Morik
- [[Paper]](https://sfb876.tu-dortmund.de/PublicPublicationFiles/buschjaeger_2018a.pdf)- **Finding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)**
- Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke
- [[Paper]](https://arxiv.org/abs/1802.06640)
- [[Code]](https://github.com/bsharchilev/influence_boosting)- **Learning Optimal Decision Trees with SAT (IJCAI 2018)**
- Nina Narodytska, Alexey Ignatiev, Filipe Pereira, João Marques-Silva
- [[Paper]](https://www.ijcai.org/proceedings/2018/0189.pdf)- **Extremely Fast Decision Tree (KDD 2018)**
- Chaitanya Manapragada, Geoffrey I. Webb, Mahsa Salehi
- [[Paper]](https://arxiv.org/abs/1802.08780)
- [[Code]](https://github.com/doubleplusplus/incremental_decision_tree-CART-Random_Forest_python)
- **RapidScorer: Fast Tree Ensemble Evaluation by Maximizing Compactness in Data Level Parallelization (KDD 2018)**
- Ting Ye, Hucheng Zhou, Will Y. Zou, Bin Gao, Ruofei Zhang
- [[Paper]](http://ai.stanford.edu/~wzou/kdd_rapidscorer.pdf)
- **CatBoost: Unbiased Boosting with Categorical Features (NIPS 2018)**
- Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin
- [[Paper]](https://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf)
- [[Code]](https://catboost.ai/)
- **Active Learning for Non-Parametric Regression Using Purely Random Trees (NIPS 2018)**
- Jack Goetz, Ambuj Tewari, Paul Zimmerman
- [[Paper]](https://papers.nips.cc/paper/7520-active-learning-for-non-parametric-regression-using-purely-random-trees.pdf)- **Alternating Optimization of Decision Trees with Application to Learning Sparse Oblique Trees (NIPS 2018)**
- Miguel Á. Carreira-Perpiñán, Pooya Tavallali
- [[Paper]](https://papers.nips.cc/paper/7397-alternating-optimization-of-decision-trees-with-application-to-learning-sparse-oblique-trees)- **Multi-Layered Gradient Boosting Decision Trees (NIPS 2018)**
- Ji Feng, Yang Yu, Zhi-Hua Zhou
- [[Paper]](https://papers.nips.cc/paper/7614-multi-layered-gradient-boosting-decision-trees.pdf)
- [[Code]](https://github.com/kingfengji/mGBDT)
- **Transparent Tree Ensembles (SIGIR 2018)**
- Alexander Moore, Vanessa Murdock, Yaxiong Cai, Kristine Jones
- [[Paper]](http://delivery.acm.org/10.1145/3220000/3210151/p1241-moore.pdf?ip=129.215.164.203&id=3210151&acc=ACTIVE%20SERVICE&key=C2D842D97AC95F7A%2EEB9E991028F4E1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1559054892_a29816c683aa83a0ce0fbb777c68daba)- **Privacy-aware Ranking with Tree Ensembles on the Cloud (SIGIR 2018)**
- Shiyu Ji, Jinjin Shao, Daniel Agun, Tao Yang
- [[Paper]](https://sites.cs.ucsb.edu/projects/ds/sigir18.pdf)## 2017
- **Strategic Sequences of Arguments for Persuasion Using Decision Trees (AAAI 2017)**
- Emmanuel Hadoux, Anthony Hunter
- [[Paper]](http://www0.cs.ucl.ac.uk/staff/a.hunter/papers/aaai17.pdf)- **BoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)**
- Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales
- [[Paper]](https://melmeric.files.wordpress.com/2010/05/boostvht-boosting-distributed-streaming-decision-trees.pdf)- **Latency Reduction via Decision Tree Based Query Construction (CIKM 2017)**
- Aman Grover, Dhruv Arya, Ganesh Venkataraman
- [[Paper]](https://dl.acm.org/citation.cfm?id=3132865)- **Enumerating Distinct Decision Trees (ICML 2017)**
- Salvatore Ruggieri
- [[Paper]](http://proceedings.mlr.press/v70/ruggieri17a/ruggieri17a.pdf)- **Gradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)**
- Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh
- [[Paper]](http://proceedings.mlr.press/v70/si17a.html)
- [[Code]](https://github.com/springdaisy/GBDT)- **Consistent Feature Attribution for Tree Ensembles (ICML 2017)**
- Scott M. Lundberg, Su-In Lee
- [[Paper]](https://arxiv.org/abs/1706.06060)
- [[Code]](https://github.com/slundberg/shap)- **Extremely Fast Decision Tree Mining for Evolving Data Streams (KDD 2017)**
- Albert Bifet, Jiajin Zhang, Wei Fan, Cheng He, Jianfeng Zhang, Jianfeng Qian, Geoff Holmes, Bernhard Pfahringer
- [[Paper]](https://core.ac.uk/download/pdf/151040580.pdf)
- **CatBoost: Gradient Boosting with Categorical Features Support (NIPS 2017)**
- Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin
- [[Paper]](https://arxiv.org/abs/1810.11363)
- [[Code]](https://catboost.ai/)- **LightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)**
- Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu
- [[Paper]](https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree)
- [[Code]](https://lightgbm.readthedocs.io/en/latest/)- **Variable Importance Using Decision Trees (NIPS 2017)**
- Jalil Kazemitabar, Arash Amini, Adam Bloniarz, Ameet S. Talwalkar
- [[Paper]](https://papers.nips.cc/paper/6646-variable-importance-using-decision-trees)- **A Unified Approach to Interpreting Model Predictions (NIPS 2017)**
- Scott M. Lundberg, Su-In Lee
- [[Paper]](https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions)
- [[Code]](https://github.com/slundberg/shap)- **Pruning Decision Trees via Max-Heap Projection (SDM 2017)**
- Zhi Nie, Binbin Lin, Shuai Huang, Naren Ramakrishnan, Wei Fan, Jieping Ye
- [[Paper]](https://www.researchgate.net/publication/317485748_Pruning_Decision_Trees_via_Max-Heap_Projection)- **A Practical Method for Solving Contextual Bandit Problems Using Decision Trees (UAI 2017)**
- Adam N. Elmachtoub, Ryan McNellis, Sechan Oh, Marek Petrik
- [[Paper]](https://arxiv.org/abs/1706.04687)- **Complexity of Solving Decision Trees with Skew-Symmetric Bilinear Utility (UAI 2017)**
- Hugo Gilbert, Olivier Spanjaard
- [[Paper]](http://auai.org/uai2017/proceedings/papers/64.pdf)
- **GB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees (WWW 2017)**
- Qian Zhao, Yue Shi, Liangjie Hong
- [[Paper]](http://papers.www2017.com.au.s3-website-ap-southeast-2.amazonaws.com/proceedings/p1311.pdf)## 2016
- **Sparse Perceptron Decision Tree for Millions of Dimensions (AAAI 2016)**
- Weiwei Liu, Ivor W. Tsang
- [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12111)- **Learning Online Smooth Predictors for Realtime Camera Planning Using Recurrent Decision Trees (CVPR 2016)**
- Jianhui Chen, Hoang Minh Le, Peter Carr, Yisong Yue, James J. Little
- [[Paper]](http://hoangle.info/papers/cvpr2016_online_smooth_long.pdf)- **Online Learning with Bayesian Classification Trees (CVPR 2016)**
- Samuel Rota Bulò, Peter Kontschieder
- [[Paper]](http://www.dsi.unive.it/~srotabul/files/publications/CVPR2016.pdf)- **Accurate Robust and Efficient Error Estimation for Decision Trees (ICML 2016)**
- Lixin Fan
- [[Paper]](http://proceedings.mlr.press/v48/fan16.pdf)- **Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)**
- Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov
- [[Paper]](http://proceedings.mlr.press/v48/ustinovskiy16.html)- **Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)**
- Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov
- [[Paper]](https://www.kdd.org/kdd2016/papers/files/adf0653-poyarkovA.pdf)
- **XGBoost: A Scalable Tree Boosting System (KDD 2016)**
- Tianqi Chen, Carlos Guestrin
- [[Paper]](https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf)
- [[Code]](https://xgboost.readthedocs.io/en/latest/)- **Yggdrasil: An Optimized System for Training Deep Decision Trees at Scale (NIPS 2016)**
- Firas Abuzaid, Joseph K. Bradley, Feynman T. Liang, Andrew Feng, Lee Yang, Matei Zaharia, Ameet S. Talwalkar
- [[Paper]](https://papers.nips.cc/paper/6366-yggdrasil-an-optimized-system-for-training-deep-decision-trees-at-scale)- **A Communication-Efficient Parallel Algorithm for Decision Tree (NIPS 2016)**
- Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhiming Ma, Tie-Yan Liu
- [[Paper]](https://arxiv.org/abs/1611.01276)
- [[Code]](https://github.com/microsoft/LightGBM/blob/master/docs/Features.rst)- **Exploiting CPU SIMD Extensions to Speed-up Document Scoring with Tree Ensembles (SIGIR 2016)**
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, Rossano Venturini
- [[Paper]](http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2016/07/SIGIR16a.pdf)
- [[Code]](https://github.com/hpclab/vectorized-quickscorer)- **Post-Learning Optimization of Tree Ensembles for Efficient Ranking (SIGIR 2016)**
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, Salvatore Trani
- [[Paper]](https://www.researchgate.net/publication/305081572_Post-Learning_Optimization_of_Tree_Ensembles_for_Efficient_Ranking)
- [[Code]](https://github.com/hpclab/quickrank)## 2015
- **Particle Gibbs for Bayesian Additive Regression Trees (AISTATS 2015)**
- Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
- [[Paper]](https://arxiv.org/abs/1502.04622)- **DART: Dropouts Meet Multiple Additive Regression Trees (AISTATS 2015)**
- Korlakai Vinayak Rashmi, Ran Gilad-Bachrach
- [[Paper]](https://arxiv.org/abs/1505.01866)
- [[Code]](https://xgboost.readthedocs.io/en/latest/)- **Single Target Tracking Using Adaptive Clustered Decision Trees and Dynamic Multi-level Appearance Models (CVPR 2015)**
- Jingjing Xiao, Rustam Stolkin, Ales Leonardis
- [[Paper]](https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/3B_058.pdf)- **Face Alignment Using Cascade Gaussian Process Regression Trees (CVPR 2015)**
- Donghoon Lee, Hyunsin Park, Chang Dong Yoo
- [[Paper]](https://slsp.kaist.ac.kr/paperdata/Face_Alignment_Using.pdf)
- [[Code]](https://github.com/donghoonlee04/cGPRT)- **Tracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)**
- Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han
- [[Paper]](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf)- **Entropy Evaluation Based on Confidence Intervals of Frequency Estimates : Application to the Learning of Decision Trees (ICML 2015)**
- Mathieu Serrurier, Henri Prade
- [[Paper]](http://proceedings.mlr.press/v37/serrurier15.pdf)
- **Large-scale Distributed Dependent Nonparametric Trees (ICML 2015)**
- Zhiting Hu, Qirong Ho, Avinava Dubey, Eric P. Xing
- [[Paper]](https://www.cs.cmu.edu/~zhitingh/data/icml15hu.pdf)- **Optimal Action Extraction for Random Forests and Boosted Trees (KDD 2015)**
- Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen
- [[Paper]](https://www.cse.wustl.edu/~ychen/public/OAE.pdf)- **A Decision Tree Framework for Spatiotemporal Sequence Prediction (KDD 2015)**
- Taehwan Kim, Yisong Yue, Sarah L. Taylor, Iain A. Matthews
- [[Paper]](http://www.yisongyue.com/publications/kdd2015_ssw_dt.pdf)- **Efficient Non-greedy Optimization of Decision Trees (NIPS 2015)**
- Mohammad Norouzi, Maxwell D. Collins, Matthew Johnson, David J. Fleet, Pushmeet Kohli
- [[Paper]](https://arxiv.org/abs/1511.04056)
- **QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees (SIGIR 2015)**
- Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego, Nicola Tonellotto, Rossano Venturini
- [[Paper]](http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2015/11/sigir15.pdf)
- [[Code]](https://github.com/hpclab/quickrank)## 2014
- **A Mixtures-of-Trees Framework for Multi-Label Classification (CIKM 2014)**
- Charmgil Hong, Iyad Batal, Milos Hauskrecht
- [[Paper]](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410801/)
- **On Building Decision Trees from Large-scale Data in Applications of On-line Advertising (CIKM 2014)**
- Shivaram Kalyanakrishnan, Deepthi Singh, Ravi Kant
- [[Paper]](https://www.cse.iitb.ac.in/~shivaram/papers/ksk_cikm_2014.pdf)- **Fast Supervised Hashing with Decision Trees for High-Dimensional Data (CVPR 2014)**
- Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, David Suter
- [[Paper]](https://arxiv.org/abs/1404.1561)- **One Millisecond Face Alignment with an Ensemble of Regression Trees (CVPR 2014)**
- Vahid Kazemi, Josephine Sullivan
- [[Paper]](https://www.researchgate.net/publication/264419855_One_Millisecond_Face_Alignment_with_an_Ensemble_of_Regression_Trees)
- **The return of AdaBoost.MH: multi-class Hamming trees (ICLR 2014)**
- Balázs Kégl
- [[Paper]](https://arxiv.org/pdf/1312.6086.pdf)- **Diagnosis Determination: Decision Trees Optimizing Simultaneously Worst and Expected Testing Cost (ICML 2014)**
- Ferdinando Cicalese, Eduardo Sany Laber, Aline Medeiros Saettler
- [[Paper]](https://pdfs.semanticscholar.org/47ae/852f83b76f95b27ab00308d04f6020bdf71f.pdf)
- **Learning Multiple-Question Decision Trees for Cold-Start Recommendation (WSDM 2013)**
- Mingxuan Sun, Fuxin Li, Joonseok Lee, Ke Zhou, Guy Lebanon, Hongyuan Zha
- [[Paper]](http://www.joonseok.net/papers/coldstart.pdf)## 2013
- **Weakly Supervised Learning of Image Partitioning Using Decision Trees with Structured Split Criteria (ICCV 2013)**
- Christoph N. Straehle, Ullrich Köthe, Fred A. Hamprecht
- [[Paper]](https://ieeexplore.ieee.org/document/6751340)- **Revisiting Example Dependent Cost-Sensitive Learning with Decision Trees (ICCV 2013)**
- Oisin Mac Aodha, Gabriel J. Brostow
- [[Paper]](https://ieeexplore.ieee.org/document/6751133)- **Conformal Prediction Using Decision Trees (ICDM 2013)**
- Ulf Johansson, Henrik Boström, Tuve Löfström
- [[Paper]](https://ieeexplore.ieee.org/abstract/document/6729517)- **Focal-Test-Based Spatial Decision Tree Learning: A Summary of Results (ICDM 2013)**
- Zhe Jiang, Shashi Shekhar, Xun Zhou, Joseph K. Knight, Jennifer Corcoran
- [[Paper]](https://pdfs.semanticscholar.org/f28e/df8d9eed76e4ce97cb6bd4182d590547be5e.pdf)- **Top-down Particle Filtering for Bayesian Decision Trees (ICML 2013)**
- Balaji Lakshminarayanan, Daniel M. Roy, Yee Whye Teh
- [[Paper]](https://arxiv.org/abs/1303.0561)- **Quickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)**
- Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona
- [[Paper]](http://proceedings.mlr.press/v28/appel13.pdf)- **Knowledge Compilation for Model Counting: Affine Decision Trees (IJCAI 2013)**
- Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, Samuel Thomas
- [[Paper]](https://www.researchgate.net/publication/262398921_Knowledge_Compilation_for_Model_Counting_Affine_Decision_Trees)
- **Understanding Variable Importances in Forests of Randomized Trees (NIPS 2013)**
- Gilles Louppe, Louis Wehenkel, Antonio Sutera, Pierre Geurts
- [[Paper]](https://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees)- **Regression-tree Tuning in a Streaming Setting (NIPS 2013)**
- Samory Kpotufe, Francesco Orabona
- [[Paper]](https://papers.nips.cc/paper/4898-regression-tree-tuning-in-a-streaming-setting)- **Learning Max-Margin Tree Predictors (UAI 2013)**
- Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson
- [[Paper]](https://ttic.uchicago.edu/~meshi/papers/mtreen.pdf)## 2012
- **Regression Tree Fields - An Efficient, Non-parametric Approach to Image Labeling Problems (CVPR 2012)**
- Jeremy Jancsary, Sebastian Nowozin, Toby Sharp, Carsten Rother
- [[Paper]](http://www.nowozin.net/sebastian/papers/jancsary2012rtf.pdf)- **ConfDTree: Improving Decision Trees Using Confidence Intervals (ICDM 2012)**
- Gilad Katz, Asaf Shabtai, Lior Rokach, Nir Ofek
- [[Paper]](https://ieeexplore.ieee.org/document/6413889)- **Improved Information Gain Estimates for Decision Tree Induction (ICML 2012)**
- Sebastian Nowozin
- [[Paper]](https://arxiv.org/abs/1206.4620)- **Learning Partially Observable Models Using Temporally Abstract Decision Trees (NIPS 2012)**
- Erik Talvitie
- [[Paper]](https://papers.nips.cc/paper/4662-learning-partially-observable-models-using-temporally-abstract-decision-trees)
- **Subtree Replacement in Decision Tree Simplification (SDM 2012)**
- Salvatore Ruggieri
- [[Paper]](http://pages.di.unipi.it/ruggieri/Papers/sdm2012.pdf)## 2011
- **Incorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)**
- Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich
- [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3711/4086)- **Syntactic Decision Tree LMs: Random Selection or Intelligent Design (EMNLP 2011)**
- Denis Filimonov, Mary P. Harper
- [[Paper]](https://www.aclweb.org/anthology/D11-1064)
- **Decision Tree Fields (ICCV 2011)**
- Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, Pushmeet Kohli
- [[Paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/11/nrbsyk_iccv11.pdf)- **Confidence in Predictions from Random Tree Ensembles (ICDM 2011)**
- Siddhartha Bhattacharyya
- [[Paper]](https://link.springer.com/article/10.1007/s10115-012-0600-z)- **Speeding-Up Hoeffding-Based Regression Trees With Options (ICML 2011)**
- Elena Ikonomovska, João Gama, Bernard Zenko, Saso Dzeroski
- [[Paper]](https://icml.cc/Conferences/2011/papers/349_icmlpaper.pdf)
- **Density Estimation Trees (KDD 2011)**
- Parikshit Ram, Alexander G. Gray
- [[Paper]](https://mlpack.org/papers/det.pdf)
- **Bagging Gradient-Boosted Trees for High Precision, Low Variance Ranking Models (SIGIR 2011)**
- Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes
- [[Paper]](http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/materials/bagging_lmbamart_jforests.pdf)- **On the Complexity of Decision Making in Possibilistic Decision Trees (UAI 2011)**
- Hélène Fargier, Nahla Ben Amor, Wided Guezguez
- [[Paper]](https://dslpitt.org/uai/papers/11/p203-fargier.pdf)- **Adaptive Bootstrapping of Recommender Systems Using Decision Trees (WSDM 2011)**
- Nadav Golbandi, Yehuda Koren, Ronny Lempel
- [[Paper]](https://dl.acm.org/citation.cfm?id=1935910)- **Parallel Boosted Regression Trees for Web Search Ranking (WWW 2011)**
- Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin
- [[Paper]](http://www.cs.cornell.edu/~kilian/papers/fr819-tyreeA.pdf)## 2010
- **Discrimination Aware Decision Tree Learning (ICDM 2010)**
- Faisal Kamiran, Toon Calders, Mykola Pechenizkiy
- [[Paper]](https://www.win.tue.nl/~mpechen/publications/pubs/KamiranICDM2010.pdf)- **Decision Trees for Uplift Modeling (ICDM 2010)**
- Piotr Rzepakowski, Szymon Jaroszewicz
- [[Paper]](https://core.ac.uk/download/pdf/81899141.pdf)- **Learning Markov Network Structure with Decision Trees (ICDM 2010)**
- Daniel Lowd, Jesse Davis
- [[Paper]](https://ix.cs.uoregon.edu/~lowd/icdm10lowd.pdf)- **Multivariate Dyadic Regression Trees for Sparse Learning Problems (NIPS 2010)**
- Han Liu, Xi Chen
- [[Paper]](https://papers.nips.cc/paper/4178-multivariate-dyadic-regression-trees-for-sparse-learning-problems.pdf)
- **Fast and Accurate Gene Prediction by Decision Tree Classification (SDM 2010)**
- Rong She, Jeffrey Shih-Chieh Chu, Ke Wang, Nansheng Chen
- [[Paper]](http://www.sfu.ca/~chenn/genBlastDT_sdm.pdf)- **A Robust Decision Tree Algorithm for Imbalanced Data Sets (SDM 2010)**
- Wei Liu, Sanjay Chawla, David A. Cieslak, Nitesh V. Chawla
- [[Paper]](https://www3.nd.edu/~nchawla/papers/SDM10.pdf)## 2009
- **Stochastic Gradient Boosted Distributed Decision Trees (CIKM 2009)**
- Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng
- [[Paper]](https://dl.acm.org/citation.cfm?id=1646301)
- **Feature Selection for Ranking Using Boosted Trees (CIKM 2009)**
- Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca Donato
- [[Paper]](http://www.francosalvetti.com/cikm09_camera2.pdf)
- **Thai Word Segmentation with Hidden Markov Model and Decision Tree (PAKDD 2009)**
- Poramin Bheganan, Richi Nayak, Yue Xu
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-642-01307-2_10)- **Parameter Estimdation in Semi-Random Decision Tree Ensembling on Streaming Data (PAKDD 2009)**
- Pei-Pei Li, Qianhui Liang, Xindong Wu, Xuegang Hu
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-642-01307-2_35)- **DTU: A Decision Tree for Uncertain Data (PAKDD 2009)**
- Biao Qin, Yuni Xia, Fang Li
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-642-01307-2_4)## 2008
- **Predicting Future Decision Trees from Evolving Data (ICDM 2008)**
- Mirko Böttcher, Martin Spott, Rudolf Kruse
- [[Paper]](https://ieeexplore.ieee.org/document/4781098)- **Bayes Optimal Classification for Decision Trees (ICML 2008)**
- Siegfried Nijssen
- [[Paper]](http://icml2008.cs.helsinki.fi/papers/455.pdf)
- **A New Credit Scoring Method Based on Rough Sets and Decision Tree (PAKDD 2008)**
- XiYue Zhou, Defu Zhang, Yi Jiang
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-540-68125-0_117)- **A Comparison of Different Off-Centered Entropies to Deal with Class Imbalance for Decision Trees (PAKDD 2008)**
- Philippe Lenca, Stéphane Lallich, Thanh-Nghi Do, Nguyen-Khang Pham
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-540-68125-0_59)- **BOAI: Fast Alternating Decision Tree Induction Based on Bottom-Up Evaluation (PAKDD 2008)**
- Bishan Yang, Tengjiao Wang, Dongqing Yang, Lei Chang
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-540-68125-0_36)- **A General Framework for Estimating Similarity of Datasets and Decision Trees: Exploring Semantic Similarity of Decision Trees (SDM 2008)**
- Irene Ntoutsi, Alexandros Kalousis, Yannis Theodoridis
- [[Paper]](https://www.researchgate.net/publication/220907047_A_general_framework_for_estimating_similarity_of_datasets_and_decision_trees_exploring_semantic_similarity_of_decision_trees)- **ROC-tree: A Novel Decision Tree Induction Algorithm Based on Receiver Operating Characteristics to Classify Gene Expression Data (SDM 2008)**
- M. Maruf Hossain, Md. Rafiul Hassan, James Bailey
- [[Paper]](https://pdfs.semanticscholar.org/bd80/db2f0903169b7611d34b2cc85f60a736375d.pdf)## 2007
- **Tree-based Classifiers for Bilayer Video Segmentation (CVPR 2007)**
- Pei Yin, Antonio Criminisi, John M. Winn, Irfan A. Essa
- [[Paper]](https://ieeexplore.ieee.org/document/4270033)- **Additive Groves of Regression Trees (ECML 2007)**
- Daria Sorokina, Rich Caruana, Mirek Riedewald
- [[Paper]](http://additivegroves.net/papers/groves.pdf)- **Decision Tree Instability and Active Learning (ECML 2007)**
- Kenneth Dwyer, Robert Holte
- [[Paper]](https://webdocs.cs.ualberta.ca/~holte/Publications/ecml07.pdf)- **Ensembles of Multi-Objective Decision Trees (ECML 2007)**
- Dragi Kocev, Celine Vens, Jan Struyf, Saso Dzeroski
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-540-74958-5_61)- **Seeing the Forest Through the Trees: Learning a Comprehensible Model from an Ensemble (ECML 2007)**
- Anneleen Van Assche, Hendrik Blockeel
- [[Paper]](http://ftp.cs.wisc.edu/machine-learning/shavlik-group/ilp07wip/ilp07_assche.pdf)- **Sample Compression Bounds for Decision Trees (ICML 2007)**
- Mohak Shah
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.331.9136&rep=rep1&type=pdf)- **A Tighter Error Bound for Decision Tree Learning Using PAC Learnability (IJCAI 2007)**
- Chaithanya Pichuka, Raju S. Bapi, Chakravarthy Bhagvati, Arun K. Pujari, Bulusu Lakshmana Deekshatulu
- [[Paper]](https://www.ijcai.org/Proceedings/07/Papers/163.pdf)- **Keep the Decision Tree and Estimate the Class Probabilities Using its Decision Boundary (IJCAI 2007)**
- Isabelle Alvarez, Stephan Bernard, Guillaume Deffuant
- [[Paper]](https://www.ijcai.org/Proceedings/07/Papers/104.pdf)- **Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)**
- Claudia Henry, Richard Nock, Frank Nielsen
- [[Paper]](https://www.ijcai.org/Proceedings/07/Papers/135.pdf)- **Scalable Look-ahead Linear Regression Trees (KDD 2007)**
- David S. Vogel, Ognian Asparouhov, Tobias Scheffer
- [[Paper]](https://www.cs.uni-potsdam.de/ml/publications/kdd2007.pdf)- **Mining Optimal Decision Trees from Itemset Lattices (KDD 2007)**
- Siegfried Nijssen, Élisa Fromont
- [[Paper]](https://hal.archives-ouvertes.fr/hal-00372011/document)
- **A Hybrid Multi-group Privacy-Preserving Approach for Building Decision Trees (PAKDD 2007)**
- Zhouxuan Teng, Wenliang Du
- [[Paper]](https://link.springer.com/chapter/10.1007/978-3-540-71701-0_30)## 2006
- **Decision Tree Methods for Finding Reusable MDP Homomorphisms (AAAI 2006)**
- Alicia P. Wolfe, Andrew G. Barto
- [[Paper]](https://www.aaai.org/Papers/AAAI/2006/AAAI06-085.pdf)- **A Fast Decision Tree Learning Algorithm (AAAI 2006)**
- Jiang Su, Harry Zhang
- [[Paper]](http://www.cs.unb.ca/~hzhang/publications/AAAI06.pdf)- **Anytime Induction of Decision Trees: An Iterative Improvement Approach (AAAI 2006)**
- Saher Esmeir, Shaul Markovitch
- [[Paper]](https://www.aaai.org/Papers/AAAI/2006/AAAI06-056.pdf)- **When a Decision Tree Learner Has Plenty of Time (AAAI 2006)**
- Saher Esmeir, Shaul Markovitch
- [[Paper]](https://www.aaai.org/Papers/AAAI/2006/AAAI06-259.pdf)- **Decision Trees for Functional Variables (ICDM 2006)**
- Suhrid Balakrishnan, David Madigan
- [[Paper]](http://archive.dimacs.rutgers.edu/Research/MMS/PAPERS/fdt17.pdf)
- **Cost-Sensitive Decision Tree Learning for Forensic Classification (ECML 2006)**
- Jason V. Davis, Jungwoo Ha, Christopher J. Rossbach, Hany E. Ramadan, Emmett Witchel
- [[Paper]](https://www.cs.utexas.edu/users/witchel/pubs/davis-ecml06.pdf)- **Improving the Ranking Performance of Decision Trees (ECML 2006)**
- Bin Wang, Harry Zhang
- [[Paper]](https://link.springer.com/chapter/10.1007/11871842_44)- **A General Framework for Accurate and Fast Regression by Data Summarization in Random Decision Trees (KDD 2006)**
- Wei Fan, Joe McCloskey, Philip S. Yu
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.2004&rep=rep1&type=pdf)
- **Constructing Decision Trees for Graph-Structured Data by Chunkingless Graph-Based Induction (PAKDD 2006)**
- Phu Chien Nguyen, Kouzou Ohara, Akira Mogi, Hiroshi Motoda, Takashi Washio
- [[Paper]](http://www.ar.sanken.osaka-u.ac.jp/~motoda/papers/pakdd06.pdf)- **Variable Randomness in Decision Tree Ensembles (PAKDD 2006)**
- Fei Tony Liu, Kai Ming Ting
- [[Paper]](https://link.springer.com/chapter/10.1007/11731139_12)- **Generalized Conditional Entropy and a Metric Splitting Criterion for Decision Trees (PAKDD 2006)**
- Dan A. Simovici, Szymon Jaroszewicz
- [[Paper]](https://www.researchgate.net/profile/Szymon_Jaroszewicz/publication/220895184_Generalized_Conditional_Entropy_and_a_Metric_Splitting_Criterion_for_Decision_Trees/links/0fcfd50b1267f7b868000000/Generalized-Conditional-Entropy-and-a-Metric-Splitting-Criterion-for-Decision-Trees.pdf)- **Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics (PKDD 2006)**
- Hendrik Blockeel, Leander Schietgat, Jan Struyf, Saso Dzeroski, Amanda Clare
- [[Paper]](https://link.springer.com/chapter/10.1007/11871637_7)- **k-Anonymous Decision Tree Induction (PKDD 2006)**
- Arik Friedman, Assaf Schuster, Ran Wolff
- [[Paper]](http://www.cs.technion.ac.il/~arikf/online-publications/kADET06.pdf)## 2005
- **Representing Conditional Independence Using Decision Trees (AAAI 2005)**
- Jiang Su, Harry Zhang
- [[Paper]](http://www.cs.unb.ca/~hzhang/publications/AAAI051SuJ.pdf)- **Use of Expert Knowledge for Decision Tree Pruning (AAAI 2005)**
- Jingfeng Cai, John Durkin
- [[Paper]](http://www.aaai.org/Papers/AAAI/2005/SA05-009.pdf)
- **Model Selection in Omnivariate Decision Trees (ECML 2005)**
- Olcay Taner Yildiz, Ethem Alpaydin
- [[Paper]](https://www.cmpe.boun.edu.tr/~ethem/files/papers/yildiz_ecml05.pdf)- **Combining Bias and Variance Reduction Techniques for Regression Trees (ECML 2005)**
- Yuk Lai Suen, Prem Melville, Raymond J. Mooney
- [[Paper]](http://www.cs.utexas.edu/users/ml/papers/bv-ecml-05.pdf)- **Simple Test Strategies for Cost-Sensitive Decision Trees (ECML 2005)**
- Shengli Sheng, Charles X. Ling, Qiang Yang
- [[Paper]](https://www.researchgate.net/publication/3297582_Test_strategies_for_cost-sensitive_decision_trees)- **Effective Estimation of Posterior Probabilities: Explaining the Accuracy of Randomized Decision Tree Approaches (ICDM 2005)**
- Wei Fan, Ed Greengrass, Joe McCloskey, Philip S. Yu, Kevin Drummey
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9713&rep=rep1&type=pdf)- **Exploiting Informative Priors for Bayesian Classification and Regression Trees (IJCAI 2005)**
- Nicos Angelopoulos, James Cussens
- [[Paper]](https://www.ijcai.org/Proceedings/05/Papers/1013.pdf)- **Ranking Cases with Decision Trees: a Geometric Method that Preserves Intelligibility (IJCAI 2005)**
- Isabelle Alvarez, Stephan Bernard
- [[Paper]](https://www.ijcai.org/Proceedings/05/Papers/1502.pdf)
- **Maximizing Tree Diversity by Building Complete-Random Decision Trees (PAKDD 2005)**
- Fei Tony Liu, Kai Ming Ting, Wei Fan
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.7805&rep=rep1&type=pdf)- **Hybrid Cost-Sensitive Decision Tree (PKDD 2005)**
- Shengli Sheng, Charles X. Ling
- [[Paper]](https://cling.csd.uwo.ca/papers/pkdd05a.pdf)- **Tree2 - Decision Trees for Tree Structured Data (PKDD 2005)**
- Björn Bringmann, Albrecht Zimmermann
- [[Paper]](https://link.springer.com/chapter/10.1007/11564126_10)- **Building Decision Trees on Records Linked through Key References (SDM 2005)**
- Ke Wang, Yabo Xu, Philip S. Yu, Rong She
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.215.7181&rep=rep1&type=pdf)- **Decision Tree Induction in High Dimensional, Hierarchically Distributed Databases (SDM 2005)**
- Amir Bar-Or, Ran Wolff, Assaf Schuster, Daniel Keren
- [[Paper]](https://www.semanticscholar.org/paper/Decision-Tree-Induction-in-High-Dimensional%2C-Bar-Or-Wolff/90235fc35c27dae273681f7847c2b20ff37928a9)- **Boosted Decision Trees for Word Recognition in Handwritten Document Retrieval (SIGIR 2005)**
- Nicholas R. Howe, Toni M. Rath, R. Manmatha
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.1551&rep=rep1&type=pdf)## 2004
- **On the Optimality of Probability Estimation by Random Decision Trees (AAAI 2004)**
- Wei Fan
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.2128&rep=rep1&type=pdf)- **Occam's Razor and a Non-Syntactic Measure of Decision Tree Complexity (AAAI 2004)**
- Goutam Paul
- [[Paper]](https://www.aaai.org/Papers/AAAI/2004/AAAI04-130.pdf)- **Using Emerging Patterns and Decision Trees in Rare-Class Classification (ICDM 2004)**
- Hamad Alhammady, Kotagiri Ramamohanarao
- [[Paper]](https://ieeexplore.ieee.org/abstract/document/1410299)- **Orthogonal Decision Trees (ICDM 2004)**
- Hillol Kargupta, Haimonti Dutta
- [[Paper]](https://www.csee.umbc.edu/~hillol/PUBS/odtree.pdf)- **Improving the Reliability of Decision Tree and Naive Bayes Learners (ICDM 2004)**
- David George Lindsay, Siân Cox
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.521.3127&rep=rep1&type=pdf)- **Communication Efficient Construction of Decision Trees Over Heterogeneously Distributed Data (ICDM 2004)**
- Chris Giannella, Kun Liu, Todd Olsen, Hillol Kargupta
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.79.7119&rep=rep1&type=pdf)- **Decision Tree Evolution Using Limited Number of Labeled Data Items from Drifting Data Streams (ICDM 2004)**
- Wei Fan, Yi-an Huang, Philip S. Yu
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.9450&rep=rep1&type=pdf)- **Lookahead-based Algorithms for Anytime Induction of Decision Trees (ICML 2004)**
- Saher Esmeir, Shaul Markovitch
- [[Paper]](http://www.cs.technion.ac.il/~shaulm/papers/pdf/Esmeir-Markovitch-icml2004.pdf)
- **Decision Trees with Minimal Costs (ICML 2004)**
- Charles X. Ling, Qiang Yang, Jianning Wang, Shichao Zhang
- [[Paper]](https://icml.cc/Conferences/2004/proceedings/papers/136.pdf)- **Training Conditional Random Fields via Gradient Tree Boosting (ICML 2004)**
- Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov
- [[Paper]](http://web.engr.oregonstate.edu/~tgd/publications/ml2004-treecrf.pdf)- **Detecting Structural Metadata with Decision Trees and Transformation-Based Learning (NAACL 2004)**
- Joungbum Kim, Sarah E. Schwarm, Mari Ostendorf
- [[Paper]](https://www.aclweb.org/anthology/N04-1018)- **On the Adaptive Properties of Decision Trees (NIPS 2004)**
- Clayton D. Scott, Robert D. Nowak
- [[Paper]](https://papers.nips.cc/paper/2625-on-the-adaptive-properties-of-decision-trees.pdf)
- **A Metric Approach to Building Decision Trees Based on Goodman-Kruskal Association Index (PAKDD 2004)**
- Dan A. Simovici, Szymon Jaroszewicz
- [[Paper]](https://www.researchgate.net/publication/2906289_A_Metric_Approach_to_Building_Decision_Trees_Based_on_Goodman-Kruskal_Association_Index)## 2003
- **Rademacher Penalization over Decision Tree Prunings (ECML 2003)**
- Matti Kääriäinen, Tapio Elomaa
- [[Paper]](https://www.researchgate.net/publication/221112653_Rademacher_Penalization_over_Decision_Tree_Prunings)
- **Ensembles of Cascading Trees (ICDM 2003)**
- Jinyan Li, Huiqing Liu
- [[Paper]](https://www.researchgate.net/publication/4047523_Ensembles_of_cascading_trees)- **Postprocessing Decision Trees to Extract Actionable Knowledge (ICDM 2003)**
- Qiang Yang, Jie Yin, Charles X. Ling, Tielin Chen
- [[Paper]](https://pdfs.semanticscholar.org/b2c6/ff54c7aeefc70820ff04a8fc8b804012c504.pdf)- **K-D Decision Tree: An Accelerated and Memory Efficient Nearest Neighbor Classifier (ICDM 2003)**
- Tomoyuki Shibata, Takekazu Kato, Toshikazu Wada
- [[Paper]](https://ieeexplore.ieee.org/abstract/document/1250997)- **Identifying Markov Blankets with Decision Tree Induction (ICDM 2003)**
- Lewis J. Frey, Douglas H. Fisher, Ioannis Tsamardinos, Constantin F. Aliferis, Alexander R. Statnikov
- [[Paper]](https://www.semanticscholar.org/paper/Identifying-Markov-Blankets-with-Decision-Tree-Frey-Fisher/1aa0b0ede22f3963c923ea320a8bed91ac5aafbf)- **Comparing Naive Bayes, Decision Trees, and SVM with AUC and Accuracy (ICDM 2003)**
- Jin Huang, Jingjing Lu, Charles X. Ling
- [[Paper]](https://pdfs.semanticscholar.org/8a73/74b98a9d94b8c01e996e72340f86a4327869.pdf)- **Boosting Lazy Decision Trees (ICML 2003)**
- Xiaoli Zhang Fern, Carla E. Brodley
- [[Paper]](https://www.aaai.org/Papers/ICML/2003/ICML03-026.pdf)- **Decision Tree with Better Ranking (ICML 2003)**
- Charles X. Ling, Robert J. Yan
- [[Paper]](https://www.aaai.org/Papers/ICML/2003/ICML03-064.pdf)- **Skewing: An Efficient Alternative to Lookahead for Decision Tree Induction (IJCAI 2003)**
- David Page, Soumya Ray
- [[Paper]](http://pages.cs.wisc.edu/~dpage/ijcai3.pdf)- **Efficient Decision Tree Construction on Streaming Data (KDD 2003)**
- Ruoming Jin, Gagan Agrawal
- [[Paper]](http://web.cse.ohio-state.edu/~agrawal.28/p/sigkdd03.pdf)- **PaintingClass: Interactive Construction Visualization and Exploration of Decision Trees (KDD 2003)**
- Soon Tee Teoh, Kwan-Liu Ma
- [[Paper]](https://www.researchgate.net/publication/220272011_PaintingClass_interactive_construction_visualization_and_exploration_of_decision_trees)- **Accurate Decision Trees for Mining High-Speed Data Streams (KDD 2003)**
- João Gama, Ricardo Rocha, Pedro Medas
- [[Paper]](http://staff.icar.cnr.it/manco/Teaching/2006/datamining/Esami2006/ArticoliSelezionatiDM/SEMINARI/Mining%20Data%20Streams/kdd03.pdf)- **Near-Minimax Optimal Classification with Dyadic Classification Trees (NIPS 2003)**
- Clayton D. Scott, Robert D. Nowak
- [[Paper]](http://nowak.ece.wisc.edu/nips03.pdf)
- **Improving Performance of Decision Tree Algorithms with Multi-edited Nearest Neighbor Rule (PAKDD 2003)**
- Chenzhou Ye, Jie Yang, Lixiu Yao, Nian-yi Chen
- [[Paper]](https://www.researchgate.net/publication/220895462_Improving_Performance_of_Decision_Tree_Algorithms_with_Multi-edited_Nearest_Neighbor_Rule)- **Arbogodai: a New Approach for Decision Trees (PKDD 2003)**
- Djamel A. Zighed, Gilbert Ritschard, Walid Erray, Vasile-Marian Scuturici
- [[Paper]](http://mephisto.unige.ch/pub/publications/gr/zig_rit_arbo_pkdd03.pdf)- **Communication and Memory Efficient Parallel Decision Tree Construction (SDM 2003)**
- Ruoming Jin, Gagan Agrawal
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3059&rep=rep1&type=pdf)- **Decision Tree Classification of Spatial Data Patterns from Videokeratography using Zernicke Polynomials (SDM 2003)**
- Michael D. Twa, Srinivasan Parthasarathy, Thomas W. Raasch, Mark Bullimore
- [[Paper]](https://www.researchgate.net/publication/220907147_Decision_Tree_Classification_of_Spatial_Data_Patterns_From_Videokeratography_Using_Zernike_Polynomials)## 2002
- **Multiclass Alternating Decision Trees (ECML 2002)**
- Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, Mark A. Hall
- [[Paper]](https://www.cs.waikato.ac.nz/~bernhard/papers/ecml2002.pdf)
- **Heterogeneous Forests of Decision Trees (ICANN 2002)**
- Krzysztof Grabczewski, Wlodzislaw Duch
- [[Paper]](https://fizyka.umk.pl/publications/kmk/02forest.pdf)- **Solving the Fragmentation Problem of Decision Trees by Discovering Boundary Emerging Patterns (ICDM 2002)**
- Jinyan Li, Limsoon Wong
- [[Paper]](https://ieeexplore.ieee.org/document/1184021)- **Solving the Fragmentation Problem of Decision Trees by Discovering Boundary Emerging Patterns (ICDM 2002)**
- Jinyan Li, Limsoon Wong
- [[Paper]](https://www.comp.nus.edu.sg/~wongls/psZ/decisionTreeandEP-2.ps)- **Learning Decision Trees Using the Area Under the ROC Curve (ICML 2002)**
- César Ferri, Peter A. Flach, José Hernández-Orallo
- [[Paper]](http://dmip.webs.upv.es/papers/ICML2002.pdf)- **Finding an Optimal Gain-Ratio Subset-Split Test for a Set-Valued Attribute in Decision Tree Induction (ICML 2002)**
- Fumio Takechi, Einoshin Suzuki
- [[Paper]](https://www.researchgate.net/publication/221346121_Finding_an_Optimal_Gain-Ratio_Subset-Split_Test_for_a_Set-Valued_Attribute_in_Decision_Tree_Induction)- **Efficiently Mining Frequent Trees in a Forest (KDD 2002)**
- Mohammed Javeed Zaki
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.8511&rep=rep1&type=pdf)- **SECRET: a Scalable Linear Regression Tree Algorithm (KDD 2002)**
- Alin Dobra, Johannes Gehrke
- [[Paper]](http://www.cs.cornell.edu/people/dobra/papers/secret-extended.pdf)- **Instability of Decision Tree Classification Algorithms (KDD 2002)**
- Ruey-Hsia Li, Geneva G. Belford
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.8094&rep=rep1&type=pdf)- **Extracting Decision Trees From Trained Neural Networks (KDD 2002)**
- Olcay Boz
- [[Paper]](http://dspace.library.iitb.ac.in/jspui/bitstream/10054/1285/1/5664.pdf)- **Dyadic Classification Trees via Structural Risk Minimization (NIPS 2002)**
- Clayton D. Scott, Robert D. Nowak
- [[Paper]](https://papers.nips.cc/paper/2198-dyadic-classification-trees-via-structural-risk-minimization.pdf)
- **Approximate Splitting for Ensembles of Trees using Histograms (SDM 2002)**
- Chandrika Kamath, Erick Cantú-Paz, David Littau
- [[Paper]](https://pdfs.semanticscholar.org/0855/0a94993a268e4e3e99c41e7e0ee43eabd993.pdf)## 2001
- **Japanese Named Entity Recognition based on a Simple Rule Generator and Decision Tree Learning (ACL 2001)**
- Hideki Isozaki
- [[Paper]](https://www.aclweb.org/anthology/P01-1041)- **Message Length as an Effective Ockham's Razor in Decision Tree Induction (AISTATS 2001)**
- Scott Needham, David L. Dowe
- [[Paper]](www.gatsby.ucl.ac.uk/aistats/aistats2001/files/needham122.ps)- **SQL Database Primitives for Decision Tree Classifiers (CIKM 2001)**
- Kai-Uwe Sattler, Oliver Dunemann
- [[Paper]](http://fusion.cs.uni-magdeburg.de/pubs/classprim.pdf)
- **A Unified Framework for Evaluation Metrics in Classification Using Decision Trees (ECML 2001)**
- Ricardo Vilalta, Mark Brodie, Daniel Oblinger, Irina Rish
- [[Paper]](https://scholar.harvard.edu/files/nkc/files/2015_framework_for_benefit_risk_assessment_value_in_health.pdf)- **Backpropagation in Decision Trees for Regression (ECML 2001)**
- Victor Medina-Chico, Alberto Suárez, James F. Lutsko
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-44795-4_30)- **Consensus Decision Trees: Using Consensus Hierarchical Clustering for Data Relabelling and Reduction (ECML 2001)**
- Branko Kavsek, Nada Lavrac, Anuska Ferligoj
- [[Paper]](https://link.springer.com/content/pdf/10.1007/3-540-44795-4_22.pdf)- **Mining Decision Trees from Data Streams in a Mobile Environment (ICDM 2001)**
- Hillol Kargupta, Byung-Hoon Park
- [[Paper]](https://ieeexplore.ieee.org/document/989530)- **Efficient Determination of Dynamic Split Points in a Decision Tree (ICDM 2001)**
- David Maxwell Chickering, Christopher Meek, Robert Rounthwaite
- [[Paper]](https://pdfs.semanticscholar.org/3587/a245c34ea415b205a903bde3220eb533d1a7.pdf)- **A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)**
- Bernard Zenko, Ljupco Todorovski, Saso Dzeroski
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3118&rep=rep1&type=pdf)- **Efficient Algorithms for Decision Tree Cross-Validation (ICML 2001)**
- Hendrik Blockeel, Jan Struyf
- [[Paper]](http://www.jmlr.org/papers/volume3/blockeel02a/blockeel02a.pdf)- **Bias Correction in Classification Tree Construction (ICML 2001)**
- Alin Dobra, Johannes Gehrke
- [[Paper]](http://www.cs.cornell.edu/people/dobra/papers/icml2001-bias.pdf)- **Breeding Decision Trees Using Evolutionary Techniques (ICML 2001)**
- Athanassios Papagelis, Dimitrios Kalles
- [[Paper]](http://www.gatree.com/data/BreedinDecisioTreeUsinEvo.pdf)- **Obtaining Calibrated Probability Estimates from Decision Trees and Naive Bayesian Classifiers (ICML 2001)**
- Bianca Zadrozny, Charles Elkan
- [[Paper]](http://cseweb.ucsd.edu/~elkan/calibrated.pdf)- **Temporal Decision Trees or the lazy ECU vindicated (IJCAI 2001)**
- Luca Console, Claudia Picardi, Daniele Theseider Dupré
- [[Paper]](https://www.researchgate.net/publication/220815333_Temporal_Decision_Trees_or_the_lazy_ECU_vindicated)
- **Data Mining Criteria for Tree-based Regression and Classification (KDD 2001)**
- Andreas Buja, Yung-Seop Lee
- [[Paper]](https://repository.upenn.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1406&context=statistics_papers)- **A Decision Tree of Bigrams is an Accurate Predictor of Word Sense (NAACL 2001)**
- Ted Pedersen
- [[Paper]](https://www.aclweb.org/anthology/N01-1011)
- **Rule Reduction over Numerical Attributes in Decision Tree Using Multilayer Perceptron (PAKDD 2001)**
- DaeEun Kim, Jaeho Lee
- [[Paper]](https://dl.acm.org/citation.cfm?id=693490)- **A Scalable Algorithm for Rule Post-pruning of Large Decision Trees (PAKDD 2001)**
- Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45357-1_49)- **Optimizing the Induction of Alternating Decision Trees (PAKDD 2001)**
- Bernhard Pfahringer, Geoffrey Holmes, Richard Kirkby
- [[Paper]](https://www.researchgate.net/publication/33051701_Optimizing_the_Induction_of_Alternating_Decision_Trees)- **Interactive Construction of Decision Trees (PAKDD 2001)**
- Jianchao Han, Nick Cercone
- [[Paper]](https://pure.tue.nl/ws/files/3522084/672434611234867.pdf)- **Bloomy Decision Tree for Multi-objective Classification (PKDD 2001)**
- Einoshin Suzuki, Masafumi Gotoh, Yuta Choki
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-44794-6_36)
- **A Fourier Analysis Based Approach to Learning Decision Trees in a Distributed Environment (SDM 2001)**
- Byung-Hoon Park, Rajeev Ayyagari, Hillol Kargupta
- [[Paper]](https://archive.siam.org/meetings/sdm01/pdf/sdm01_19.pdf)
## 2000- **Intuitive Representation of Decision Trees Using General Rules and Exceptions (AAAI 2000)**
- Bing Liu, Minqing Hu, Wynne Hsu
- [[Paper]](https://pdfs.semanticscholar.org/e284/96551e595f1850a53f93affa98919147712f.pdf)- **Tagging Unknown Proper Names Using Decision Trees (ACL 2000)**
- Frédéric Béchet, Alexis Nasr, Franck Genet
- [[Paper]](https://www.aclweb.org/anthology/P00-1011)- **Clustering Through Decision Tree Construction (CIKM 2000)**
- Bing Liu, Yiyuan Xia, Philip S. Yu
- [[Paper]](https://dl.acm.org/citation.cfm?id=354775)- **Handling Continuous-Valued Attributes in Decision Tree with Neural Network Modelling (ECML 2000)**
- DaeEun Kim, Jaeho Lee
- [[Paper]](https://link.springer.com/content/pdf/10.1007/3-540-45164-1_22.pdf)- **Investigation and Reduction of Discretization Variance in Decision Tree Induction (ECML 2000)**
- Pierre Geurts, Louis Wehenkel
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45164-1_17)- **Nonparametric Regularization of Decision Trees (ECML 2000)**
- Tobias Scheffer
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45164-1_36)- **Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria (ICML 2000)**
- Chris Drummond, Robert C. Holte
- [[Paper]](https://pdfs.semanticscholar.org/160e/21c3acc925b60dc040cb1705e58bb166b045.pdf)- **Multi-agent Q-learning and Regression Trees for Automated Pricing Decisions (ICML 2000)**
- Manu Sridharan, Gerald Tesauro
- [[Paper]](https://manu.sridharan.net/files/icml00.pdf)- **Growing Decision Trees on Support-less Association Rules (KDD 2000)**
- Ke Wang, Senqiang Zhou, Yu He
- [[Paper]](https://www2.cs.sfu.ca/~wangk/pub/kdd002.pdf)- **Efficient Algorithms for Constructing Decision Trees with Constraints (KDD 2000)**
- Minos N. Garofalakis, Dongjoon Hyun, Rajeev Rastogi, Kyuseok Shim
- [[Paper]](http://www.softnet.tuc.gr/~minos/Papers/kdd00-cam.pdf)- **Interactive Visualization in Mining Large Decision Trees (PAKDD 2000)**
- Trong Dung Nguyen, Tu Bao Ho, Hiroshi Shimodaira
- [[Paper]](https://link.springer.com/content/pdf/10.1007/3-540-45571-X_40.pdf)- **VQTree: Vector Quantization for Decision Tree Induction (PAKDD 2000)**
- Shlomo Geva, Lawrence Buckingham
- [[Paper]](https://link.springer.com/chapter/10.1007%2F3-540-45571-X_41)- **Some Enhencements of Decision Tree Bagging (PKDD 2000)**
- Pierre Geurts
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45372-5_14)- **Combining Multiple Models with Meta Decision Trees (PKDD 2000)**
- Ljupco Todorovski, Saso Dzeroski
- [[Paper]](http://kt.ijs.si/bernard/mdts/pub01.pdf)- **Induction of Multivariate Decision Trees by Using Dipolar Criteria (PKDD 2000)**
- Leon Bobrowski, Marek Kretowski
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45372-5_33)- **Decision Tree Toolkit: A Component-Based Library of Decision Tree Algorithms (PKDD 2000)**
- Nikos Drossos, Athanassios Papagelis, Dimitrios Kalles
- [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45372-5_40)## 1999
- **Modeling Decision Tree Performance with the Power Law (AISTATS 1999)**
- Lewis J. Frey, Douglas H. Fisher
- [[Paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/ModelingTree.pdf)- **Causal Mechanisms and Classification Trees for Predicting Chemical Carcinogens (AISTATS 1999)**
- Louis Anthony Cox Jr.
- [[Paper]](https://pdfs.semanticscholar.org/0d7b/1d55c5abfd024aacf645c66d0c90c283814e.pdf)- **POS Tags and Decision Trees for Language Modeling (EMNLP 1999)**
- Peter A. Heeman
- [[Paper]](https://www.aclweb.org/anthology/W99-0617)- **Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)**
- Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting
- [[Paper]](https://pdfs.semanticscholar.org/067e/86836ddbcb5e2844e955c16e058366a18c77.pdf)- **The Alternating Decision Tree Learning Algorithm (ICML 1999)**
- Yoav Freund, Llew Mason
- [[Paper]](https://cseweb.ucsd.edu/~yfreund/papers/atrees.pdf)
- [[Code]](https://github.com/rajanil/mkboost)- **Boosting with Multi-Way Branching in Decision Trees (NIPS 1999)**
- Yishay Mansour, David A. McAllester
- [[Paper]](https://papers.nips.cc/paper/1659-boosting-with-multi-way-branching-in-decision-trees.pdf)## 1998
- **Learning Sorting and Decision Trees with POMDPs (ICML 1998)**
- Blai Bonet, Hector Geffner
- [[Paper]](https://bonetblai.github.io/reports/icml98-learning.pdf)- **Using a Permutation Test for Attribute Selection in Decision Trees (ICML 1998)**
- Eibe Frank, Ian H. Witten
- [[Paper]](https://pdfs.semanticscholar.org/9aa9/21b0203e06e98b49bf726a33e124f4310ea3.pdf)- **A Fast and Bottom-Up Decision Tree Pruning Algorithm with Near-Optimal Generalization (ICML 1998)**
- Michael J. Kearns, Yishay Mansour
- [[Paper]](https://www.cis.upenn.edu/~mkearns/papers/pruning.pdf)## 1997
- **Pessimistic Decision Tree Pruning Based Continuous-Time (ICML 1997)**
- Yishay Mansour
- [[Paper]](https://pdfs.semanticscholar.org/b6fc/e37612db10a9756b904b5e79e1144ca12574.pdf)- **PAC Learning with Constant-Partition Classification Noise and Applications to Decision Tree Induction (ICML 1997)**
- Scott E. Decatur
- [[Paper]](https://www.semanticscholar.org/paper/PAC-Learning-with-Constant-Partition-Classification-Decatur/dd205073aeb512ecd1e823b35f556058fdeea5e0)- **Option Decision Trees with Majority Votes (ICML 1997)**
- Ron Kohavi, Clayton Kunz
- [[Paper]](https://pdfs.semanticscholar.org/383b/381d1ac0bb41ec595e0d1603ed642809eb86.pdf)- **Integrating Feature Construction with Multiple Classifiers in Decision Tree Induction (ICML 1997)**
- Ricardo Vilalta, Larry A. Rendell
- [[Paper]](https://pdfs.semanticscholar.org/1f73/d9d409a75d16871cfa1182ac72b37c839d86.pdf)- **Functional Models for Regression Tree Leaves (ICML 1997)**
- Luís Torgo
- [[Paper]](https://pdfs.semanticscholar.org/48e4/b3187ca234308e97e1ac0cab84222c603bdd.pdf)- **The Effects of Training Set Size on Decision Tree Complexity (ICML 1997)**
- Tim Oates, David D. Jensen
- [[Paper]](https://pdfs.semanticscholar.org/e003/9dbdec3bd4cfbb3273b623fbed2d6b2f0cc9.pdf)- **Unsupervised On-line Learning of Decision Trees for Hierarchical Data Analysis (NIPS 1997)**
- Marcus Held, Joachim M. Buhmann
- [[Paper]](https://papers.nips.cc/paper/1479-unsupervised-on-line-learning-of-decision-trees-for-hierarchical-data-analysis.pdf)- **Data-Dependent Structural Risk Minimization for Perceptron Decision Trees (NIPS 1997)**
- John Shawe-Taylor, Nello Cristianini
- [[Paper]](https://papers.nips.cc/paper/1359-data-dependent-structural-risk-minimization-for-perceptron-decision-trees)- **Generalization in Decision Trees and DNF: Does Size Matter (NIPS 1997)**
- Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason
- [[Paper]](https://papers.nips.cc/paper/1340-generalization-in-decision-trees-and-dnf-does-size-matter.pdf)## 1996
- **Second Tier for Decision Trees (ICML 1996)**
- Miroslav Kubat
- [[Paper]](https://pdfs.semanticscholar.org/b619/7c531b1c83dfaa52563449f9b8248cc68c5a.pdf)- **Non-Linear Decision Trees - NDT (ICML 1996)**
- Andreas Ittner, Michael Schlosser
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.2133&rep=rep1&type=pdf)- **Learning Relational Concepts with Decision Trees (ICML 1996)**
- Peter Geibel, Fritz Wysotzki
- [[Paper]](https://pdfs.semanticscholar.org/32f1/78d7266fee779257b87ac8f948951db57d1e.pdf)## 1995
- **A Hill-Climbing Approach for Optimizing Classification Trees (AISTATS 1995)**
- Xiaorong Sun, Steve Y. Chiu, Louis Anthony Cox Jr.
- [[Paper]](https://link.springer.com/chapter/10.1007%2F978-1-4612-2404-4_11)- **An Exact Probability Metric for Decision Tree Splitting (AISTATS 1995)**
- J. Kent Martin
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6378&rep=rep1&type=pdf)- **On Pruning and Averaging Decision Trees (ICML 1995)**
- Jonathan J. Oliver, David J. Hand
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.6733&rep=rep1&type=pdf)- **On Handling Tree-Structured Attributed in Decision Tree Learning (ICML 1995)**
- Hussein Almuallim, Yasuhiro Akiba, Shigeo Kaneda
- [[Paper]](https://www.sciencedirect.com/science/article/pii/B9781558603776500116)- **Retrofitting Decision Tree Classifiers Using Kernel Density Estimation (ICML 1995)**
- Padhraic Smyth, Alexander G. Gray, Usama M. Fayyad
- [[Paper]](https://pdfs.semanticscholar.org/3a05/8ab505f096b23962591bb14e495a543aa2a1.pdf)- **Increasing the Performance and Consistency of Classification Trees by Using the Accuracy Criterion at the Leaves (ICML 1995)**
- David J. Lubinsky
- [[Paper]](https://www.sciencedirect.com/science/article/pii/B9781558603776500530)- **Efficient Algorithms for Finding Multi-way Splits for Decision Trees (ICML 1995)**
- Truxton Fulton, Simon Kasif, Steven Salzberg
- [[Paper]](https://www.sciencedirect.com/science/article/pii/B9781558603776500384)- **Theory and Applications of Agnostic PAC-Learning with Small Decision Trees (ICML 1995)**
- Peter Auer, Robert C. Holte, Wolfgang Maass
- [[Paper]](https://igi-web.tugraz.at/PDF/77.pdf)- **Boosting Decision Trees (NIPS 1995)**
- Harris Drucker, Corinna Cortes
- [[Paper]](http://papers.nips.cc/paper/1059-boosting-decision-trees.pdf)- **Using Pairs of Data-Points to Define Splits for Decision Trees (NIPS 1995)**
- Geoffrey E. Hinton, Michael Revow
- [[Paper]](https://www.cs.toronto.edu/~hinton/absps/bcart.pdf)- **A New Pruning Method for Solving Decision Trees and Game Trees (UAI 1995)**
- Prakash P. Shenoy
- [[Paper]](https://arxiv.org/abs/1302.4981)## 1994
- **A Statistical Approach to Decision Tree Modeling (ICML 1994)**
- Michael I. Jordan
- [[Paper]](https://www.sciencedirect.com/science/article/pii/B9781558603356500519)- **In Defense of C4.5: Notes Learning One-Level Decision Trees (ICML 1994)**
- Tapio Elomaa
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.9386)- **An Improved Algorithm for Incremental Induction of Decision Trees (ICML 1994)**
- Paul E. Utgoff
- [[Paper]](https://www.sciencedirect.com/science/article/pii/B9781558603356500465)
- **Decision Tree Parsing using a Hidden Derivation Model (NAACL 1994)**
- Frederick Jelinek, John D. Lafferty, David M. Magerman, Robert L. Mercer, Adwait Ratnaparkhi, Salim Roukos
- [[Paper]](http://acl-arc.comp.nus.edu.sg/archives/acl-arc-090501d3/data/pdf/anthology-PDF/H/H94/H94-1052.pdf)## 1993
- **Using Decision Trees to Improve Case-Based Learning (ICML 1993)**
- Claire Cardie
- [[Paper]](https://www.cs.cornell.edu/home/cardie/papers/ml-93.ps)
## 1991
- **Context Dependent Modeling of Phones in Continuous Speech Using Decision Trees (NAACL 1991)**
- Lalit R. Bahl, Peter V. de Souza, P. S. Gopalakrishnan, David Nahamoo, Michael Picheny
- [[Paper]](https://www.aclweb.org/anthology/H91-1051.pdf)## 1989
- **Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications (NIPS 1989)**
- Les E. Atlas, Ronald A. Cole, Jerome T. Connor, Mohamed A. El-Sharkawi, Robert J. Marks II, Yeshwant K. Muthusamy, Etienne Barnard
- [[Paper]](https://papers.nips.cc/paper/203-performance-comparisons-between-backpropagation-networks-and-classification-trees-on-three-real-world-applications)## 1988
- **Multiple Decision Trees (UAI 1988)**
- Suk Wah Kwok, Chris Carter
- [[Paper]](https://arxiv.org/abs/1304.2363)## 1987
- **Decision Tree Induction Systems: A Bayesian Analysis (UAI 1987)**
- Wray L. Buntine
- [[Paper]](https://arxiv.org/abs/1304.2732)
-----------------------------------------------------------------------**License**
- [CC0 Universal](https://github.com/benedekrozemberczki/awesome-decision-tree-papers/blob/master/LICENSE)