Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers
A curated list of Monte Carlo tree search papers with implementations.
https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers
List: awesome-monte-carlo-tree-search-papers
atari deep-learning deep-q-learning learning machine-learning machine-learning-algorithms monte-carlo monte-carlo-tree-search policy-evaluation policy-gradient q-learning reinforcement-learning reinforcement-learning-agent reinforcement-learning-algorithms rl tree-search
Last synced: about 11 hours ago
JSON representation
A curated list of Monte Carlo tree search papers with implementations.
- Host: GitHub
- URL: https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers
- Owner: benedekrozemberczki
- License: cc0-1.0
- Created: 2019-11-22T19:06:15.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2024-03-16T21:15:03.000Z (9 months ago)
- Last Synced: 2024-05-19T20:12:17.081Z (7 months ago)
- Topics: atari, deep-learning, deep-q-learning, learning, machine-learning, machine-learning-algorithms, monte-carlo, monte-carlo-tree-search, policy-evaluation, policy-gradient, q-learning, reinforcement-learning, reinforcement-learning-agent, reinforcement-learning-algorithms, rl, tree-search
- Language: Python
- Homepage:
- Size: 238 KB
- Stars: 603
- Watchers: 28
- Forks: 70
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- fucking-awesome-awesomeness - Monte Carlo Tree Search Papers
- awesome-awesome - awesome-monte-carlo-tree-search - A curated list of important Monte Carlo tree search papers with implementations. (Other)
- fucking-lists - awesome-monte-carlo-tree-search-papers
- awesomelist - awesome-monte-carlo-tree-search-papers
- more-awesome - Monitoring: Prometheus alerting rules: Monte Carlo Tree Search Papers - Monte Carlo tree search papers with implementations. (To Sort)
- awesome-machine-learning-resources - **[List - monte-carlo-tree-search-papers?style=social) (Table of Contents)
- collection - awesome-monte-carlo-tree-search-papers
- awesome-awesome - awesome-monte-carlo-tree-search - A curated list of important Monte Carlo tree search papers with implementations. (Other)
- lists - awesome-monte-carlo-tree-search-papers
- awesome-awesomeness - Monte Carlo Tree Search Papers
- ultimate-awesome - awesome-monte-carlo-tree-search-papers - A curated list of Monte Carlo tree search papers with implementations. . (Other Lists / Monkey C Lists)
README
# Awesome Monte Carlo Tree Search Papers.
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)[![repo size](https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-monte-carlo-tree-search-papers.svg)](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers/archive/master.zip) ![License](https://img.shields.io/github/license/benedekrozemberczki/awesome-tree-search-papers.svg?color=blue) [![benedekrozemberczki](https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)](https://twitter.com/intent/follow?screen_name=benrozemberczki)
---------------------------------------
A curated list of Monte Carlo tree search papers with implementations from the following conferences/journals:
- Machine learning
* [NeurIPS](https://nips.cc/)
* [ICML](https://icml.cc/)
- Computer vision
* [CVPR](http://cvpr2019.thecvf.com/)
* [ICCV](http://iccv2019.thecvf.com/)
- Natural language processing
* [ACL](http://www.acl2019.org/EN/index.xhtml)
- Data
* [KDD](https://www.kdd.org/)
- Artificial intelligence
* [AAAI](https://www.aaai.org/)
* [AISTATS](https://www.aistats.org/)
* [IJCAI](https://www.ijcai.org/)
* [UAI](http://www.auai.org/)
- Robotics
* [RAS](https://www.journals.elsevier.com/robotics-and-autonomous-systems)
- Games
* [CIG](http://www.ieee-cig.org/)Similar collections about [graph classification](https://github.com/benedekrozemberczki/awesome-graph-classification), [gradient boosting](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers), [classification/regression trees](https://github.com/benedekrozemberczki/awesome-decision-tree-papers), [fraud detection](https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), and [community detection](https://github.com/benedekrozemberczki/awesome-community-detection) papers with implementations.
## 2023
- **Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search (ICLR 2023)**
- Fangzheng Sun, Yang Liu, Jian-Xun Wang, Hao Sun
- [[Paper]](https://arxiv.org/abs/2205.13134)## 2022
- **Finding Backdoors to Integer Programs: A Monte Carlo Tree Search Framework (AAAI 2022)**
- Elias B. Khalil, Pashootan Vaezipoor, Bistra Dilkina
- [[Paper]](https://arxiv.org/abs/2110.08423)- **NSGZero: Efficiently Learning Non-exploitable Policy in Large-Scale Network Security Games with Neural Monte Carlo Tree Search (AAAI 2022)**
- Wanqi Xue, Bo An, Chai Kiat Yeo
- [[Paper]](https://arxiv.org/abs/2201.07224)- **Solving Disjunctive Temporal Networks with Uncertainty under Restricted Time-Based Controllability Using Tree Search and Graph Neural Networks (AAAI 2022)**
- Kevin Osanlou, Jeremy Frank, Andrei Bursuc, Tristan Cazenave, Eric Jacopin, Christophe Guettier, J. Benton
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/21224)- **Qubit Routing Using Graph Neural Network Aided Monte Carlo Tree Search (AAAI 2022)**
- Animesh Sinha, Utkarsh Azad, Harjinder Singh
- [[Paper]](https://arxiv.org/abs/2104.01992)- **Split Moves for Monte-Carlo Tree Search (AAAI 2022)**
- Jakub Kowalski, Maksymilian Mika, Wojciech Pawlik, Jakub Sutowicz, Marek Szykula, Mark H. M. Winands
- [[Paper]](https://arxiv.org/abs/2112.07761)- **Procrastinated Tree Search: Black-Box Optimization with Delayed%2C Noisy and Multi-Fidelity Feedback (AAAI 2022)**
- Junxiong Wang, Debabrota Basu, Immanuel Trummer
- [[Paper]](https://arxiv.org/abs/2110.07232)- **Enabling Arbitrary Translation Objectives with Adaptive Tree Search (ICLR 2022)**
- Wang Ling, Wojciech Stokowiec, Domenic Donato, Chris Dyer, Lei Yu, Laurent Sartran, Austin Matthews
- [[Paper]](https://en.x-mol.com/paper/article/1496885785571840000)- **What's Wrong with Deep Learning in Tree Search for Combinatorial Optimization (ICLR 2022)**
- Maximili1an Böther, Otto Kißig, Martin Taraz, Sarel Cohen, Karen Seidel, Tobias Friedrich
- [[Paper]](https://arxiv.org/abs/2201.10494)- **Anytime Capacity Expansion in Medical Residency Match by Monte Carlo Tree Search (IJCAI 2022)**
- Kenshi Abe, Junpei Komiyama, Atsushi Iwasaki
- [[Paper]](https://www.ijcai.org/proceedings/2022/1)- **Fast and Accurate User Cold-Start Learning Using Monte Carlo Tree Search (RECSYS 2022)**
- Dilina Chandika Rajapakse, Douglas Leith
- [[Paper]](https://www.scss.tcd.ie/Doug.Leith/pubs/recsys22-35.pdf)## 2021
- **Learning to Stop: Dynamic Simulation Monte-Carlo Tree Search (AAAI 2021)**
- Li-Cheng Lan, Ti-Rong Wu, I-Chen Wu, Cho-Jui Hsieh
- [[Paper]](https://arxiv.org/abs/2012.07910)- **Dec-SGTS: Decentralized Sub-Goal Tree Search for Multi-Agent Coordination (AAAI 2021)**
- Minglong Li, Zhongxuan Cai, Wenjing Yang, Lixia Wu, Yinghui Xu, Ji Wang
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/17345)- **Improved POMDP Tree Search Planning with Prioritized Action Branching (AAAI 2021)**
- John Mern, Anil Yildiz, Lawrence Bush, Tapan Mukerji, Mykel J. Kochenderfer
- [[Paper]](https://arxiv.org/abs/2010.03599)- **Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search (AAAI 2021)**
- Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel Melcer, George K. Atia
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/17427)- **Single Player Monte-Carlo Tree Search Based on the Plackett-Luce Model (AAAI 2021)**
- Felix Mohr, Viktor Bengs, Eyke Hüllermeier
- [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/17468)- **Learning to Pack: A Data-Driven Tree Search Algorithm for Large-Scale 3D Bin Packing Problem (CIKM 2021)**
- Qianwen Zhu, Xihan Li, Zihan Zhang, Zhixing Luo, Xialiang Tong, Mingxuan Yuan, Jia Zeng
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3481933)- **Practical Massively Parallel Monte-Carlo Tree Search Applied to Molecular Design (ICLR 2021)**
- Xiufeng Yang, Tanuj Kr Aasawat, Kazuki Yoshizoe
- [[Paper]](https://arxiv.org/abs/2006.10504)- **Convex Regularization in Monte-Carlo Tree Search (ICML 2021)**
- Tuan Dam, Carlo D'Eramo, Jan Peters, Joni Pajarinen
- [[Paper]](https://arxiv.org/abs/2007.00391)- **Combining Tree Search and Action Prediction for State-of-the-Art Performance in DouDiZhu (IJCAI 2021)**
- Yunsheng Zhang, Dong Yan, Bei Shi, Haobo Fu, Qiang Fu, Hang Su, Jun Zhu, Ning Chen
- [[Paper]](https://www.ijcai.org/proceedings/2021/470)## 2020
- **Monte Carlo Tree Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds (AAAI 2020)**
- Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Pack Kaelbling, Tomás Lozano-Pérez
- [[Paper]](https://www.aaai.org/Papers/AAAI/2020GB/AAAI-KimB.1282.pdf)- **Neural Architecture Search Using Deep Neural Networks and Monte Carlo Tree Search (AAAI 2020)**
- Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, Rodrigo Fonseca
- [[Paper]](https://arxiv.org/abs/1805.07440)
- [[Code]](https://github.com/linnanwang/AlphaX-NASBench101)- **Monte-Carlo Tree Search in Continuous Action Spaces with Value Gradients (AAAI 2020)**
- Jongmin Lee, Wonseok Jeon, Geon-Hyeong Kim, Kee-Eung Kim
- [[Paper]](https://www.ijcai.org/Proceedings/16/Papers/104.pdf)
- [[Code]](https://github.com/leekwoon/KR-DL-UCT)
- **Approximate Inference in Discrete Distributions with Monte Carlo Tree Search and Value Functions (AISTATS 2020)**
- Lars Buesing, Nicolas Heess, Theophane Weber
- [[Paper]](https://arxiv.org/abs/1910.06862)- **Watch the Unobserved: A Simple Approach to Parallelizing Monte Carlo Tree Search (ICLR 2020)**
- Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, Ji Liu
- [[Paper]](https://openreview.net/forum?id=BJlQtJSKDB)
- [[Code]](https://github.com/brilee/python_uct)
- **Information Particle Filter Tree: An Online Algorithm for POMDPs with Belief-Based Rewards on Continuous Domains (ICML 2020)**
- Johannes Fischer, Ömer Sahin Tas
- [[Paper]](http://proceedings.mlr.press/v119/fischer20a.html)
- [[Code]](https://github.com/johannes-fischer/icml2020_ipft)- **Sub-Goal Trees a Framework for Goal-Based Reinforcement Learning (ICML 2020)**
- Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar
- [[Paper]](https://arxiv.org/abs/2002.12361)
- **Monte-Carlo Tree Search for Scalable Coalition Formation (IJCAI 2020)**
- Feng Wu, Sarvapali D. Ramchurn
- [[Paper]](https://www.ijcai.org/Proceedings/2020/57)- **Generalized Mean Estimation in Monte-Carlo Tree Search (IJCAI 2020)**
- Tuan Dam, Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen
- [[Paper]](https://arxiv.org/abs/1911.00384)- **Sparse Tree Search Optimality Guarantees in POMDPs with Continuous Observation Spaces (IJCAI 2020)**
- Michael H. Lim, Claire Tomlin, Zachary N. Sunberg
- [[Paper]](https://arxiv.org/abs/1910.04332)
- **Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions (NeurIPS 2020)**
- Matthew Faw, Rajat Sen, Karthikeyan Shanmugam, Constantine Caramanis, Sanjay Shakkottai
- [[Paper]](https://arxiv.org/abs/1907.10154)- **Extracting Knowledge from Web Text with Monte Carlo Tree Search (WWW 2020)**
- Guiliang Liu, Xu Li, Jiakang Wang, Mingming Sun, Ping Li
- [[Paper]](https://dl.acm.org/doi/abs/10.1145/3366423.3380010)## 2019
- **ACE: An Actor Ensemble Algorithm for Continuous Control with Tree Search (AAAI 2019)**
- Shangtong Zhang, Hengshuai Yao
- [[Paper]](https://arxiv.org/abs/1811.02696)
- [[Code]](https://github.com/ShangtongZhang/DeepRL)- **A Monte Carlo Tree Search Player for Birds of a Feather Solitaire (AAAI 2019)**
- Christian Roberson, Katarina Sperduto
- [[Paper]](https://aaai.org/ojs/index.php/AAAI/article/view/5036)
- [[Code]](http://cs.gettysburg.edu/~tneller/puzzles/boaf/)- **Vine Copula Structure Learning via Monte Carlo Tree Search (AISTATS 2019)**
- Bo Chang, Shenyi Pan, Harry Joe
- [[Paper]](http://proceedings.mlr.press/v89/chang19a/chang19a.pdf)
- [[Code]](https://github.com/changebo/Vine_MCTS)- **Noisy Blackbox Optimization using Multi-fidelity Queries: A Tree Search Approach (AISTATS 2019)**
- Rajat Sen, Kirthevasan Kandasamy, Sanjay Shakkottai
- [[Paper]](https://arxiv.org/abs/1810.10482)
- [[Code]](https://github.com/rajatsen91/MFTREE_DET)- **Reinforcement Learning Based Monte Carlo Tree Search for Temporal Path Discovery (ICDM 2019)**
- Pengfei Ding, Guanfeng Liu, Pengpeng Zhao, An Liu, Zhixu Li, Kai Zheng
- [[Paper]](https://zheng-kai.com/paper/icdm_2019_b.pdf)- **Monte Carlo Tree Search for Policy Optimization (IJCAI 2019)**
- Xiaobai Ma, Katherine Rose Driggs-Campbell, Zongzhang Zhang, Mykel J. Kochenderfer
- [[Paper]](https://www.ijcai.org/proceedings/2019/0432.pdf)- **Subgoal-Based Temporal Abstraction in Monte-Carlo Tree Search (IJCAI 2019)**
- Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, Claudia Linnhoff-Popien
- [[Paper]](https://www.ijcai.org/proceedings/2019/0772.pdf)
- [[Code]](https://github.com/jnptr/subgoal-mcts)- **Automated Machine Learning with Monte-Carlo Tree Search (IJCAI 2019)**
- Herilalaina Rakotoarison, Marc Schoenauer, Michèle Sebag
- [[Paper]](https://www.ijcai.org/proceedings/2019/0457.pdf)
- [[Code]](https://github.com/herilalaina/mosaic_ml)- **Multiple Policy Value Monte Carlo Tree Search (IJCAI 2019)**
- Li-Cheng Lan, Wei Li, Ting-Han Wei, I-Chen Wu
- [[Paper]](https://www.ijcai.org/proceedings/2019/0653.pdf)- **Learning Compositional Neural Programs with Recursive Tree Search and Planning (NeurIPS 2019)**
- Thomas Pierrot, Guillaume Ligner, Scott E. Reed, Olivier Sigaud, Nicolas Perrin, Alexandre Laterre, David Kas, Karim Beguir, Nando de Freitas
- [[Paper]](https://arxiv.org/abs/1905.12941)## 2018
- **Monte Carlo Methods for the Game Kingdomino (CIG 2018)**
- Magnus Gedda, Mikael Z. Lagerkvist, Martin Butler
- [[Paper]](https://arxiv.org/abs/1807.04458)
- [[Code]](https://github.com/mgedda/kdom-ai)
- [[Game Server]](https://github.com/mratin/kdom)- **Reset-free Trial-and-Error Learning for Robot Damage Recovery (RAS 2018)**
- Konstantinos Chatzilygeroudis, Vassilis Vassiliades, Jean-Baptiste Mouret
- [[Paper]](https://arxiv.org/pdf/1610.04213.pdf)
- [[Code]](https://github.com/resibots/chatzilygeroudis_2018_rte)
- [[MCTS C++ Library]](https://github.com/resibots/mcts)- **Memory-Augmented Monte Carlo Tree Search (AAAI 2018)**
- Chenjun Xiao, Jincheng Mei, Martin Müller
- [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17139)- **Feedback-Based Tree Search for Reinforcement Learning (ICML 2018)**
- Daniel R. Jiang, Emmanuel Ekwedike, Han Liu
- [[Paper]](https://arxiv.org/abs/1805.05935)- **Extended Increasing Cost Tree Search for Non-Unit Cost Domains (IJCAI 2018)**
- Thayne T. Walker, Nathan R. Sturtevant, Ariel Felner
- [[Paper]](https://www.ijcai.org/proceedings/2018/74)- **Three-Head Neural Network Architecture for Monte Carlo Tree Search (IJCAI 2018)**
- Chao Gao, Martin Müller, Ryan Hayward
- [[Paper]](https://www.ijcai.org/proceedings/2018/523)- **Bidding in Periodic Double Auctions Using Heuristics and Dynamic Monte Carlo Tree Search (IJCAI 2018)**
- Moinul Morshed Porag Chowdhury, Christopher Kiekintveld, Son Tran, William Yeoh
- [[Paper]](https://www.ijcai.org/proceedings/2018/23)- **Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search (NIPS 2018)**
- Zhuwen Li, Qifeng Chen, Vladlen Koltun
- [[Paper]](https://arxiv.org/abs/1810.10659)- **M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search (NIPS 2018)**
- Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng Gao
- [[Paper]](https://arxiv.org/abs/1802.04394)- **Single-Agent Policy Tree Search With Guarantees (NIPS 2018)**
- Laurent Orseau, Levi Lelis, Tor Lattimore, Theophane Weber
- [[Paper]](https://arxiv.org/abs/1811.10928)- **Monte-Carlo Tree Search for Constrained POMDPs (NIPS 2018)**
- Jongmin Lee, Geon-hyeong Kim, Pascal Poupart, Kee-Eung Kim
- [[Paper]](https://cs.uwaterloo.ca/~ppoupart/publications/constrained-pomdps/mcts-constrained-pomdps-paper.pdf)## 2017
- **An Analysis of Monte Carlo Tree Search (AAAI 2017)**
- Steven James, George Dimitri Konidaris, Benjamin Rosman
- [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14886)- **Beyond Monte Carlo Tree Search: Playing Go with Deep Alternative Neural Network and Long-Term Evaluation (AAAI 2017)**
- Jinzhuo Wang, Wenmin Wang, Ronggang Wang, Wen Gao
- [[Paper]](https://arxiv.org/abs/1706.04052)- **Designing Better Playlists with Monte Carlo Tree Search (AAAI 2017)**
- Elad Liebman, Piyush Khandelwal, Maytal Saar-Tsechansky, Peter Stone
- [[Paper]](https://www.cs.utexas.edu/~pstone/Papers/bib2html-links/IAAI2017-eladlieb.pdf)- **Learning in POMDPs with Monte Carlo Tree Search (ICML 2017)**
- Sammie Katt, Frans A. Oliehoek, Christopher Amato
- [[Paper]](https://arxiv.org/abs/1806.05631)- **Learning to Run Heuristics in Tree Search (IJCAI 2017)**
- Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, Yufen Shao
- [[Paper]](https://www.ijcai.org/proceedings/2017/92)- **Estimating the Size of Search Trees by Sampling with Domain Knowledge (IJCAI 2017)**
- Gleb Belov, Samuel Esler, Dylan Fernando, Pierre Le Bodic, George L. Nemhauser
- [[Paper]](https://www.ijcai.org/proceedings/2017/67)- **A Monte Carlo Tree Search Approach to Active Malware Analysis (IJCAI 2017)**
- Riccardo Sartea, Alessandro Farinelli
- [[Paper]](https://www.ijcai.org/proceedings/2017/535)- **Monte-Carlo Tree Search by Best Arm Identification (NIPS 2017)**
- Emilie Kaufmann, Wouter M. Koolen
- [[Paper]](https://arxiv.org/abs/1706.02986)- **Thinking Fast and Slow with Deep Learning and Tree Search (NIPS 2017)**
- Thomas Anthony, Zheng Tian, David Barber
- [[Paper]](https://arxiv.org/abs/1705.08439)- **Monte-Carlo Tree Search using Batch Value of Perfect Information (UAI 2017)**
- Shahaf S. Shperberg, Solomon Eyal Shimony, Ariel Felner
- [[Paper]](http://auai.org/uai2017/proceedings/papers/37.pdf)## 2016
- **Using Domain Knowledge to Improve Monte-Carlo Tree Search Performance in Parameterized Poker Squares (AAAI 2016)**
- Robert Arrington, Clay Langley, Steven Bogaerts
- [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11809)- **Monte Carlo Tree Search for Multi-Robot Task Allocation (AAAI 2016)**
- Bilal Kartal, Ernesto Nunes, Julio Godoy, Maria L. Gini
- [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12154)- **Large Scale Hard Sample Mining with Monte Carlo Tree Search (CVPR 2016)**
- Olivier Canévet, François Fleuret
- [[Paper]](https://www.idiap.ch/~fleuret/papers/canevet-fleuret-cvpr2016.pdf)- **On the Analysis of Complex Backup Strategies in Monte Carlo Tree Search (ICML 2016)**
- Piyush Khandelwal, Elad Liebman, Scott Niekum, Peter Stone
- [[Paper]](https://www.cs.utexas.edu/~eladlieb/ICML2016.pdf)- **Deep Learning for Reward Design to Improve Monte Carlo Tree Search in ATARI Games (IJCAI 2016)**
- Xiaoxiao Guo, Satinder P. Singh, Richard L. Lewis, Honglak Lee
- [[Paper]](https://arxiv.org/abs/1604.07095)- **Monte Carlo Tree Search in Continuous Action Spaces with Execution Uncertainty (IJCAI 2016)**
- Timothy Yee, Viliam Lisý, Michael H. Bowling
- [[Paper]](https://www.ijcai.org/Proceedings/16/Papers/104.pdf)- **Learning Predictive State Representations via Monte-Carlo Tree Search (IJCAI 2016)**
- Yunlong Liu, Hexing Zhu, Yifeng Zeng, Zongxiong Dai
- [[Paper]](https://pdfs.semanticscholar.org/8056/df11094fc96d76826403f8b339dc14aa821f.pdf)## 2015
- **Efficient Globally Optimal Consensus Maximisation with Tree Search (CVPR 2015)**
- Tat-Jun Chin, Pulak Purkait, Anders P. Eriksson, David Suter
- [[Paper]](https://zpascal.net/cvpr2015/Chin_Efficient_Globally_Optimal_2015_CVPR_paper.pdf)- **Interplanetary Trajectory Planning with Monte Carlo Tree Search (IJCAI 2015)**
- Daniel Hennes, Dario Izzo
- [[Paper]](https://pdfs.semanticscholar.org/ce42/53ca1c5b16e96cdbefae75649cd2588f42f3.pdf)## 2014
- **State Aggregation in Monte Carlo Tree Search (AAAI 2014)**
- Jesse Hostetler, Alan Fern, Tom Dietterich
- [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/download/8439/8712)- **Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning (NIPS 2014)**
- Xiaoxiao Guo, Satinder P. Singh, Honglak Lee, Richard L. Lewis, Xiaoshi Wang
- [[Paper]](https://web.eecs.umich.edu/~baveja/Papers/UCTtoCNNsAtariGames-FinalVersion.pdf)- **Learning Partial Policies to Speedup MDP Tree Search (UAI 2014)**
- Jervis Pinto, Alan Fern
- [[Paper]](http://www.jmlr.org/papers/volume18/15-251/15-251.pdf)## 2013
- **Monte Carlo Tree Search for Scheduling Activity Recognition (ICCV 2013)**
- Mohamed R. Amer, Sinisa Todorovic, Alan Fern, Song-Chun Zhu
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.405.5916&rep=rep1&type=pdf)- **Convergence of Monte Carlo Tree Search in Simultaneous Move Games (NIPS 2013)**
- Viliam Lisý, Vojtech Kovarík, Marc Lanctot, Branislav Bosanský
- [[Paper]](https://papers.nips.cc/paper/5145-convergence-of-monte-carlo-tree-search-in-simultaneous-move-games)- **Bayesian Mixture Modelling and Inference based Thompson Sampling in Monte-Carlo Tree Search (NIPS 2013)**
- Aijun Bai, Feng Wu, Xiaoping Chen
- [[Paper]](https://papers.nips.cc/paper/5111-bayesian-mixture-modelling-and-inference-based-thompson-sampling-in-monte-carlo-tree-search)## 2012
- **Generalized Monte-Carlo Tree Search Extensions for General Game Playing (AAAI 2012)**
- Hilmar Finnsson
- [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/viewFile/4935/5300)## 2011
- **A Local Monte Carlo Tree Search Approach in Deterministic Planning (AAAI 2011)**
- Fan Xie, Hootan Nakhost, Martin Müller
- [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.3833&rep=rep1&type=pdf)- **Real-Time Solving of Quantified CSPs Based on Monte-Carlo Game Tree Search (IJCAI 2011)**
- Satomi Baba, Yongjoon Joe, Atsushi Iwasaki, Makoto Yokoo
- [[Paper]](https://www.ijcai.org/Proceedings/11/Papers/116.pdf)- **Nested Rollout Policy Adaptation for Monte Carlo Tree Search (IJCAI 2011)**
- Christopher D. Rosin
- [[Paper]](https://www.ijcai.org/Proceedings/11/Papers/115.pdf)- **Variance Reduction in Monte-Carlo Tree Search (NIPS 2011)**
- Joel Veness, Marc Lanctot, Michael H. Bowling
- [[Paper]](https://papers.nips.cc/paper/4288-variance-reduction-in-monte-carlo-tree-search)- **Learning Is Planning: Near Bayes-Optimal Reinforcement Learning via Monte-Carlo Tree Search (UAI 2011)**
- John Asmuth, Michael L. Littman
- [[Paper]](https://arxiv.org/abs/1202.3699)## 2010
- **Understanding the Success of Perfect Information Monte Carlo Sampling in Game Tree Search (AAAI 2010)**
- Jeffrey Richard Long, Nathan R. Sturtevant, Michael Buro, Timothy Furtak
- [[Paper]](https://pdfs.semanticscholar.org/011e/2c79575721764c127e210c9d8105a6305e70.pdf)- **Bayesian Inference in Monte-Carlo Tree Search (UAI 2010)**
- Gerald Tesauro, V. T. Rajan, Richard Segal
- [[Paper]](https://arxiv.org/abs/1203.3519)## 2009
- **Monte Carlo Tree Search Techniques in the Game of Kriegspiel (IJCAI 2009)**
- Paolo Ciancarini, Gian Piero Favini
- [[Paper]](https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/viewFile/396/693)- **Bootstrapping from Game Tree Search (NIPS 2009)**
- Joel Veness, David Silver, William T. B. Uther, Alan Blair
- [[Paper]](https://papers.nips.cc/paper/3722-bootstrapping-from-game-tree-search)## 2008
- **Direct Mining of Discriminative and Essential Frequent Patterns via Model-Based Search Tree (KDD 2008)**
- Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip S. Yu, Olivier Verscheure
- [[Paper]](http://www1.se.cuhk.edu.hk/~hcheng/paper/kdd08mbt.pdf)## 2007
- **Bandit Algorithms for Tree Search (UAI 2007)**
- Pierre-Arnaud Coquelin, Rémi Munos
- [[Paper]](https://arxiv.org/pdf/1408.2028.pdf)## 2006
- **Properties of Forward Pruning in Game-Tree Search (AAAI 2006)**
- Yew Jin Lim, Wee Sun Lee
- [[Paper]](https://dl.acm.org/citation.cfm?id=1597351)- **Graph Branch Algorithm: An Optimum Tree Search Method for Scored Dependency Graph with Arc Co-Occurrence Constraints (ACL 2006)**
- Hideki Hirakawa
- [[Paper]](https://www.aclweb.org/anthology/P06-2047/)## 2005
- **Game-Tree Search with Combinatorially Large Belief States (IJCAI 2005)**
- Austin Parker, Dana S. Nau, V. S. Subrahmanian
- [[Paper]](https://www.ijcai.org/Proceedings/05/Papers/0878.pdf)## 2003
- **Solving Finite Domain Constraint Hierarchies by Local Consistency and Tree Search (IJCAI 2003)**
- Stefano Bistarelli, Philippe Codognet, Kin Chuen Hui, Jimmy Ho-Man Lee
- [[Paper]](https://www.ijcai.org/Proceedings/03/Papers/200.pdf)## 2001
- **Incomplete Tree Search using Adaptive Probing (IJCAI 2001)**
- Wheeler Ruml
- [[Paper]](https://dash.harvard.edu/bitstream/handle/1/23017275/tr-02-01.pdf?sequence%3D1)## 1998
- **KnightCap: A Chess Programm That Learns by Combining TD with Game-Tree Search (ICML 1998)**
- Jonathan Baxter, Andrew Tridgell, Lex Weaver
- [[Paper]](https://arxiv.org/abs/cs/9901002)## 1988
- **A Tree Search Algorithm for Target Detection in Image Sequences (CVPR 1988)**
- Steven D. Blostein, Thomas S. Huang
- [[Paper]](https://ieeexplore.ieee.org/document/196309)--------------------------------------------------------------------------------
**License**
- [CC0 Universal](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers/blob/master/LICENSE)
---------------------------------------------------------------------------