Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/chuangyc/awesome-multiagent-learning
A curated list of multiagent learning and related area resources.
https://github.com/chuangyc/awesome-multiagent-learning
List: awesome-multiagent-learning
awesome multi-agent-learning multi-agent-reinforcement-learning multiagent-systems
Last synced: 16 days ago
JSON representation
A curated list of multiagent learning and related area resources.
- Host: GitHub
- URL: https://github.com/chuangyc/awesome-multiagent-learning
- Owner: chuangyc
- Created: 2019-02-15T08:43:19.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2019-08-15T09:55:14.000Z (over 5 years ago)
- Last Synced: 2024-10-21T00:57:36.165Z (2 months ago)
- Topics: awesome, multi-agent-learning, multi-agent-reinforcement-learning, multiagent-systems
- Size: 43 KB
- Stars: 71
- Watchers: 6
- Forks: 12
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-multiagent-learning - A curated list of multiagent learning and related area resources. (Other Lists / Monkey C Lists)
README
# Awesome Multiagent Learning: [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
A curated list of multiagent learning and related area resources.
Inspired by [MARL-Papers](https://github.com/LantaoYu/MARL-Papers) and [awesome-activity-prediction](https://github.com/chinancheng/awesome-activity-prediction). The papers are sorted by algorithms so far.
## Contributing
Welcome to send me email([email protected]) or [Pull Request](https://github.com/chuangyc/awesome-multiagent-learning/pulls) to add links or remove your works.## Overview
- [Textbooks](#textbooks)
- [Tutorials](#tutorials)
- [Review Papers](#review-papers)
- [Research Papers](#research-papers)
- [Platforms](#platforms)## Textbooks
* **Multi-Agent Machine Learning: A Reinforcement Approach** [[Website]](https://www.wiley.com/en-us/Multi+Agent+Machine+Learning%3A+A+Reinforcement+Approach-p-9781118362082)
* H. M. Schwartz, Wiley, 2014
* **多智能體機器學習:強化學習方法**
* 霍華德 M.施瓦兹 著,連曉峰 譯(simplified chinese translation for the above book.)
* **Multiagent Systems** [[Website]](http://www.the-mas-book.info/)
* G. Weiss, MIT Press, 2013, 2nd edition
* **Graph Theoretic Methods in Multi-Agent Networks** [[Website]](https://press.princeton.edu/titles/9230.html)
* M. Mesbahi and M. Egerstedt, Princeton University Press, 2010
* **Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations** [[Website]](http://www.masfoundations.org/)
* Y. Shoham, K. Leyton-Brown, Cambridge University Press, 2009
* **Distributed Control of Robotic Networks** [[Website]](http://www.coordinationbook.info/)
* F. Bullo, J. Cortés, S. Martínez, Princeton University Press 2009
* **An Introduction to MultiAgent Systems** [[Website]](http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/IMAS2e.html)
* M. Wooldridge, John Wiley & Sons, 2009
* **Algebraic Graph Theory** [[Website]](https://www.amazon.com/Algebraic-Graph-Theory-Graduate-Mathematics/dp/0387952209)
* C. Godsil and G. Royle, Springer, 2001
* **Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence** [[Website]](https://www.amazon.com/Multiagent-Systems-Distributed-Artificial-Intelligence/dp/0262731312/ref=pd_sim_sbs_b_1)
* G. Weiss, The MIT Press, 2000
## Tutorials* **SJTU Multi-Agent Reinforcement Learning Tutorial** [[Website]](http://wnzhang.net/tutorials/marl2018/index.html)
* J. Wang, W. Zhang at SJTU 2018
* **Multiagent Learning: Foundations and Recent Trends** [[Website]](http://www.cs.utexas.edu/~larg/ijcai17_tutorial/)
* S. Albrecht, P. Stone, IJCAI2017
* **COMP310: Multi Agent System** [[Website]](https://cgi.csc.liv.ac.uk/~trp/COMP310.html)
* T. Payne, 2017-2018
* **CompSci 285: Multi-Agent Systems** [[Website]](https://www.seas.harvard.edu/courses/cs285/CS_285/Course_Home.html)
* D. Parkes, 2013
* **CS 224M : Multi Agent Systems** [[Website]](http://web.stanford.edu/class/cs224m/)
* Y. Shoham, 2013-14
* **Videos for "An Introduction to Multiagent Systems (Second Edition)"** [[Website]](http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/imas/videos/)
* M. Wooldridge, John Wiley & Sons, 2009
## Review Papers
* **Multiagent learning: Basics, challenges, and prospects** [[pdf]](http://www.weiss-gerhard.info/publications/AI_MAGAZINE_2012_TuylsWeiss.pdf)
* K. Tuyls, G. Weiss, AI Magazine2012
* **A comprehensive survey of multi-agent reinforcement learning** [[pdf]](http://www.dcsc.tudelft.nl/~bdeschutter/pub/rep/07_019.pdf)
8 L. Bus¸oniu, R. Babuska, and B. De Schutter, IIEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews2008
* **Foundations of Multi-Agent Learning** [[Website]](https://dl.acm.org/citation.cfm?id=1248179)
* R. Vohra, M. Wellman, AIJ2007
* **Cooperative multi-agent learning: The state of the art.** [[pdf]](https://cs.gmu.edu/~eclab/papers/panait05cooperative.pdf)
* L. Panait and S. Luke, AAMAS2005
* **Learning in Multiagent Systems: An Introduction from a Game-Theoretic Perspective**[[pdf]](https://arxiv.org/pdf/cs/0308030.pdf)
* J. Vidal, AAMAS2002
* **Learning in multi-agent systems** [[Website]](https://dl.acm.org/citation.cfm?id=975678)
* E. Alonso, M. D’Inverno, D. Kudenko, KER2001
## Research Papers### Deep Reinforcement Learning
* **QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning** [[arxiv]](https://arxiv.org/abs/1803.11485)
* T. Rashid, M. Samvelyan, C. Witt, ICML2018
* **Emergent Complexity via Multi-agent Competition** [[Paper]](https://arxiv.org/abs/1710.03748)[[Code]](https://github.com/openai/multiagent-competition)
* T. Bansal, J. Pachocki, S. Sidor, ICLR2018
### Counterfactual Policy Gradient
* **Counterfactual Multi-Agent policy gradients** [[arxiv]](https://arxiv.org/pdf/1705.08926.pdf)
* J. Foerster, G. Farquhar, S. Whiteson
* **Stabilising experience replay for deep Multi-Agent reinforcement learning** [[arxiv]](https://arxiv.org/pdf/1702.08887.pdf)
* J. Foerster, N. Nardelli, S. Whiteson, ICML2017
* **Learning to communicate with deep multi-agent reinforcement learning** [[paper]](https://papers.nips.cc/paper/6042-learning-to-communicate-with-deep-multi-agent-reinforcement-learning.pdf)
* J. Foerster, I. Assael, S. Whiteson, NeuralIPS2016### LOLA
* **Learning with Opponent-Learning Awareness** [[paper]](https://arxiv.org/abs/1709.04326)
* J. Foerster, R. Chen, M. Shedivat, Shimon Whiteson, AAMAS2018
### DRQN (Deep Recurrent Q Network)
* **Recurrent Deep Multiagent Q-Learning for Autonomous Brokers in Smart Grid** [[paper]](https://www.ijcai.org/proceedings/2018/0079.pdf)
* Y. Yang, J. Hao, G. Strbac, IJCAI2018
* **Deep Decentralized Multi-task Multi-Agent Reinforcement Learning under Partial Observability** [[arxiv]](https://arxiv.org/pdf/1703.06182.pdf)
* S. Omidshafiei, J. Pazis, J. Vian, ICML2017
* **Deep Recurrent Q-Learning for Partially Observable MDPs** [[arxiv]](https://arxiv.org/pdf/1507.06527.pdf)
* M. Hausknecht, P. Stone, AAAI2015
### DDPG(Deep Determinstic Policy Gradient)
* **Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments** [[Paper]](https://arxiv.org/abs/1706.02275)[[Code1]](https://github.com/openai/multiagent-particle-envs)[[Code2]](https://github.com/openai/maddpg)
* R. Lowe, Y. Wu, A. Tamar, NIPS2017
### VDN (Value Decomposition Network)
* **Value-Decomposition Networks For Cooperative Multi-Agent Learning** [[arxiv]](https://arxiv.org/pdf/1706.05296.pdf)
* P. Sunehag, G. Lever, T. Graepel, AAMAS2018
### Q-Learning#### Factorized Q-Learning
* **Factorized Q-Learning for Large-Scale Multi-Agent Systems** [[arxiv]](https://arxiv.org/abs/1809.03738)
* Y. Chen, M. Zhou, Y. Wen, AAAI2019
#### MFMARL
* **Mean Field Multi-Agent Reinforcement Learning** [[arxiv]](https://arxiv.org/abs/1802.05438v4)[[COde]](https://github.com/mlii/mfrl)
* Y. Yang, R. Luo, M. Li, ICML2018
#### Fuzzy-Q
* **Fuzzy Q-learning** [[website]](https://ieeexplore.ieee.org/document/622790)
* P. Glorennec, L. Jouffe, IFSC1997
#### Correlated-Q
* **Correlated Q-learning** [[pdf]](https://www.aaai.org/Papers/ICML/2003/ICML03-034.pdf)
* A. Greenwald, K. Hall, ICML2003
#### Nash-Q
* **Nash Q-learning for general-sum stochastic games** [[pdf]](http://www.jmlr.org/papers/volume4/hu03a/hu03a.pdf)
* J. Hu, M. Wellman, JMLR2003
#### Friend or Foe-Q
* **Friend-or-foe Q-learning in general-sum games** [[pdf]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.589.8571&rep=rep1&type=pdf)
* M. Littman, ICML2001
#### Minimax-Q
* **Markov games as a framework for multi-agent reinforcement learning** [[pdf]](https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf)
* M. Littman, ICML1994
### Joint action Learning
* **Reaching pareto-optimality in prisoner’s dilemma using conditional joint action learning** [[website]](https://link.springer.com/article/10.1007/s10458-007-0020-8)
* D. Banerjee, S. Sen, AAMAS2007
* **The dynamics of reinforcement learning in cooperative multiagent systems** [[pdf]](https://www.aaai.org/Papers/AAAI/1998/AAAI98-106.pdf)
* C. Claus, C. Boutilier, AAAI1998
### Policy Hill Climbing
* **Multiagent learning using a variable learning rate** [[pdf]](http://www.cs.cmu.edu/~mmv/papers/02aij-mike.pdf)
* M. Bowling, M. Veloso, Artificial Intelligence2002
### Learning Automata### Gradient Ascent
## Platforms
* **Hanabi Learning Environment** [[Code]](https://github.com/deepmind/hanabi-learning-environment)
* **MAgent** [[Code]](https://github.com/geek-ai/MAgent)
* **multiagent-particle-envs** [[Code]](https://github.com/openai/multiagent-particle-envs)
* **multiagent-competition** [[Code]](https://github.com/openai/multiagent-competition)
### Code for Starcraft: Brood War
* **SAIDA** [[Website]](https://github.com/TeamSAIDA/SAIDA)
* **TorchCraft** [[Code]](https://github.com/TorchCraft/TorchCraft)
* **Locutus** [[Code]](https://github.com/bmnielsen/Locutus/)