Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/clementchadebec/benchmark_VAE
Unifying Variational Autoencoder (VAE) implementations in Pytorch (NeurIPS 2022)
https://github.com/clementchadebec/benchmark_VAE
benchmarking beta-vae comparison normalizing-flows pixel-cnn pytorch reproducibility reproducible-research vae vae-gan vae-implementation vae-pytorch variational-autoencoder vq-vae wasserstein-autoencoder
Last synced: about 1 month ago
JSON representation
Unifying Variational Autoencoder (VAE) implementations in Pytorch (NeurIPS 2022)
- Host: GitHub
- URL: https://github.com/clementchadebec/benchmark_VAE
- Owner: clementchadebec
- License: apache-2.0
- Created: 2021-10-02T16:26:24.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-07-31T12:13:28.000Z (4 months ago)
- Last Synced: 2024-11-04T17:12:07.732Z (about 1 month ago)
- Topics: benchmarking, beta-vae, comparison, normalizing-flows, pixel-cnn, pytorch, reproducibility, reproducible-research, vae, vae-gan, vae-implementation, vae-pytorch, variational-autoencoder, vq-vae, wasserstein-autoencoder
- Language: Python
- Homepage:
- Size: 42.5 MB
- Stars: 1,814
- Watchers: 18
- Forks: 163
- Open Issues: 30
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- awesome-self-supervised-vision - benchmark_VAE
- awesome-list - benchmark_VAE - Implements some of the most common (Variational) Autoencoder models under a unified implementation. (Computer Vision / Image / Video Generation)