Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/carpedm20/NTM-tensorflow
"Neural Turing Machine" in Tensorflow
https://github.com/carpedm20/NTM-tensorflow
neural-turing-machines tensorflow
Last synced: 11 days ago
JSON representation
"Neural Turing Machine" in Tensorflow
- Host: GitHub
- URL: https://github.com/carpedm20/NTM-tensorflow
- Owner: carpedm20
- License: mit
- Created: 2015-12-09T14:22:21.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2017-05-18T06:31:02.000Z (over 7 years ago)
- Last Synced: 2024-10-15T22:41:20.910Z (24 days ago)
- Topics: neural-turing-machines, tensorflow
- Language: Jupyter Notebook
- Homepage:
- Size: 33.6 MB
- Stars: 1,046
- Watchers: 67
- Forks: 214
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-tensorflow - Neural Turing Machine in TensorFlow - implementation of Neural Turing Machine (Models/Projects)
- Awesome-TensorFlow-Chinese - Neural Turing Machine in TensorFlow - implementation of Neural Turing Machine (模型项目 / 微信群)
- awesome-tensorflow - Neural Turing Machine in TensorFlow - implementation of Neural Turing Machine (Models/Projects)
- fucking-awesome-tensorflow - Neural Turing Machine in TensorFlow - implementation of Neural Turing Machine (Models/Projects)
README
Neural Turing Machine in Tensorflow
===================================Tensorflow implementation of [Neural Turing Machine](http://arxiv.org/abs/1410.5401). This implementation uses an LSTM controller. NTM models with multiple read/write heads are supported.
![alt_tag](etc/NTM.gif)
The referenced torch code can be found [here](https://github.com/kaishengtai/torch-ntm).
** 1. Loss sometimes goes to nan even with the gradient clipping ([#2](https://github.com/carpedm20/NTM-tensorflow/issues/2)).**
** 2. The code is very poorly design to support NTM inputs with variable lengths. Just use this code as a reference.**Prerequisites
-------------- Python 2.7 or Python 3.3+
- [Tensorflow 1.1.0](https://www.tensorflow.org/)
- NumPyUsage
-----To train a copy task:
$ python main.py --task copy --is_train True
To test a *quick* copy task:
$ python main.py --task copy --test_max_length 10
Results
-------More detailed results can be found [here](ipynb/NTM\ Test.ipynb).
**Copy task:**
![alt_tag](etc/result4.png)
![alt_tag](etc/result3.png)**Recall task:**
(in progress)
Author
------Taehoon Kim / [@carpedm20](http://carpedm20.github.io/)