Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/bukosabino/ta
Technical Analysis Library using Pandas and Numpy
https://github.com/bukosabino/ta
financial fundamental-analysis momentum numpy oscillator pandas python python3 series-datasets technical-analysis technical-analysis-library trading trend trend-analysis volatility volume
Last synced: 6 days ago
JSON representation
Technical Analysis Library using Pandas and Numpy
- Host: GitHub
- URL: https://github.com/bukosabino/ta
- Owner: bukosabino
- License: mit
- Created: 2018-01-02T18:08:48.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2024-07-17T04:40:56.000Z (6 months ago)
- Last Synced: 2025-01-13T21:02:50.631Z (12 days ago)
- Topics: financial, fundamental-analysis, momentum, numpy, oscillator, pandas, python, python3, series-datasets, technical-analysis, technical-analysis-library, trading, trend, trend-analysis, volatility, volume
- Language: Jupyter Notebook
- Homepage: https://technical-analysis-library-in-python.readthedocs.io/en/latest/
- Size: 9.31 MB
- Stars: 4,450
- Watchers: 152
- Forks: 1,003
- Open Issues: 143
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
- awesome_time_series_in_python - ta
- awesome-python-machine-learning-resources - GitHub - 51% open · ⏱️ 23.08.2022): (金融数据处理)
- awesome-crypto-trading-bots - ta - A Technical Analysis library useful to do feature engineering from financial time series datasets (Open, Close, High, Low, Volume) built on Pandas and Numpy. (Technical analysis libraries)
- awesome-crypto-trading-bots - ta - A Technical Analysis library useful to do feature engineering from financial time series datasets (Open, Close, High, Low, Volume) built on Pandas and Numpy. (Technical analysis libraries)
- awesome-quant - ta - Technical Analysis Library using Pandas (Python) (Python / Trading & Backtesting)
- awesome-list - TA - A Technical Analysis library useful to do feature engineering from financial time series datasets, based on Pandas and NumPy. (Data Processing / Data Pre-processing & Loading)
- awesome-quant - ta - Technical Analysis Library using Pandas (Python) (Python / Trading & Backtesting)
README
![CircleCI](https://img.shields.io/circleci/build/github/bukosabino/ta/master)
[![Documentation Status](https://readthedocs.org/projects/technical-analysis-library-in-python/badge/?version=latest)](https://technical-analysis-library-in-python.readthedocs.io/en/latest/?badge=latest)
[![Coverage Status](https://coveralls.io/repos/github/bukosabino/ta/badge.svg)](https://coveralls.io/github/bukosabino/ta)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Linter: Prospector](https://img.shields.io/badge/Linter-Prospector-coral.svg)](http://prospector.landscape.io/en/master/)
![PyPI](https://img.shields.io/pypi/v/ta)
![PyPI - Downloads](https://img.shields.io/pypi/dm/ta)
[![Donate PayPal](https://img.shields.io/badge/Donate%20%24-PayPal-brightgreen.svg)](https://www.paypal.me/guau/3)# Technical Analysis Library in Python
It is a Technical Analysis library useful to do feature engineering from financial time series datasets (Open, Close, High, Low, Volume). It is built on Pandas and Numpy.
![Bollinger Bands graph example](static/figure.png)
The library has implemented 43 indicators:
## Volume
ID | Name | Class | defs
-- |-- |-- |-- |
1 | Money Flow Index (MFI) | [MFIIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.MFIIndicator) | [money_flow_index](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.money_flow_index)
2 | Accumulation/Distribution Index (ADI) | [AccDistIndexIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.AccDistIndexIndicator) | [acc_dist_index](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.acc_dist_index)
3 | On-Balance Volume (OBV) | [OnBalanceVolumeIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.OnBalanceVolumeIndicator) | [on_balance_volume](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.on_balance_volume)
4 | Chaikin Money Flow (CMF) | [ChaikinMoneyFlowIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.ChaikinMoneyFlowIndicator) | [chaikin_money_flow](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.chaikin_money_flow)
5 | Force Index (FI) | [ForceIndexIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.ForceIndexIndicator) | [force_index](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.force_index)
6 | Ease of Movement (EoM, EMV) | [EaseOfMovementIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.EaseOfMovementIndicator) | [ease_of_movement](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.ease_of_movement)
[sma_ease_of_movement](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.sma_ease_of_movement)
7 | Volume-price Trend (VPT) | [VolumePriceTrendIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.VolumePriceTrendIndicator)| [volume_price_trend](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.volume_price_trend)
8 | Negative Volume Index (NVI) | [NegativeVolumeIndexIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.NegativeVolumeIndexIndicator)| [negative_volume_index](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.negative_volume_index)
9 | Volume Weighted Average Price (VWAP) | [VolumeWeightedAveragePrice](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.VolumeWeightedAveragePrice) | [volume_weighted_average_price](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volume.volume_weighted_average_price)
## Volatility
ID | Name | Class | defs
-- |-- |-- |-- |
10 | Average True Range (ATR) | [AverageTrueRange](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.AverageTrueRange) | [average_true_range](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.average_true_range)
11 | Bollinger Bands (BB) | [BollingerBands](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.BollingerBands) | [bollinger_hband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.bollinger_hband)
[bollinger_hband_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.bollinger_hband_indicator)
[bollinger_lband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.bollinger_lband)
[bollinger_lband_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.bollinger_lband_indicator)
[bollinger_mavg](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.bollinger_mavg)
[bollinger_pband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.bollinger_pband)
[bollinger_wband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.bollinger_wband)
12 | Keltner Channel (KC) | [KeltnerChannel](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.KeltnerChannel) | [keltner_channel_hband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.keltner_channel_hband)
[keltner_channel_hband_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.keltner_channel_hband_indicator)
[keltner_channel_lband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.keltner_channel_lband)
[keltner_channel_lband_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.keltner_channel_lband_indicator)
[keltner_channel_mband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.keltner_channel_mband)
[keltner_channel_pband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.keltner_channel_pband)
[keltner_channel_wband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.keltner_channel_wband)
13 | Donchian Channel (DC) | [DonchianChannel](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.DonchianChannel)| [donchian_channel_hband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.donchian_channel_hband)
[donchian_channel_lband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.donchian_channel_lband)
[donchian_channel_mban](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.donchian_channel_mband)
[donchian_channel_pband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.donchian_channel_pband)
[donchian_channel_wband](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.donchian_channel_wband)
14 | Ulcer Index (UI) | [UlcerIndex](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.UlcerIndex)| [ulcer_index](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.volatility.ulcer_index)
## Trend
ID | Name | Class | defs
-- |-- |-- |-- |
15 | Simple Moving Average (SMA) | [SMAIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.SMAIndicator) | [sma_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.sma_indicator)
16 | Exponential Moving Average (EMA) | [EMAIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.EMAIndicator) | [ema_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.ema_indicator) | Trend
17 | Weighted Moving Average (WMA) | [WMAIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.WMAIndicator) | [wma_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.wma_indicator)
18 | Moving Average Convergence Divergence (MACD) | [MACD](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.MACD) | [macd](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.macd)
[macd_diff](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.macd_diff)
[macd_signal](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.macd_signal)
19 | Average Directional Movement Index (ADX) | [ADXIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.ADXIndicator) | [adx](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.adx)
[adx_neg](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.adx_neg)
[adx_pos](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.adx_pos)
20 | Vortex Indicator (VI) | [VortexIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.VortexIndicator) | [vortex_indicator_neg](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.vortex_indicator_neg)
[vortex_indicator_pos](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.vortex_indicator_pos)
21 | Trix (TRIX) | [TRIXIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.TRIXIndicator) | [trix](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.trix)
22 | Mass Index (MI) | [MassIndex](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.MassIndex) | [mass_index](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.mass_index)
23 | Commodity Channel Index (CCI) | [CCIIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.CCIIndicator)| [cci](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.cci)
24 | Detrended Price Oscillator (DPO) | [DPOIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.DPOIndicator) | [dpo](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.dpo)
25 | KST Oscillator (KST) | [KSTIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.KSTIndicator) | [kst](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.kst)
[kst_sig](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.kst_sig)
26 | Ichimoku Kinkō Hyō (Ichimoku) | [IchimokuIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.IchimokuIndicator) | [ichimoku_a](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.ichimoku_a)
[ichimoku_b](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.ichimoku_b)
[ichimoku_base_line](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.ichimoku_base_line)
[ichimoku_conversion_line](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.ichimoku_conversion_line)
27 | Parabolic Stop And Reverse (Parabolic SAR) | [PSARIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.PSARIndicator) | [psar_down](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.psar_down)
[psar_down_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.psar_down_indicator)
[psar_up](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.psar_up)
[psar_up_indicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.psar_up_indicator)
28 | Schaff Trend Cycle (STC) | [STCIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.STCIndicator) | [stc](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.stc)
29 | Aroon Indicator | [AroonIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.AroonIndicator) | [aroon_down](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.aroon_down)
[aroon_up](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.trend.aroon_up)
## Momentum
ID | Name | Class | defs
-- |-- |-- |-- |
30 | Relative Strength Index (RSI) | [RSIIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.RSIIndicator) | [rsi](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.rsi)
31 | Stochastic RSI (SRSI) | [StochRSIIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.StochRSIIndicator) | [stochrsi](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.stochrsi)
[stochrsi_d](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.stochrsi_d)
[stochrsi_k](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.stochrsi_k)
32 | True strength index (TSI) | [TSIIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.TSIIndicator) | [tsi](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.tsi)
33 | Ultimate Oscillator (UO) | [UltimateOscillator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.UltimateOscillator) | [ultimate_oscillator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.ultimate_oscillator)
34 | Stochastic Oscillator (SR) | [StochasticOscillator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.StochasticOscillator) | [stoch](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.stoch)
[stoch_signal](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.stoch_signal)
35 | Williams %R (WR) | [WilliamsRIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.WilliamsRIndicator) | [williams_r](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.williams_r)
36 | Awesome Oscillator (AO) | [AwesomeOscillatorIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.AwesomeOscillatorIndicator) | [awesome_oscillator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.awesome_oscillator)
37 | Kaufman's Adaptive Moving Average (KAMA) | [KAMAIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.KAMAIndicator) | [kama](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.kama)
38 | Rate of Change (ROC) | [ROCIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.ROCIndicator) | [roc](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.roc)
39 | Percentage Price Oscillator (PPO) | [PercentagePriceOscillator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.PercentagePriceOscillator) | [ppo](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.ppo)
[ppo_hist](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.ppo_hist)
[ppo_signal](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.ppo_signal)
40 | Percentage Volume Oscillator (PVO) | [PercentageVolumeOscillator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.PercentageVolumeOscillator) | [pvo](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.pvo)
[pvo_hist](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.pvo_hist)
[pvo_signal](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.momentum.pvo_signal)
## Others
ID | Name | Class | defs
-- |-- |-- |-- |
41 | Daily Return (DR) | [DailyReturnIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.others.DailyReturnIndicator) | [daily_return](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.others.daily_return)
42 | Daily Log Return (DLR) | [DailyLogReturnIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.others.DailyLogReturnIndicator) | [daily_log_return](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.others.daily_log_return)
43 | Cumulative Return (CR) | [CumulativeReturnIndicator](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.others.CumulativeReturnIndicator) | [cumulative_return](https://technical-analysis-library-in-python.readthedocs.io/en/latest/ta.html#ta.others.cumulative_return)
# Documentation
https://technical-analysis-library-in-python.readthedocs.io/en/latest/
# Motivation to use
* [English](https://towardsdatascience.com/technical-analysis-library-to-financial-datasets-with-pandas-python-4b2b390d3543)
* [Spanish](https://medium.com/datos-y-ciencia/biblioteca-de-an%C3%A1lisis-t%C3%A9cnico-sobre-series-temporales-financieras-para-machine-learning-con-cb28f9427d0)# How to use (Python 3)
```sh
$ pip install --upgrade ta
```To use this library you should have a financial time series dataset including `Timestamp`, `Open`, `High`, `Low`, `Close` and `Volume` columns.
You should clean or fill NaN values in your dataset before add technical analysis features.
You can get code examples in [examples_to_use](https://github.com/bukosabino/ta/tree/master/examples_to_use) folder.
You can visualize the features in [this notebook](https://github.com/bukosabino/ta/blob/master/examples_to_use/visualize_features.ipynb).
#### Example adding all features
```python
import pandas as pd
from ta import add_all_ta_features
from ta.utils import dropna# Load datas
df = pd.read_csv('ta/tests/data/datas.csv', sep=',')# Clean NaN values
df = dropna(df)# Add all ta features
df = add_all_ta_features(
df, open="Open", high="High", low="Low", close="Close", volume="Volume_BTC")
```#### Example adding particular feature
```python
import pandas as pd
from ta.utils import dropna
from ta.volatility import BollingerBands# Load datas
df = pd.read_csv('ta/tests/data/datas.csv', sep=',')# Clean NaN values
df = dropna(df)# Initialize Bollinger Bands Indicator
indicator_bb = BollingerBands(close=df["Close"], window=20, window_dev=2)# Add Bollinger Bands features
df['bb_bbm'] = indicator_bb.bollinger_mavg()
df['bb_bbh'] = indicator_bb.bollinger_hband()
df['bb_bbl'] = indicator_bb.bollinger_lband()# Add Bollinger Band high indicator
df['bb_bbhi'] = indicator_bb.bollinger_hband_indicator()# Add Bollinger Band low indicator
df['bb_bbli'] = indicator_bb.bollinger_lband_indicator()# Add Width Size Bollinger Bands
df['bb_bbw'] = indicator_bb.bollinger_wband()# Add Percentage Bollinger Bands
df['bb_bbp'] = indicator_bb.bollinger_pband()
```# Deploy and develop (for developers)
```sh
$ git clone https://github.com/bukosabino/ta.git
$ cd ta
$ pip install -r requirements-play.txt
$ make test
```# Sponsor
![Logo OpenSistemas](static/logo_neuroons_byOS_blue.png)
Thank you to [OpenSistemas](https://opensistemas.com)! It is because of your contribution that I am able to continue the development of this open source library.
# Based on
* https://en.wikipedia.org/wiki/Technical_analysis
* https://pandas.pydata.org
* https://github.com/FreddieWitherden/ta
* https://github.com/femtotrader/pandas_talib# In Progress
* Automated tests for all the indicators.
# TODO
* Use [NumExpr](https://github.com/pydata/numexpr) to speed up the NumPy/Pandas operations? [Article Motivation](https://towardsdatascience.com/speed-up-your-numpy-and-pandas-with-numexpr-package-25bd1ab0836b)
* Add [more technical analysis features](https://en.wikipedia.org/wiki/Technical_analysis).
* Wrapper to get financial data.
* Use of the Pandas multi-indexing techniques to calculate several indicators at the same time.
* Use Plotly/Streamlit to visualize features# Changelog
Check the [changelog](https://github.com/bukosabino/ta/blob/master/RELEASE.md) of project.
# Donation
If you think `ta` library help you, please consider [buying me a coffee](https://www.paypal.me/guau/3).
# Credits
Developed by Darío López Padial (aka Bukosabino) and [other contributors](https://github.com/bukosabino/ta/graphs/contributors).
Please, let me know about any comment or feedback.
Also, I am a software engineer freelance focused on Data Science using Python tools such as Pandas, Scikit-Learn, Backtrader, Zipline or Catalyst. Don't hesitate to contact me if you need to develop something related with this library, Python, Technical Analysis, AlgoTrading, Machine Learning, etc.