Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/clpeng/Awesome-Face-Forgery-Generation-and-Detection
A curated list of articles and codes related to face forgery generation and detection.
https://github.com/clpeng/Awesome-Face-Forgery-Generation-and-Detection
List: Awesome-Face-Forgery-Generation-and-Detection
awesome deepfake-detection deepfakes face-forgery-detection face-forgery-generation face-manipulations face-reenactment faceswap
Last synced: 8 days ago
JSON representation
A curated list of articles and codes related to face forgery generation and detection.
- Host: GitHub
- URL: https://github.com/clpeng/Awesome-Face-Forgery-Generation-and-Detection
- Owner: clpeng
- Created: 2020-03-18T15:23:55.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-11-18T10:57:19.000Z (about 2 years ago)
- Last Synced: 2024-11-26T02:02:05.042Z (18 days ago)
- Topics: awesome, deepfake-detection, deepfakes, face-forgery-detection, face-forgery-generation, face-manipulations, face-reenactment, faceswap
- Size: 35.2 KB
- Stars: 711
- Watchers: 34
- Forks: 114
- Open Issues: 1
-
Metadata Files:
- Readme: Readme.md
Awesome Lists containing this project
- awesome-awesome-artificial-intelligence - Awesome Face Forgery Generation and Detection - Face-Forgery-Generation-and-Detection?style=social) | (Computer Vision)
- ultimate-awesome - Awesome-Face-Forgery-Generation-and-Detection - A curated list of articles and codes related to face forgery generation and detection. (Other Lists / PowerShell Lists)
README
# Awesome Face Forgery Generation and Detection [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
A curated list of articles and codes related to face forgery generation and detection.This collection is associated with our following survey paper on face forgery generation and detection.
**Deep visual identity forgery and detection** [[Paper](https://www.sciengine.com/SSI/article?doi=10.1360/SSI-2020-0064)] (**in Chinese**)
Chunlei Peng, Xinbo Gao, Nannan Wang, Jie Li.
SCIENTIA SINICA Informationis, 2021.## Contributing
***Please feel free to send me pull requests or email ([email protected]) to update this list together!
## Table of Contents
***- [Target-specific Face Forgery](#target-specific-face-forgery)
- [Face Swap](#face-swap)
- [Face Manipulation](#face-manipulation)
- [Attribute Manipulation](#attribute-manipulation)
- [Expression Reenactment](#expression-reenactment)
- [Cross-modality Driven](#cross-modality-manipulation)
- [Target-generic Face Forgery](#target-generic-face-forgery-representative)
- [Face Forgery Detection](#face-forgery-detection)
- [Spatial Clue for Detection](#spatial-clue-for-detection)
- [Temporal Clue for Detection](#temporal-clue-for-detection)
- [Audio+ Clue for Detection](#audio-clue-for-detection)
- [Generalizable Detection](#generalizable-clue-for-detection)
- [Spoofing Detection](#spoofing-forgery-detection)
- [Databases](#databases)
- [Survey](#survey--benchmark)## Target-specific Face Forgery
***### Face Swap
* deepfakes/faceswap (*Github*) [[Code](https://github.com/deepfakes/faceswap)]
* iperov/DeepFaceLab (*Github*) [[Paper](https://arxiv.org/pdf/2005.05535.pdf)] [[Code](https://github.com/iperov/DeepFaceLab)]
* Fast face-swap using convolutional neural networks (*2017 ICCV*) [[Paper](http://openaccess.thecvf.com/content_ICCV_2017/papers/Korshunova_Fast_Face-Swap_Using_ICCV_2017_paper.pdf)]
* On face segmentation, face swapping, and face perception (*2018 FG*) [[Paper](https://arxiv.org/abs/1704.06729)] [[Code](https://github.com/YuvalNirkin/face_swap)]
* RSGAN: face swapping and editing using face and hair representation in latent spaces (*2018 arXiv*) [[Paper](https://arxiv.org/abs/1804.03447)]
* FSNet: An identity-aware generative model for image-based face swapping (*2018 ACCV*) [[Paper](https://arxiv.org/abs/1811.12666)]
* Towards open-set identity preserving face synthesis (*2018 CVPR*) [[Paper](http://openaccess.thecvf.com/content_cvpr_2018/papers/Bao_Towards_Open-Set_Identity_CVPR_2018_paper.pdf)]
* FSGAN: Subject Agnostic Face Swapping and Reenactment (*2019 ICCV*) [[Paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Nirkin_FSGAN_Subject_Agnostic_Face_Swapping_and_Reenactment_ICCV_2019_paper.pdf)] [[Code](https://github.com/YuvalNirkin/fsgan)]
* FSGANv2: Improved Subject Agnostic Face Swapping and Reenactment (*2022 TPAMI*) [[Paper](https://arxiv.org/abs/2202.12972)]
* Deepfakes for Medical Video De-Identification: Privacy Protection and Diagnostic Information Preservation (*2020 AIES*) [[Paper](https://arxiv.org/pdf/2003.00813.pdf)]
* Advancing High Fidelity Identity Swapping for Forgery Detection (*2020 CVPR*) [[Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Advancing_High_Fidelity_Identity_Swapping_for_Forgery_Detection_CVPR_2020_paper.pdf)] [[arXiv version](https://arxiv.org/abs/1912.13457)]
* SimSwap: An Efficient Framework For High Fidelity Face Swapping (*2020 ACMMM*) [[Paper](https://arxiv.org/abs/2106.06340)] [[Code](https://github.com/neuralchen/SimSwap)]
* Using GANs to Synthesise Minimum Training Data for Deepfake Generation (*202011 arXiv*) [[Paper](https://arxiv.org/abs/2011.05421)]
* FaceInpainter: High Fidelity Face Adaptation to Heterogeneous Domains (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Li_FaceInpainter_High_Fidelity_Face_Adaptation_to_Heterogeneous_Domains_CVPR_2021_paper.pdf)]
* One Shot Face Swapping on Megapixels (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Zhu_One_Shot_Face_Swapping_on_Megapixels_CVPR_2021_paper.pdf)] [[Code](https://github.com/zyainfal/One-Shot-Face-Swapping-on-Megapixels)]
* Detecting Deep-Fake Videos from Aural and Oral Dynamics (*2021 CVPRW*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021W/WMF/papers/Agarwal_Detecting_Deep-Fake_Videos_From_Aural_and_Oral_Dynamics_CVPRW_2021_paper.pdf)]
* HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (*2021 IJCAI*) [[Paper](https://arxiv.org/abs/2106.09965)] [[Code](https://github.com/johannwyh/HifiFace)] [[Project](https://johann.wang/HifiFace/)]
* ShapeEditer: a StyleGAN Encoder for Face Swapping (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.13984)]
* Smooth-Swap: A Simple Enhancement for Face-Swapping with Smoothness (*202112 arXiv*) [[Paper](https://arxiv.org/abs/2112.05907)]
* MobileFaceSwap: A Lightweight Framework for Video Face Swapping (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2201.03808)]
* High-resolution face swapping via latent semantics disentanglement (*2022 AAAI*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Xu_High-Resolution_Face_Swapping_via_Latent_Semantics_Disentanglement_CVPR_2022_paper.pdf)] [[Code](https://github.com/cnnlstm/FSLSD_HiRes)]
* Migrating Face Swap to Mobile Devices: A lightweight Framework and A Supervised Training Solution (*2022 ICME*) [[Paper](https://arxiv.org/abs/2204.08339)] [[Code](https://github.com/HoiM/MobileFSGAN)]
* Learning Disentangled Representation for One-shot Progressive Face Swapping (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.12985)] [[Code](https://github.com/liqi-casia/FaceSwapper)]### Face Manipulation
#### Attribute Manipulation
* Learning residual images for face attribute manipulation (*2017 CVPR*) [[Paper](http://zpascal.net/cvpr2017/Shen_Learning_Residual_Images_CVPR_2017_paper.pdf)] [[Code](https://github.com/MingtaoGuo/Learning-Residual-Images-for-Face-Attribute-Manipulation)]
* Fader networks: Manipulating images by sliding attributes (*2017 NeurIPS*) [[Paper](https://papers.nips.cc/paper/7178-fader-networksmanipulating-images-by-sliding-attributes.pdf)] [[Code](https://github.com/facebookresearch/FaderNetworks)]
* StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation (*2018 CVPR*) [[Paper](https://zpascal.net/cvpr2018/Choi_StarGAN_Unified_Generative_CVPR_2018_paper.pdf)] [[Code](https://github.com/yunjey/stargan)]
* Facelet-Bank for Fast Portrait Manipulation (*2018 CVPR*) [[Paper](http://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_Facelet-Bank_for_Fast_CVPR_2018_paper.pdf)] [[Code](https://github.com/yingcong/Facelet_Bank)]
* Glow: Generative flow with invertible 1x1 convolutions (*2018 NeurIPS*) [[Paper](https://papers.nips.cc/paper/8224-glow-generative-flow-with-invertible-1x1-convolutions.pdf)] [[Code](https://github.com/openai/glow)]
* Mask-aware Photorealistic Facial Attribute Manipulation (*2021 CVM*) [[Paper](https://arxiv.org/abs/1804.08882)]
* Sparsely Grouped Multi-Task Generative Adversarial Networks for Facial Attribute Manipulation (*2018 ACMMM*) [[Paper](https://arxiv.org/abs/1805.07509)] [[Code](https://github.com/zhangqianhui/Sparsely-Grouped-GAN)]
* AttGAN: Facial attribute editing by only changing what you want (*2019 TIP*) [[Paper](http://vipl.ict.ac.cn/uploadfile/upload/2019112511573287.pdf)] [[Code](https://github.com/LynnHo/AttGAN-Tensorflow)]
* STGAN: A unified selective transfer network for arbitrary image attribute editing (*2019 CVPR*) [[Paper](https://zpascal.net/cvpr2019/Liu_STGAN_A_Unified_Selective_Transfer_Network_for_Arbitrary_Image_Attribute_CVPR_2019_paper.pdf)] [[Code](https://github.com/csmliu/STGAN)]
* Semantic Component Decomposition for Face Attribute Manipulation (*2019 CVPR*) [[Paper](https://zpascal.net/cvpr2019/Chen_Semantic_Component_Decomposition_for_Face_Attribute_Manipulation_CVPR_2019_paper.pdf)] [[Code](https://github.com/yingcong/SemanticComponent)]
* Make a Face: Towards Arbitrary High Fidelity Face Manipulation (*2019 ICCV*) [[Paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Qian_Make_a_Face_Towards_Arbitrary_High_Fidelity_Face_Manipulation_ICCV_2019_paper.pdf)]
* Towards Automatic Face-to-Face Translation (*2019 ACMMM*) [[Paper](http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/images/Projects/facetoface_translation/paper.pdf)] [[Code](https://github.com/Rudrabha/LipGAN)]
* MulGAN: Facial Attribute Editing by Exemplar (*2019 arXiv*) [[Paper](https://arxiv.org/abs/1912.12396)]
* MaskGAN: Towards Diverse and Interactive Facial Image Manipulation (*2020 CVPR*) [[Paper](https://arxiv.org/abs/1907.11922)] [[Code](https://github.com/switchablenorms/CelebAMask-HQ)]
* PuppetGAN: Cross-Domain Image Manipulation by Demonstration (*2019 ICCV*) [[Paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Usman_PuppetGAN_Cross-Domain_Image_Manipulation_by_Demonstration_ICCV_2019_paper.pdf)] [[Code](https://github.com/GiorgosKarantonis/PuppetGAN)]
* StarGAN v2: Diverse Image Synthesis for Multiple Domains (*2020 CVPR*) [[Paper](https://arxiv.org/abs/1912.01865)] [[Code](https://github.com/clovaai/stargan-v2)]
* Fine-Grained Expression Manipulation via Structured Latent Space (*2020 ICME*) [[Paper](https://arxiv.org/pdf/2004.09769.pdf)] [[Code](https://github.com/junshutang/EGGAN)]
* Towards Photo-Realistic Facial Expression Manipulation (*2020 IJCV*) [[Paper](https://link.springer.com/article/10.1007/s11263-020-01361-8)]
* GANSpace Discovering Interpretable GAN Controls (*2020 NeurIPS*) [[Paper](https://proceedings.neurips.cc/paper/2020/file/6fe43269967adbb64ec6149852b5cc3e-Paper.pdf)] [[Code](https://github.com/harskish/ganspace)]
* InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing (*2020 TPAMI*) [[Paper](https://arxiv.org/pdf/2005.09635.pdf)] [[Code](https://github.com/genforce/interfacegan)]
* FaceController: Controllable Attribute Editing for Face in the Wild (*2021 AAAI*) [[Paper](https://arxiv.org/abs/2102.11464)]
* High-Fidelity and Arbitrary Face Editing (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Gao_High-Fidelity_and_Arbitrary_Face_Editing_CVPR_2021_paper.pdf)] [[Code](https://github.com/hologerry/HifaFace)]
* HistoGAN: Controlling Colors of GAN-Generated and Real Images via Color Histograms (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Afifi_HistoGAN_Controlling_Colors_of_GAN-Generated_and_Real_Images_via_Color_CVPR_2021_paper.pdf)] [[Code](https://github.com/mahmoudnafifi/HistoGAN)]
* High Fidelity Face Manipulation with Extreme Poses and Expressions (*2021 TIFS*) [[Paper](https://arxiv.org/abs/1903.12003)]
* Cross-Domain and Disentangled Face Manipulation with 3D Guidance (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.11228)] [[Code](https://github.com/cassiePython/cddfm3d)]
* Transforming the Latent Space of StyleGAN for Real Face Editing (*202105 arXiv*) [[Paper](https://arxiv.org/abs/2105.14230)] [[Code](https://github.com/AnonSubm2021/TransStyleGAN)]
* Initiative Defense against Facial Manipulation (*2021 AAAI*) [[Paper](https://ojs.aaai.org/index.php/AAAI/article/view/16254)]
* Attribute-specific Control Units in StyleGAN for Fine-grained Image Manipulation (*2021 ACMMM*) [[Paper](https://arxiv.org/abs/2111.13010)] [[Code](https://github.com/budui/Control-Units-in-StyleGAN2)]
* StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows (*2021 ACM TOG*) [[Paper](https://arxiv.org/abs/2008.02401)] [[Code](https://github.com/RameenAbdal/StyleFlow)]
* PTI: Pivotal Tuning for Latent-based editing of Real Images (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.05744)] [[Code](https://github.com/danielroich/PTI)]
* FacialGAN: Style Transfer and Attribute Manipulation on Synthetic Faces (*2021 BMVC*) [[Paper](https://arxiv.org/abs/2110.09425)] [[Code](https://github.com/cc-hpc-itwm/FacialGAN)]
* Disentangled Lifespan Face Synthesis (*2021 ICCV*) [[Paper](https://arxiv.org/pdf/2108.02874.pdf)] [[Code](https://github.com/SenHe/DLFS)]
* GAN-Control: Explicitly Controllable GANs (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2101.02477)]
* BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation (*2021 NeurIPS*) [[Paper](https://arxiv.org/abs/2110.11728)] [[Code](https://github.com/onion-liu/BlendGAN)]
* Gated SwitchGAN for multi-domain facial image translation (*2021 TMM*) [[Paper](https://arxiv.org/abs/2111.14096)]
* Identity-Guided Face Generation with Multi-modal Contour Conditions (*202110 arXiv*) [[Paper](https://arxiv.org/abs/2110.04854)]
* LSC-GAN: Latent Style Code Modeling for Continuous Image-to-image Translation (*202110 arXiv*) [[Paper](https://arxiv.org/abs/2110.05052)] [[Code](https://github.com/huangqiusheng/LSC-GAN-Latent-Style-Code-Modeling-for-Continuous-Image-to-image-Translation)]
* StyleGAN of All Trades: Image Manipulation with Only Pretrained StyleGAN (*202111 arXiv*) [[Paper](https://arxiv.org/abs/2111.01619)] [[Code](https://github.com/mchong6/SOAT)]
* CLIP2StyleGAN: Unsupervised Extraction of StyleGAN Edit Directions (*202112 arXiv*) [[Paper](https://arxiv.org/abs/2112.05219)]
* HairCLIP: Design Your Hair by Text and Reference Image (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2112.05142)] [[Code](https://github.com/wty-ustc/HairCLIP)]
* SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2111.15078)] [[Code](https://github.com/zengxianyu/sketchedit)]
* SemanticStyleGAN: Learning Compositional Generative Priors for Controllable Image Synthesis and Editing (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2112.02236)] [[Code](https://semanticstylegan.github.io/)]
* MOST-GAN: 3D Morphable StyleGAN for Disentangled Face Image Manipulation (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2111.01048)]
* FEAT: Face Editing with Attention (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.02713)]
* FENeRF: Face Editing in Neural Radiance Fields (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Sun_FENeRF_Face_Editing_in_Neural_Radiance_Fields_CVPR_2022_paper.pdf)] [[Code](https://github.com/MrTornado24/FENeRF)]
* TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Xu_TransEditor_Transformer-Based_Dual-Space_GAN_for_Highly_Controllable_Facial_Editing_CVPR_2022_paper.pdf)] [[Code](https://github.com/BillyXYB/TransEditor)]#### Expression Reenactment
* Real-time expression transfer for facial reenactment (*2015 TOG*) [[Paper](http://www.graphics.stanford.edu/~niessner/papers/2015/10face/thies2015realtime.pdf)]* Face2face: Real-time face capture and reenactment of RGB videos (*2016 CVPR*) [[Paper](http://openaccess.thecvf.com/content_cvpr_2016/papers/Thies_Face2Face_Real-Time_Face_CVPR_2016_paper.pdf)]
* ReenactGAN: Learning to reenact faces via boundary transfer (*2018 ECCV*) [[Paper](http://personal.ie.cuhk.edu.hk/~ccloy/files/eccv_2018_reenactgan.pdf)] [[Code](https://github.com/wywu/ReenactGAN)]
* HeadOn: Real-time Reenactment of Human Portrait Videos (*2018 TOG*) [[Paper](https://arxiv.org/pdf/1805.11729.pdf)]
* Deep video portraits (*2018 TOG*) [[Paper](https://arxiv.org/pdf/1805.11714.pdf)]
* ExprGAN: Facial expression editing with controllable expression intensity (*2018 AAAI*) [[Paper](https://arxiv.org/pdf/1709.03842.pdf)] [[Code](https://github.com/HuiDingUMD/ExprGAN)]
* Geometry guided adversarial facial expression synthesis (*2018 ACMMM*) [[Paper](https://arxiv.org/abs/1712.03474)]
* GANimation: Anatomically-aware facial animation from a single image (*2018 ECCV*) [[Paper](http://www.iri.upc.edu/files/scidoc/2052-GANimation:-Anatomically-aware-Facial-Animation-from-a-Single-Image.pdf)] [[Code](https://github.com/albertpumarola/GANimation)]
* Generating Photorealistic Facial Expressions in Dyadic Interactions (*2018 BMVC*) [[Paper](http://bmvc2018.org/contents/papers/0590.pdf)]
* Dynamic Facial Expression Generation on Hilbert Hypersphere with Conditional Wasserstein Generative Adversarial Nets (*2020 TPAMI*) [[Paper](https://arxiv.org/pdf/1907.10087.pdf)]
* 3D guided fine-grained face manipulation (*2019 CVPR*) [[Paper](http://openaccess.thecvf.com/content_CVPR_2019/papers/Geng_3D_Guided_Fine-Grained_Face_Manipulation_CVPR_2019_paper.pdf)]
* Few-shot adversarial learning of realistic neural talking head models (*2019 ICCV*) [[Paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Zakharov_Few-Shot_Adversarial_Learning_of_Realistic_Neural_Talking_Head_Models_ICCV_2019_paper.pdf)] [[Code1](https://github.com/vincent-thevenin/Realistic-Neural-Talking-Head-Models)] [[Code2](https://github.com/grey-eye/talking-heads)] [[Code3](https://github.com/shoutOutYangJie/Few-Shot-Adversarial-Learning-for-face-swap)]
* Deferred Neural Rendering: Image Synthesis using Neural Textures (*2019 TOG*) [[Paper](https://arxiv.org/pdf/1904.12356.pdf)] [[Code](https://github.com/SSRSGJYD/NeuralTexture)]
* MarioNETte: Few-shot Face Reenactment Preserving Identity of Unseen Targets (*2020 AAAI*) [[Paper](https://arxiv.org/abs/1911.08139)]
* Unconstrained Facial Expression Transfer using Style-based Generator (*2019 arXiv*) [[Paper](https://arxiv.org/abs/1912.06253)]
* One-shot Face Reenactment (*2019 BMVC*) [[Paper](https://arxiv.org/abs/1908.03251)] [[Code](https://github.com/bj80heyue/One_Shot_Face_Reenactment)]
* ICface: Interpretable and Controllable Face Reenactment Using GANs (*2020 WACV*) [[Paper](https://arxiv.org/pdf/1904.01909.pdf)] [[Code](https://github.com/Blade6570/icface)]
* Realistic Face Reenactment via Self-Supervised Disentangling of Identity and Pose (*2020 AAAI*) [[Paper](https://arxiv.org/pdf/2003.12957.pdf)]
* APB2Face: Audio-guided face reenactment with auxiliary pose and blink signals (*2020 ICASSP*) [[Paper](https://arxiv.org/pdf/2004.14569.pdf)] [[Code](https://github.com/zhangzjn/APB2Face)]
* One-Shot Identity-Preserving Portrait Reenactment (*202004 arXiv*) [[Paper](https://arxiv.org/pdf/2004.12452.pdf)]
* FReeNet: Multi-Identity Face Reenactment (*2020 CVPR*) [[Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Zhang_FReeNet_Multi-Identity_Face_Reenactment_CVPR_2020_paper.pdf)] [[Code](https://github.com/zhangzjn/FReeNet)]
* Learning Identity-Invariant Motion Representations for Cross-ID Face Reenactment (*2020 CVPR*) [[Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Huang_Learning_Identity-Invariant_Motion_Representations_for_Cross-ID_Face_Reenactment_CVPR_2020_paper.pdf)]
* FaR-GAN for One-Shot Face Reenactment (*202005 arXiv*) [[Paper](https://arxiv.org/pdf/2005.06402.pdf)]
* ReenactNet: Real-time Full Head Reenactment (*2020 FG*) [[Paper](https://arxiv.org/pdf/2006.10500.pdf)]
* APB2FaceV2: Real-Time Audio-Guided Multi-Face Reenactment (*202010 arXiv*) [[Paper](https://arxiv.org/pdf/2010.13017.pdf)] [[Code](https://github.com/zhangzjn/APB2FaceV2)]
* Realistic Talking Face Synthesis With Geometry-Aware Feature Transformation (*2020 ICIP*) [[Paper](https://ieeexplore.ieee.org/document/9190699)]
* Mesh Guided One-shot Face Reenactment using Graph Convolutional Networks (*2020 ACMMM*) [[Paper](https://arxiv.org/abs/2008.07783)]
* Neural Head Reenactment with Latent Pose Descriptors (*2020 CVPR*) [[Paper](https://arxiv.org/abs/2004.12000)] [[Code](https://github.com/shrubb/latent-pose-reenactment)]
* Fast Bi-layer Neural Synthesis of One-Shot Realistic Head Avatars (*2020 CVPR*) [[Paper](https://arxiv.org/abs/2008.10174)] [[Code](https://github.com/saic-violet/bilayer-model)]
* MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation (*2020 ECCV*) [[Paper](https://wywu.github.io/projects/MEAD/support/MEAD.pdf)] [[Code](https://github.com/uniBruce/Mead)] [[Dataset](https://wywu.github.io/projects/MEAD/MEAD.html)]
* FACEGAN: Facial Attribute Controllable rEenactment GAN (*2021 WACV*) [[Paper](https://arxiv.org/abs/2011.04439)] [[Code](https://tutvision.github.io/FACEGAN/)]
* One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2011.15126)] [[Code](https://nvlabs.github.io/face-vid2vid/)]
* AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2103.11078)] [[Code](https://github.com/YudongGuo/AD-NeRF)]
* One-shot Face Reenactment Using Appearance Adaptive Normalization (*2021 AAAI*) [[Paper](https://arxiv.org/abs/2102.03984)]
* Pareidolia Face Reenactment (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Song_Pareidolia_Face_Reenactment_CVPR_2021_paper.pdf)] [[Code](https://github.com/Linsen13/EverythingTalking)]
* LI-Net: Large-Pose Identity-Preserving Face Reenactment Network (*2021 ICME*) [[Paper](https://arxiv.org/abs/2104.02850)]
* Fine-grained Identity Preserving Landmark Synthesis for Face Reenactment (*202110 arXiv*) [[Paper](https://arxiv.org/abs/2110.04708)]
* Talking Head Generation with Audio and Speech Related Facial Action Units (*2021 BMVC*) [[Paper](https://www.bmvc2021-virtualconference.com/assets/papers/0291.pdf)]
* DFA-NeRF: Personalized Talking Head Generation via Disentangled Face Attributes Neural Rendering (*202201 arXiv*) [[Paper](https://arxiv.org/abs/2201.00791)]
* Finding Directions in GAN's Latent Space for Neural Face Reenactment (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.00046)]
* Thinking the Fusion Strategy of Multi-reference Face Reenactment (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.10758)]
* Neural Emotion Director: Speech-preserving semantic control of facial expressions in “in-the-wild” videos (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2112.00585)] [[Code](https://github.com/foivospar/NED)]
* Depth-Aware Generative Adversarial Network for Talking Head Video Generation (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2203.06605)] [[Code](https://github.com/harlanhong/CVPR2022-DaGAN)]
* Dual-Generator Face Reenactment (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Hsu_Dual-Generator_Face_Reenactment_CVPR_2022_paper.pdf)] [[Code](https://github.com/AvLab-CV/Dual_Generator_Face_Reenactment)]
#### Cross-modality Manipulation
* Synthesizing Obama: learning lip sync from audio (*2017 TOG*) [[Paper](https://grail.cs.washington.edu/projects/AudioToObama/siggraph17_obama.pdf)] [[Code](https://github.com/supasorn/synthesizing_obama_network_training)]
* Obamanet: Photo-realistic lip-sync from text (*2017 NIPSW*) [[Paper](https://arxiv.org/abs/1801.01442)]
* Face synthesis from visual attributes via sketch using conditional VAEsand GANs (*2017 arXiv*) [[Paper](https://arxiv.org/abs/1801.00077)]
* GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks (*2018 ICPR*) [[Paper](https://engineering.jhu.edu/vpatel36/wp-content/uploads/2018/08/GPGAN_icpr18_camera_ready.pdf)]
* X2Face: A network for controlling face generation by using images, audio, and pose codes (*2018 ECCV*) [[Paper](https://arxiv.org/abs/1807.10550)] [[Code](https://github.com/oawiles/X2Face)]
* Speech2Face: Learning the Face Behind a Voice (*2019 CVPR*) [[Paper](http://openaccess.thecvf.com/content_CVPR_2019/papers/Oh_Speech2Face_Learning_the_Face_Behind_a_Voice_CVPR_2019_paper.pdf)]
* Face Reconstruction from Voice using Generative Adversarial Networks (*2019 NeurIPS*) [[Paper](https://papers.nips.cc/paper/8768-face-reconstruction-from-voice-using-generative-adversarial-networks.pdf)]
* Neural Voice Puppetry: Audio-driven Facial Reenactment (*2020 ECCV*) [[Paper](https://arxiv.org/abs/1912.05566)]
* Realistic Speech-Driven Facial Animation with GANs (*2019 IJCV*) [[Paper](https://arxiv.org/abs/1906.06337)]
* You said that?: Synthesising talking faces from audio (*2019 IJCV*) [[Paper](https://www.robots.ox.ac.uk/~vgg/publications/2019/Jamaludin19/jamaludin19.pdf)]
* Text-based editing of talking-head video (*2019 TOG*) [[Paper](https://www.ohadf.com/projects/text-based-editing/data/text-based-editing.pdf)]
* FTGAN: A Fully-trained Generative Adversarial Networks for Text to Face Generation (*2019 arXiv*) [[Paper](https://arxiv.org/abs/1904.05729)]
* Hierarchical Cross-Modal Talking Face Generationwith Dynamic Pixel-Wise Loss (*2019 CVPR*) [[Paper](https://arxiv.org/abs/1905.03820)] [[Code](https://github.com/lelechen63/ATVGnet)]
* Wav2Pix: Speech-conditioned Face Generation using Generative Adversarial Networks (*2019 ICASSP*) [[Paper](https://arxiv.org/abs/1903.10195)] [[Code](https://github.com/miqueltubau/Wav2Pix)]
* Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (*2019 AAAI*) [[Paper](https://arxiv.org/pdf/1807.07860.pdf)] [[Code](https://github.com/Hangz-nju-cuhk/Talking-Face-Generation-DAVS)]
* Everybody’s Talkin’: Let Me Talk as You Want (*2022 TIFS*) [[Paper](https://arxiv.org/abs/2001.05201)]
* Identity-Preserving Realistic Talking Face Generation (*2020 IJCNN*) [[Paper](https://arxiv.org/pdf/2005.12318.pdf)]
* Talking-head Generation with Rhythmic Head Motion (*2020 ECCV*) [[Paper](https://arxiv.org/pdf/2007.08547.pdf)] [[Code](https://github.com/lelechen63/Talking-head-Generation-with-Rhythmic-Head-Motion)]
* FLNet: Landmark Driven Fetching and Learning Network for Faithful Talking Facial Animation Synthesis (*2020 AAAI*) [[Paper](https://arxiv.org/abs/1911.09224)] [[Code](https://github.com/kgu3/FLNet_AAAI2020)]
* A Lip Sync Expert Is All You Need for Speech to Lip Generation In The Wild (*2020 ACMMM*) [[Paper](https://arxiv.org/abs/2008.10010)] [[Code](https://github.com/Rudrabha/Wav2Lip)]
* Talking Face Generation with Expression-Tailored Generative Adversarial Network (*2020 ACMMM*) [[Paper](https://dl.acm.org/doi/abs/10.1145/3394171.3413844)]
* From Inference to Generation: End-to-end Fully Self-supervised Generation of Human Face from Speech (*2020 ICLR*) [[Paper](https://arxiv.org/abs/2004.05830)]
* Arbitrary Talking Face Generation via Attentional Audio-Visual Coherence Learning (*2020 IJCAI*) [[Paper](https://www.ijcai.org/Proceedings/2020/327)]
* MakeItTalk: Speaker-Aware Talking-Head Animation (*2020 Siggraph Asia*) [[Paper](https://arxiv.org/abs/2004.12992)] [[Code](https://github.com/yzhou359/MakeItTalk)]
* Facial Keypoint Sequence Generation from Audio (*202011 arXiv*) [[Paper](https://arxiv.org/abs/2011.01114)]
* LandmarkGAN: Synthesizing Faces from Landmarks (*202011 arXiv*) [[Paper](https://arxiv.org/abs/2011.00269)]
* Stochastic Talking Face Generation Using Latent Distribution Matching (*202011 arXiv*) [[Paper](https://arxiv.org/abs/2011.10727)]
* StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2103.17249)] [[Code](https://github.com/orpatashnik/StyleCLIP)]
* TediGAN: Text-Guided Diverse Face Image Generation and Manipulation (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2012.03308)] [[Code](https://github.com/IIGROUP/TediGAN)]
* Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Zhou_Pose-Controllable_Talking_Face_Generation_by_Implicitly_Modularized_Audio-Visual_Representation_CVPR_2021_paper.pdf)] [[Code](https://github.com/Hangz-nju-cuhk/Talking-Face_PC-AVS)]
* Flow-guided One-shot Talking Face Generation with a High-resolution
Audio-visual Dataset (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Zhang_Flow-Guided_One-Shot_Talking_Face_Generation_With_a_High-Resolution_Audio-Visual_Dataset_CVPR_2021_paper.pdf)] [[Code](https://github.com/MRzzm/HDTF)]
* Talk-to-Edit: Fine-Grained Facial Editing via Dialog (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2109.04425)] [[Code](https://github.com/yumingj/Talk-to-Edit)]
* Text2Video: Text-driven Talking-head Video Synthesis with Personalized Phoneme-Pose Dictionary (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.14631)] [[Code](https://github.com/sibozhang/Text2Video)]
* Controlled AutoEncoders to Generate Faces from Voices (*2020 ISVC*) [[Paper](https://arxiv.org/abs/2107.07988)]
* Imitating Arbitrary Talking Style for Realistic Audio-Driven Talking Face Synthesis (*2021 ACMMM*) [[Paper](https://arxiv.org/abs/2111.00203)] [[Code](https://github.com/wuhaozhe/style_avatar)]
* AI-generated characters for supporting personalized learning and well-being (*2021 nature machine intelligence*) [[Paper](https://www.nature.com/articles/s42256-021-00417-9)] [[Code](https://github.com/mitmedialab/AI-generated-characters)]
* Audio-Driven Talking Face Video Generation with Dynamic Convolution Kernels (*2022 TMM*) [[Paper](https://ieeexplore.ieee.org/document/9681173)]
* StyleMC: Multi-Channel Based Fast Text-Guided Image Generation and Manipulation (*2022 WACV*) [[Paper](https://arxiv.org/abs/2112.08493)] [[Code](https://github.com/catlab-team/stylemc)]
* One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2112.02749)]
* AnyFace: Free-style Text-to-Face Synthesis and Manipulation (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Sun_AnyFace_Free-Style_Text-To-Face_Synthesis_and_Manipulation_CVPR_2022_paper.pdf)]
* Expressive Talking Head Generation with Granular Audio-Visual Control (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Liang_Expressive_Talking_Head_Generation_With_Granular_Audio-Visual_Control_CVPR_2022_paper.pdf)]
* Show Me What and Tell Me How: Video Synthesis via Multimodal Conditioning (*2022 CVPR*) [[Paper](https://arxiv.org/pdf/2203.02573.pdf)] [[Code](https://github.com/snap-research/MMVID)]
* StyleT2I: Toward Compositional and High-Fidelity Text-to-Image Synthesis (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2203.15799)] [[Code](https://github.com/zhihengli-UR/StyleT2I)]
* DiffusionCLIP: Text-Guided Diffusion Models for Robust Image Manipulation (*2022 WACV*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/html/Kim_DiffusionCLIP_Text-Guided_Diffusion_Models_for_Robust_Image_Manipulation_CVPR_2022_paper.html)] [[Code](https://github.com/gwang-kim/DiffusionCLIP)]
* GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models (*2022 ICML*) [[Paper](https://arxiv.org/abs/2112.10741)] [[Code](https://github.com/openai/glide-text2im)]
* AnyFace: Free-style Text-to-Face Synthesis and Manipulation (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.15334)]
* Attention-Based Lip Audio-Visual Synthesis for Talking Face Generation in the Wild (*202203 arXiv*) [[Paper](https://arxiv.org/pdf/2203.03984.pdf)]
* StyleHEAT: One-Shot High-Resolution Editable Talking Face Generation via Pre-trained StyleGAN (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.04036)] [[Code](https://feiiyin.github.io/StyleHEAT/)]## Target-generic Face Forgery (Representative)
***
* Generative Adversarial Nets (*2014 NeurIPS*) [[Paper](https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf)] [[Code](https://github.com/goodfeli/adversarial)]
* (DCGAN) Unsupervised representation learning with deep convolutional generative adversarial networks (*2016 ICLR*) [[Paper](https://arxiv.org/pdf/1511.06434.pdf)] [[Code](https://github.com/Newmu/dcgan_code)]
* (ProGAN) Progressive growing of GANs for improved quality, stability, and variation (*2018 ICLR*) [[Paper](https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf)] [[Code](https://github.com/tkarras/progressive_growing_of_gans)]
* Spectral normalization for generative adversarial networks (*2018 ICLR*) [[Paper](https://openreview.net/pdf?id=B1QRgziT-)] [[Code](https://github.com/pfnet-research/sngan_projection)] [[Code](https://github.com/godisboy/SN-GAN)]
* Self-attention generative adversarial networks (*2019 ICML*) [[Paper](https://arxiv.org/pdf/1805.08318.pdf)] [[Code](https://github.com/heykeetae/Self-Attention-GAN)]
* (StyleGAN) A Style-Based Generator Architecture for Generative Adversarial Networks (*2019 CVPR*) [[Paper](http://openaccess.thecvf.com/content_CVPR_2019/papers/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.pdf)] [[Code](https://github.com/NVlabs/stylegan)]
* (BigGAN) Large Scale GAN Training for High Fidelity Natural Image Synthesis (*2019 ICLR*) [[Paper](https://arxiv.org/pdf/1809.11096.pdf)] [[Code1](https://github.com/AaronLeong/BigGAN-pytorch)] [[Code2](https://github.com/taki0112/BigGAN-Tensorflow)]
* (StyleGAN2) Analyzing and improving the image quality of StyleGAN (*2020 CVPR*) [[Paper](https://arxiv.org/abs/1912.04958)] [[Code1](https://github.com/NVlabs/stylegan2)] [[Code2](https://github.com/rosinality/stylegan2-pytorch)]
* One-Shot Domain Adaptation For Face Generation (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/2003.12869.pdf)]
* (ALAE) Adversarial Latent Autoencoders (*2020 CVPR*) [[Paper](https://openaccess.thecvf.com/content_CVPR_2020/papers/Pidhorskyi_Adversarial_Latent_Autoencoders_CVPR_2020_paper.pdf)] [[Code](https://github.com/podgorskiy/ALAE)]
* (CUT) Contrastive Learning for Unpaired Image-to-Image Translation (*2020 ECCV*) [[Paper](https://arxiv.org/pdf/2007.15651.pdf)] [[Code](https://github.com/taesungp/contrastive-unpaired-translation)]
* Improved StyleGAN Embedding: Where are the Good Latents? (*202012 arXiv*) [[Paper](https://arxiv.org/abs/2012.09036)] [[Code](https://github.com/ZPdesu/II2S)]
* StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2011.12799)] [[Code](https://github.com/betterze/StyleSpace)]
* (StyleGAN3) Alias-Free Generative Adversarial Networks (*2021 NIPS*) [[Paper](https://arxiv.org/abs/2106.12423)] [[Code](https://github.com/NVlabs/stylegan3)]
* StyleSwin: Transformer-based GAN for High-resolution Image Generation (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2112.10762)] [[Code](https://github.com/microsoft/StyleSwin)]
* Diffusion Models Beat GANs on Image Synthesis (*2021 NIPS*) [[Paper](https://openreview.net/forum?id=AAWuCvzaVt)]
* Perception Prioritized Training of Diffusion Models (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Choi_Perception_Prioritized_Training_of_Diffusion_Models_CVPR_2022_paper.pdf)] [[Code](https://github.com/jychoi118/P2-weighting)]
* Expanding the Latent Space of StyleGAN for Real Face Editing (*202204 arXiv*) [[Paper](https://arxiv.org/pdf/2204.12530.pdf)]## Face Forgery Detection
***### Spatial Clue for Detection
* Automated face swapping and its detection (*2017 ICSIP*) [[Paper](https://ieeexplore.ieee.org/document/8124497)]* Two-stream neural networks for tampered face detection (*2017 CVPRW*) [[Paper](https://arxiv.org/abs/1803.11276)]
* Can Forensic Detectors Identify GAN Generated Images? (*2018 APSIPA*) [[Paper](http://www.apsipa.org/proceedings/2018/pdfs/0000722.pdf)]
* Deepfakes: a new threat to face recognition? assessment and detection (*2018 arXiv*) [[Paper](https://arxiv.org/abs/1812.08685)]
* Identification of Deep Network Generated Images Using Disparities in Color Components (*2020 Signal Processing*) [[Paper](https://arxiv.org/pdf/1808.07276.pdf)] [[Code](https://github.com/lihaod/GAN_image_detection)]
* Fake Faces Identification via Convolutional Neural Network (*2018 IH&MMSec*) [[Paper](https://dl.acm.org/doi/10.1145/3206004.3206009)]
* Learning to detect fake face images in the wild (*2018 IS3C*) [[Paper](https://arxiv.org/ftp/arxiv/papers/1809/1809.08754.pdf)] [[Code](https://github.com/jesse1029/Fake-Face-Images-Detection-Tensorflow)]
* Detecting Both Machine and Human Created Fake Face Images In the Wild (*2018 MPS*) [[Paper](https://dl.acm.org/doi/10.1145/3267357.3267367)]
* Detection of Deepfake Video Manipulation (*2018 IMVIP*) [[Paper](https://www.researchgate.net/publication/329814168_Detection_of_Deepfake_Video_Manipulation)]
* Secure detection of image manipulation by means of random feature selection (*2019 TIFS*) [[Paper](https://arxiv.org/pdf/1802.00573.pdf)]
* Exploiting Human Social Cognition for the Detection of Fake and Fraudulent Faces via Memory Networks (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1911.07844.pdf)]
* Swapped Face Detection using Deep Learning and Subjective Assessment (*2020 EURASIP*) [[Paper](https://arxiv.org/pdf/1909.04217.pdf)]
* Detection of Fake Images Via The Ensemble of Deep Representations from Multi Color Spaces (*2019 ICIP*) [[Paper](https://ieeexplore.ieee.org/abstract/document/8803740/)]
* Detection GAN-Generated Imagery Using Saturation Cues (*2019 ICIP*) [[Paper](https://ieeexplore.ieee.org/document/8803661)]
* Detecting GAN generated fake images using co-occurrence matrices (*2019 Electronic Imaging*) [[Paper](https://arxiv.org/pdf/1903.06836.pdf)]
* Exposing DeepFake Videos By Detecting Face Warping Artifacts (*2019 CVPRW*) [[Paper](http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Li_Exposing_DeepFake_Videos_By_Detecting_Face_Warping_Artifacts_CVPRW_2019_paper.pdf)] [[Code](https://github.com/danmohaha/CVPRW2019_Face_Artifacts)]
* Exposing GAN-synthesized Faces Using Landmark Locations (*2019 IHMS*) [[Paper](https://arxiv.org/pdf/1904.00167.pdf)]
* Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations (*2019 WACVW*) [[Paper](https://ieeexplore.ieee.org/document/8638330)] [[Code](https://github.com/FalkoMatern/Exploiting-Visual-Artifacts)]
* Detecting and Simulating Artifacts in GAN Fake Images (*2019 WIFS*) [[Paper](https://arxiv.org/pdf/1907.06515.pdf)] [[Code](https://github.com/ColumbiaDVMM/AutoGAN)]
* On the detection of digital face manipulation (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/1910.01717.pdf)]
* On the generalization of GAN image forensics (*2019 CCBR*) [[Paper](https://arxiv.org/pdf/1902.11153.pdf)]
* Unmasking DeepFakes with simple Features (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1911.00686.pdf)] [[Code](https://github.com/cc-hpc-itwm/DeepFakeDetection)]
* Face image manipulation detection based on a convolutional neural network (*2019 ESWA*) [[Paper](https://www.sciencedirect.com/science/article/abs/pii/S0957417419302350)]
* Do GANs leave artificial fingerprints? (*2019 MIPR*) [[Paper](https://arxiv.org/pdf/1812.11842.pdf)]
* Attributing fake images to GANs: Learning and analyzing GAN fingerprints (*2019 ICCV*) [[Paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Yu_Attributing_Fake_Images_to_GANs_Learning_and_Analyzing_GAN_Fingerprints_ICCV_2019_paper.pdf)] [[Code](https://github.com/ningyu1991/GANFingerprints)]
* Multi-task learning for detecting and segmenting manipulated facial images and videos (*2019 BTAS*) [[Paper](https://arxiv.org/pdf/1906.06876.pdf)] [[Code](https://github.com/nii-yamagishilab/ClassNSeg)]
* Poster: Towards Robust Open-World Detection of Deepfakes (*2019 CCS*) [[Paper](https://dl.acm.org/doi/abs/10.1145/3319535.3363269)]
* Extracting deep local features to detect manipulated images of human faces (*2020 ICIP*) [[Paper](https://arxiv.org/pdf/1911.13269.pdf)]
* Zooming into Face Forensics: A Pixel-level Analysis (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1912.05790.pdf)]
* Fakespotter: A simple baseline for spotting ai-synthesized fake faces (*2020 IJCAI*) [[Paper](https://www.ijcai.org/proceedings/2020/476)]
* Capsule-forensics: Using capsule networks to detect forged images and videos (*2019 ICASSP*) [[Paper](https://arxiv.org/pdf/1810.11215.pdf)] [[Code](https://github.com/nii-yamagishilab/Capsule-Forensics)]
* Use of a Capsule Network to Detect Fake Images and Videos (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1910.12467.pdf)] [[Code](https://github.com/nii-yamagishilab/Capsule-Forensics-v2)]
* Deep Fake Image Detection based on Pairwise Learning (*2020 Applied Science*) [[Paper](https://www.researchgate.net/publication/338382561_Deep_Fake_Image_Detection_Based_on_Pairwise_Learning)]
* Detecting Face2Face Facial Reenactment in Videos (*2020 WACV*) [[Paper](http://openaccess.thecvf.com/content_WACV_2020/papers/Kumar_Detecting_Face2Face_Facial_Reenactment_in_Videos_WACV_2020_paper.pdf)]
* FakeLocator: Robust Localization of GAN-Based Face Manipulations (*2022 TIFS*) [[Paper](https://ieeexplore.ieee.org/document/9673747)]
* FDFtNet: Facing Off Fake Images using Fake Detection Fine-tuning Network (*2020 IFIP*) [[Paper](https://arxiv.org/pdf/2001.01265.pdf)] [[Code](https://github.com/cutz-j/FDFtNet)]
* Global Texture Enhancement for Fake Face Detection in the Wild (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/2002.00133.pdf)]
* Detecting Deepfakes with Metric Learning (*2020 IWBF*) [[Paper](https://arxiv.org/pdf/2003.08645.pdf)]
* Fake Generated Painting Detection via Frequency Analysis (*2020 ICIP*) [[Paper](https://arxiv.org/pdf/2003.02467.pdf)]
* Leveraging Frequency Analysis for Deep Fake Image Recognition (*2020 ICML*) [[Paper](https://arxiv.org/pdf/2003.08685.pdf)] [[Code](https://github.com/RUB-SysSec/GANDCTAnalysis)]
* One-Shot GAN Generated Fake Face Detection (*202003 arXiv*) [[Paper](https://arxiv.org/pdf/2003.08685.pdf)]
* DeepFake Detection by Analyzing Convolutional Traces (*2020 CVPRW*) [[Paper](https://arxiv.org/pdf/2004.10448.pdf)] [[Website](https://iplab.dmi.unict.it/mfs/DeepFake/)]
* DeepFakes Evolution: Analysis of Facial Regions and Fake Detection Performance (*2021 ICPR*) [[Paper](https://arxiv.org/pdf/2004.07532.pdf)]
* On the use of Benford's law to detect GAN-generated images (*2021 ICPR*) [[Paper](https://arxiv.org/pdf/2004.07682.pdf)] [[Code](https://github.com/polimi-ispl/icpr-benford-gan)]
* Video Face Manipulation Detection Through Ensemble of CNNs (*2021 ICPR*) [[Paper](https://arxiv.org/pdf/2004.07676.pdf)] [[Code](https://github.com/polimi-ispl/icpr2020dfdc)]
* Detecting Forged Facial Videos using convolutional neural network (*202005 arXiv*) [[Paper](https://arxiv.org/pdf/2005.08344.pdf)]
* Fake Face Detection via Adaptive Residuals Extraction Network (*202005 arXiv*) [[Paper](https://arxiv.org/pdf/2005.04945.pdf)] [[Code](https://github.com/EricGzq/AMTENnet)]
* Manipulated Face Detector: Joint Spatial and Frequency Domain Attention Network (*202005 arXiv*) [[Paper](https://arxiv.org/pdf/2005.02958.pdf)]
* A Face Preprocessing Approach for Improved DeepFake Detection (*202006 arXiv*) [[Paper](https://arxiv.org/pdf/2006.07084.pdf)]
* A Note on Deepfake Detection with Low-Resources (*202006 arXiv*) [[Paper](https://arxiv.org/pdf/2006.05183.pdf)]
* Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues (*2020 ECCV*) [[Paper](https://arxiv.org/pdf/2007.09355.pdf)]
* CNN Detection of GAN-Generated Face Images based on Cross-Band Co-occurrences Analysis (*2020 WIFS*) [[Paper](https://arxiv.org/pdf/2007.12909.pdf)] [[Code](https://github.com/ehsannowroozi/FaceGANdetection)]
* Detection, Attribution and Localization of GAN Generated Images (*2021 Electronic Imaging*) [[Paper](https://arxiv.org/pdf/2007.10466.pdf)]
* Two-branch Recurrent Network for Isolating Deepfakes in Videos (*2020 ECCV*) [[Paper](https://arxiv.org/pdf/2008.03412.pdf)]
* What makes fake images detectable? Understanding properties that generalize (*2020 ECCV*) [[Paper](https://arxiv.org/pdf/2008.10588.pdf)] [[Code](https://github.com/chail/patch-forensics)]
* DeepFake Detection Based on Discrepancies Between Faces and their Context (*2021 TPAMI*) [[Paper](https://arxiv.org/pdf/2008.12262.pdf)]
* Deep Detection for Face Manipulation (*2020 ICNIP*) [[Paper](https://arxiv.org/pdf/2009.05934.pdf)]
* Exposing GAN-generated faces using inconsistent corneal specular highlights (*2021 ICASSP*) [[Paper](https://arxiv.org/pdf/2009.11924.pdf)]
* Face Forgery Detection by 3D Decomposition (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2011.09737)]
* Identifying Invariant Texture Violation for Robust Deepfake Detection (*202012 arXiv*) [[Paper](https://arxiv.org/abs/2012.10580)]
* Learning to Recognize Patch-Wise Consistency for Deepfake Detection (*202012 arXiv*) [[Paper](https://arxiv.org/abs/2012.09311)]
* Fourier Spectrum Discrepancies in Deep Network Generated Images (*2020 NeurIPS*) [[Paper](https://arxiv.org/abs/1911.06465)] [[Code](https://github.com/tarikdzanic/FourierSpectrumDiscrepancies)]
* Gradient-Based Illumination Description for Image Forgery Detection (*2020 TIFS*) [[Paper](https://ieeexplore.ieee.org/abstract/document/8812683)]
* Fighting deepfakes by detecting GAN DCT anomalies (*2021 Journal of Imaging*) [[Paper](https://arxiv.org/abs/2101.09781)]
* Adversarially robust deepfake media detection using fused convolutional neural network predictions (*202102 arXiv*) [[Paper](https://arxiv.org/abs/2102.05950)]
* Deepfake Video Detection Using Convolutional Vision Transformer (*202102 arXiv*) [[Paper](https://arxiv.org/abs/2102.11126)] [[Code](https://github.com/erprogs/CViT)]
* Facial Manipulation Detection Based on the Color Distribution Analysis in Edge Region (*202102 arXiv*) [[Paper](https://arxiv.org/abs/2102.01381)]
* Improving DeepFake Detection Using Dynamic Face Augmentation (*202102 arXiv*) [[Paper](https://arxiv.org/abs/2102.09603)]
* Am I a Real or Fake Celebrity? Measuring Commercial Face Recognition Web APIs under Deepfake Impersonation Attack (*2022 WWW*) [[Paper](https://dl.acm.org/doi/abs/10.1145/3485447.3512212)]
* DefakeHop: A Light-Weight High-Performance Deepfake Detector (*2021 ICME*) [[Paper](https://arxiv.org/abs/2103.06929)] [[Code](https://github.com/hongshuochen/DefakeHop)]
* Multi-attentional Deepfake Detection (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.02406)] [[Code](https://github.com/yoctta/multiple-attention)]
* Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.01856)]
* Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Li_Frequency-Aware_Discriminative_Feature_Learning_Supervised_by_Single-Center_Loss_for_Face_CVPR_2021_paper.pdf)]
* Finding Facial Forgery Artifacts with Parts-Based Detectors (*2021 CVPRW*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021W/WMF/papers/Schwarcz_Finding_Facial_Forgery_Artifacts_With_Parts-Based_Detectors_CVPRW_2021_paper.pdf)]
* Practical Face Swapping Detection Based on Identity Spatial Constraints (*2021 IJCB*) [[Paper](https://ieeexplore.ieee.org/document/9484396)]
* Visual-Semantic Transformer for Face Forgery Detection (*2021 IJCB*) [[Paper](https://ieeexplore.ieee.org/document/9484407)]
* PRRNet: Pixel-Region relation network for face forgery detection (*2021 Pattern Recognition*) [[Paper](https://www.sciencedirect.com/science/article/pii/S0031320321001370)]
* Fighting Fake News: Two Stream Network for Deepfake Detection via Learnable SRM (*2021 IEEE TBIOM*) [[Paper](https://ieeexplore.ieee.org/document/9377486)]
* Inconsistency-Aware Wavelet Dual-Branch Network for Face Forgery Detection (*2021 IEEE TBIOM*) [[Paper](https://ieeexplore.ieee.org/document/9447758)]
* Detection of Fake and Fraudulent Faces via Neural Memory Networks (*2021 IEEE TIFS*) [[Paper](https://ieeexplore.ieee.org/document/9309253)]
* Deepfake Detection Scheme Based on Vision Transformer and Distillation (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.01353)]
* M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.09770)] [[Code](https://github.com/wangjk666/M2TR-Multi-modal-Multi-scale-Transformers-for-Deepfake-Detection)]
* Robust Face-Swap Detection Based on 3D Facial Shape Information (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.13665)]
* Local Relation Learning for Face Forgery Detection (*2021 AAAI*) [[Paper](https://arxiv.org/abs/2105.02577)]
* Interpretable Face Manipulation Detection via Feature Whitening (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.10834)]
* Learning to Disentangle GAN Fingerprint for Fake Image Attribution (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.08749)]
* Wavelet-Packets for Deepfake Image Analysis and Detection (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.09369)] [[Code](https://github.com/gan-police/frequency-forensics)] [[Code](https://github.com/v0lta/PyTorch-Wavelet-Toolbox)]
* Eyes Tell All: Irregular Pupil Shapes Reveal GAN-generated Faces (*2022 ICASSP*) [[Paper](https://ieeexplore.ieee.org/document/9746597)]
* MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake Detection (*2021 FG*) [[Paper](https://arxiv.org/abs/2109.07311)]
* A universal detector of CNN-generated images using properties of checkerboard artifacts in the frequency domain (*2021 GCCE*) [[Paper](https://arxiv.org/abs/2108.01892)]
* Deepfake Representation with Multilinear Regression (*2021 KDDW*) [[Paper](https://arxiv.org/abs/2108.06702)]
* Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images (*2021 IJCAIW*) [[Paper](https://arxiv.org/abs/2112.08050)] [[Code](https://github.com/Leminhbinh0209/Asynchronous-in-Frequency-of-GAN)]
* Discriminative Feature Mining Based on Frequency Information and Metric Learning for Face Forgery Detection (*2021 TKDE*) [[Paper](https://ieeexplore.ieee.org/document/9556565)]
* Exploiting Fine-grained Face Forgery Clues via Progressive Enhancement Learning (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2112.13977)]
* FrePGAN: Robust Deepfake Detection Using Frequency-level Perturbations (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2202.03347)]
* BiHPF: Bilateral High-Pass Filters for Robust Deepfake Detection (*2022 WACV*) [[Paper](https://arxiv.org/abs/2109.00911)]
* Detection and Localization of Facial Expression Manipulations (*2022 WACV*) [[Paper](https://arxiv.org/abs/2103.08134)]
* Generalized Visual Quality Assessment of GAN-Generated Face Images (*202201 arXiv*) [[Paper](https://arxiv.org/abs/2201.11975)]
* Detecting Deepfakes with Self-Blended Images (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2204.08376)] [[Code](https://github.com/mapooon/SelfBlendedImages)]
* Protecting Celebrities from DeepFake with Identity Consistency Transformer (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2203.01318v3)] [[Code](https://github.com/LightDXY/ICT_DeepFake)]
* Think Twice Before Detecting GAN-Generated Fake Images From Their Spectral Domain Imprints (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Dong_Think_Twice_Before_Detecting_GAN-Generated_Fake_Images_From_Their_Spectral_CVPR_2022_paper.pdf)]
* CORE: COnsistent REpresentation Learning for Face Forgery Detection (*2022 CVPR*) [[Paper](https://arxiv.org/abs/2206.02749)] [[Code](https://github.com/niyunsheng/CORE)]
* Fusing Global and Local Features for Generalized AI-Synthesized Image Detection (*2022 ICIP*) [[Paper](https://arxiv.org/pdf/2203.13964.pdf)]
* Adaptive Frequency Learning in Two-branch Face Forgery Detection (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.14315)]
* Exposing Deepfake Face Forgeries with Guided Residuals (*202205 arXiv*) [[Paper](https://arxiv.org/pdf/2205.00753.pdf)]
* Real-centric Consistency Learning for Deepfake Detection (*202205 arXiv*) [[Paper](https://arxiv.org/abs/2205.07201)]
### Temporal Clue for Detection
* Mesonet: a compact facial video forgery detection network (*2018 WIFS*) [[Paper](https://arxiv.org/pdf/1809.00888.pdf)] [[Code](https://github.com/DariusAf/MesoNet)]
* In Ictu Oculi: Exposing AI created fake videos by detecting eye blinking (*2018 WIFS*) [[Paper](https://arxiv.org/pdf/1806.02877.pdf)] [[Code](https://github.com/danmohaha/WIFS2018_In_Ictu_Oculi)]
* Deepfake Video Detection Using Recurrent Neural Networks (*2018 AVSS*) [[Paper](https://gangw.cs.illinois.edu/class/cs598/papers/AVSS18-deepfake.pdf)]
* Exposing deep fakes using inconsistent head poses (*2019 ICASSP*) [[Paper](https://arxiv.org/pdf/1811.00661.pdf)]
* Protecting world leaders against deep fakes (*2019 CVPRW*) [[Paper](http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Agarwal_Protecting_World_Leaders_Against_Deep_Fakes_CVPRW_2019_paper.pdf)]
* FakeCatcher: Detection of Synthetic Portrait Videos using Biological Signals (*2020 TPAMI*) [[Paper](https://arxiv.org/pdf/1901.02212.pdf)]
* Recurrent Convolutional Strategies for Face Manipulation Detection in Videos (*2019 CVPRW*) [[Paper](http://openaccess.thecvf.com/content_CVPRW_2019/papers/Media%20Forensics/Sabir_Recurrent_Convolutional_Strategies_for_Face_Manipulation_Detection_in_Videos_CVPRW_2019_paper.pdf)]
* Predicting Heart Rate Variations of Deepfake Videos using Neural ODE (*2019 ICCVW*) [[Paper](http://openaccess.thecvf.com/content_ICCVW_2019/papers/CVPM/Fernandes_Predicting_Heart_Rate_Variations_of_Deepfake_Videos_using_Neural_ODE_ICCVW_2019_paper.pdf)]
* Deepfake Video Detection through Optical Flow based CNN (*2019 ICCVW*) [[Paper](http://openaccess.thecvf.com/content_ICCVW_2019/papers/HBU/Amerini_Deepfake_Video_Detection_through_Optical_Flow_Based_CNN_ICCVW_2019_paper.pdf)]
* Deep Face Forgery Detection (*202004 arXiv*) [[Paper](https://arxiv.org/pdf/2004.11804.pdf)]
* Deepfakes Detection with Automatic Face Weighting (*2020 CVPRW*) [[Paper](https://arxiv.org/pdf/2004.12027.pdf)]
* Detecting Deep-Fake Videos from Appearance and Behavior (*2020 WIFS*) [[Paper](https://arxiv.org/pdf/2004.14491.pdf)]
* Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches (*2020 CVPRW*) [[Paper](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w39/Agarwal_Detecting_Deep-Fake_Videos_From_Phoneme-Viseme_Mismatches_CVPRW_2020_paper.pdf)]
* Towards Untrusted Social Video Verification to Combat Deepfakes via Face Geometry Consistency (*2020 CVPRW*) [[Paper](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w39/Tursman_Towards_Untrusted_Social_Video_Verification_to_Combat_Deepfakes_via_Face_CVPRW_2020_paper.pdf)] [[Code](https://github.com/brownvc/social-video-verification)]
* DeepRhythm: Exposing DeepFakes with Attentional Visual Heartbeat Rhythms (*2020 ACMMM*) [[Paper](https://arxiv.org/pdf/2006.07634.pdf)]
* Deepfake Detection using Spatiotemporal Convolutional Networks (*202006 arXiv*) [[Paper](https://arxiv.org/pdf/2006.14749.pdf)] [[Code](https://github.com/oidelima/Deepfake-Detection)]
* Dynamic texture analysis for detecting fake faces in video sequences (*2021 JVCIR*) [[Paper](https://arxiv.org/pdf/2007.15271.pdf)]
* Detecting Deepfake Videos: An Analysis of Three Techniques (*202007 arXiv*) [[Paper](https://arxiv.org/pdf/2007.08517.pdf)]
* Sharp Multiple Instance Learning for DeepFake Video Detection (*2020 ACMMM*) [[Paper](https://arxiv.org/pdf/2008.04585.pdf)] [[Code](https://github.com/fiona-lxd/S-MIL)]
* How Do the Hearts of Deep Fakes Beat? Deep Fake Source Detection via Interpreting Residuals with Biological Signals (*2020 ICB*) [[Paper](https://arxiv.org/pdf/2008.11363.pdf)]
* A Convolutional LSTM based Residual Network for Deepfake Video Detection (*202009 arXiv*) [[Paper](https://arxiv.org/pdf/2009.07480.pdf)]
* DeepFakesON-Phys: DeepFakes Detection based on Heart Rate Estimation (*202010 arXiv*) [[Paper](https://arxiv.org/pdf/2010.00400.pdf)] [[Code](https://github.com/BiDAlab/DeepFakesON-Phys)]
* ID-Reveal: Identity-aware DeepFake Video Detection (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2012.02512)] [[Code](https://github.com/grip-unina/id-reveal)]
* Detecting Deepfake Videos Using Euler Video Magnification (*2021 Electronic Imaging*) [[Paper](https://arxiv.org/abs/2101.11563)]
* FakeBuster: A DeepFakes Detection Tool for Video Conferencing Scenarios (*2021 ICIUIC*) [[Paper](https://arxiv.org/abs/2101.03321)]
* Where Do Deep Fakes Look? Synthetic Face Detection via Gaze Tracking (*2021 ETRA*) [[Paper](https://arxiv.org/abs/2101.01165)]
* Do Deepfakes Feel Emotions? A Semantic Approach to Detecting Deepfakes Via Emotional Inconsistencies (*2021 CVPRW*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021W/WMF/papers/Hosler_Do_Deepfakes_Feel_Emotions_A_Semantic_Approach_to_Detecting_Deepfakes_CVPRW_2021_paper.pdf)]
* Bita-Net: Bi-temporal Attention Network for Facial Video Forgery Detection (*2021 IJCB*) [[Paper](https://ieeexplore.ieee.org/document/9484408)]
* Identifying Rhythmic Patterns for Face Forgery Detection and Categorization (*2021 IJCB*) [[Paper](https://ieeexplore.ieee.org/document/9484400)]
* Interpretable and Trustworthy Deepfake Detection via Dynamic Prototypes (*2021 WACV*) [[Paper](https://openaccess.thecvf.com/content/WACV2021/papers/Trinh_Interpretable_and_Trustworthy_Deepfake_Detection_via_Dynamic_Prototypes_WACV_2021_paper.pdf)]
* Detection of Deepfake Videos Using Long Distance Attention (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.12832)]
* Combining EfficientNet and Vision Transformers for Video Deepfake Detection (*202107 arXiv*) [[Paper](https://arxiv.org/abs/2107.02612)] [[Code](https://github.com/davide-coccomini/Combining-EfficientNet-and-Vision-Transformers-for-Video-Deepfake-Detection)]
* DeepFake Detection with Inconsistent Head Poses: Reproducibility and Analysis (*202108 arXiv*) [[Paper](https://arxiv.org/abs/2108.12715)]
* Spatiotemporal Inconsistency Learning for DeepFake Video Detection (*2021 ACMMM*) [[Paper](https://arxiv.org/abs/2109.01860)]
* Video Transformer for Deepfake Detection with Incremental Learning (*2021 ACMMM*) [[Paper](https://arxiv.org/abs/2108.05307)]
* Detecting Deepfake Videos with Temporal Dropout 3DCNN (*2021 IJCAI*) [[Paper](https://www.ijcai.org/proceedings/2021/178)]
* Dynamic Inconsistency-aware DeepFake Video Detection (*2021 IJCAI*) [[Paper](https://www.ijcai.org/proceedings/2021/102)]
* Lip Forgery Video Detection via Multi-phoneme Selection (*2021 IJCAIW*) [[Paper](http://staff.ustc.edu.cn/~welbeckz/source/Multi_phoneme.pdf)]
* Preventing DeepFake Attacks on Speaker Authentication by Dynamic Lip Movement Analysis (*2021 TIFS*) [[Paper](https://ieeexplore.ieee.org/document/9298826)] [[Code](https://github.com/chenzhao-yang/lip-based-anti-spoofing)]
* Exposing Deepfake with Pixel-wise AR and PPG Correlation from Faint Signals (*202110 arXiv*) [[Paper](https://arxiv.org/abs/2110.15561)]
* FakeTransformer: Exposing Face Forgery From Spatial-Temporal Representation Modeled By Facial Pixel Variations (*2022 ICSP*) [[Paper](https://ieeexplore.ieee.org/document/9778420)]
* Leveraging Real Talking Faces via Self-Supervision for Robust Forgery Detection (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Haliassos_Leveraging_Real_Talking_Faces_via_Self-Supervision_for_Robust_Forgery_Detection_CVPR_2022_paper.pdf)]
* Detecting Real-Time Deep-Fake Videos Using Active Illumination (*2022 CVPRW*) [[Paper](https://farid.berkeley.edu/downloads/publications/cvpr22a.pdf)]
* Delving into the Local: Dynamic Inconsistency Learning for DeepFake Video Detection (*2022 AAAI*) [[Paper](https://ojs.aaai.org/index.php/AAAI/article/view/19955)]
* FInfer: Frame Inference-Based Deepfake Detection for High-Visual-Quality Videos (*2022 AAAI*) [[Paper](https://ojs.aaai.org/index.php/AAAI/article/view/19978)]
* Detecting deepfake videos based on spatiotemporal attention and convolutional LSTM (*2022 INS*) [[Paper](https://www.sciencedirect.com/science/article/pii/S0020025522003504)] [[Code](https://github.com/litianmu1122/Detecting_Deepfake_Videos_Based_on_Spatiotemporal_Attention_and_Convolutional_LSTM)]
* Learning a deep dual-level network for robust DeepFake detection (*2022 PR*) [[Paper](https://www.sciencedirect.com/science/article/pii/S0031320322003132)] [[Code](https://github.com/PWB97/Deepfake-detection)]
* The Effectiveness of Temporal Dependency in Deepfake Video Detection (*202205 arXiv*) [[Paper](https://arxiv.org/abs/2205.06684)]### Audio+ Clue for Detection
* Emotions Don't Lie: A Deepfake Detection Method using Audio-Visual Affective Cues (*2020 ACMMM*) [[Paper](https://arxiv.org/abs/2003.06711)]
* Not made for each other– Audio-Visual Dissonance-based Deepfake Detection and Localization (*2020 ACMMM*) [[Paper](https://arxiv.org/pdf/2005.14405.pdf)] [[Code](https://github.com/abhinavdhall/deepfake/tree/main/ACM_MM_2020)]
* Evaluation of an Audio-Video Multimodal Deepfake Dataset using Unimodal and Multimodal Detectors (*2021 ACMMM-W*) [[Paper](https://arxiv.org/abs/2109.02993)]
* FakeAVCeleb: A Novel Audio-Video Multimodal Deepfake Dataset (*2021 NeurIPS*) [[Paper](https://arxiv.org/abs/2108.05080)] [[Download](https://sites.google.com/view/fakeavcelebdash-lab/)]
* Joint Audio-Visual Deepfake Detection (*2021 ICCV*) [[Paper](https://ieeexplore.ieee.org/document/9710387)]
* An Audio-Visual Attention Based Multimodal Network for Fake Talking Face Videos Detection (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.05178)]
* Self-supervised Transformer for Deepfake Detection (*202203 arXiv*) [[Paper](https://arxiv.org/pdf/2203.01265v1.pdf)]
* Audio-Visual Person-of-Interest DeepFake Detection (*202204 arXiv*) [[Paper](https://arxiv.org/abs/2204.03083)] [[Code](https://github.com/grip-unina/poi-forensics)]
* Do You Really Mean That? Content Driven Audio-Visual Deepfake Dataset and Multimodal Method for Temporal Forgery Localization (*202204 arXiv*) [[Paper](https://arxiv.org/abs/2204.06228)]### Generalizable Clue for Detection
* ForensicTransfer: Weakly-supervised domain adaptation for forgery detection (*2018 arXiv*) [[Paper](https://arxiv.org/pdf/1812.02510.pdf)]
* Towards generalizable forgery detection with locality-aware autoencoder (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1909.05999.pdf)]
* Incremental learning for the detection and classification of GAN-generated images (*2019 WIFS*) [[Paper](https://arxiv.org/pdf/1910.01568.pdf)]
* CNN-generated images are surprisingly easy to spot... for now (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/1912.11035.pdf)] [[Code](https://github.com/PeterWang512/CNNDetection)]
* Face X-ray for More General Face Forgery Detection (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/1912.13458.pdf)]
* Detecting CNN-Generated Facial Images in Real-World Scenarios (*2020 CVPRW*) [[Paper](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w39/Hulzebosch_Detecting_CNN-Generated_Facial_Images_in_Real-World_Scenarios_CVPRW_2020_paper.pdf)]
* OC-FakeDect: Classifying Deepfakes Using One-class Variational Autoencoder (*2020 CVPRW*) [[Paper](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w39/Khalid_OC-FakeDect_Classifying_Deepfakes_Using_One-Class_Variational_Autoencoder_CVPRW_2020_paper.pdf)]
* T-GD: Transferable GAN-generated Images Detection Framework (*2020 ICML*) [[Paper](https://proceedings.icml.cc/static/paper_files/icml/2020/3622-Paper.pdf)] [[Code](https://github.com/cutz-j/T-GD)]
* Exposing Deep-faked Videos by Anomalous Co-motion Pattern Detection (*202008 arXiv*) [[Paper](https://arxiv.org/pdf/2008.04848.pdf)]
* Spatio-temporal Features for Generalized Detection of Deepfake Videos (*202010 arXiv*) [[Paper](https://arxiv.org/pdf/2010.11844.pdf)]
* Mining Generalized Features for Detecting AI-Manipulated Fake Faces (*202010 arXiv*) [[Paper](https://arxiv.org/pdf/2010.14129.pdf)]
* Domain General Face Forgery Detection by Learning to Weight (*2021 AAAI*) [[Paper](https://www.aaai.org/AAAI21Papers/AAAI-589.SunK.pdf)] [[Code](https://github.com/skJack/LTW)]
* Fake face detection via adaptive manipulation traces extraction network (*2021 CVIU*) [[Paper](https://arxiv.org/abs/2005.04945)] [[Code](https://github.com/EricGzq/AMTENnet)]
* Training Strategies and Data Augmentations in CNN-based DeepFake Video Detection (*2020 WIFS*) [[Paper](https://arxiv.org/abs/2011.07792)]
* Identity-Driven DeepFake Detection (*202012 arXiv*) [[Paper](https://arxiv.org/abs/2012.03930)]
* Fake-image detection with Robust Hashing (*2021 LifeTech*) [[Paper](https://arxiv.org/abs/2102.01313)]
* AOT: Appearance Optimal Transport Based Identity Swapping for Forgery Detection (*2020 NeurIPS*) [[Paper](https://arxiv.org/abs/2011.02674)] [[Code](https://github.com/zhuhaozh/AOT)]
* Leveraging edges and optical flow on faces for deepfake detection (*2020 ICB*) [[Paper](https://ieeexplore.ieee.org/document/9304936)]
* Deepfake Forensics via An Adversarial Game (*2022 TIP*) [[Paper](https://ieeexplore.ieee.org/document/9773023)]
* Generalizing Face Forgery Detection with High-frequency Features (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.12376)]
* Metric Learning for Anti-Compression Facial Forgery Detection (*2021 ACMMM*) [[Paper](https://arxiv.org/abs/2103.08397)]
* Towards Generalizable and Robust Face Manipulation Detection via Bag-of-local-feature (*2021 VCIP*) [[Paper](https://arxiv.org/abs/2103.07915)]
* Improving the Efficiency and Robustness for Deepfakes Detection through Precise Geometric Features (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2104.04480)] [[Code](https://github.com/frederickszk/LRNet)]
* Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2012.07657)] [[Code](https://github.com/ahaliassos/LipForensics)]
* Representative Forgery Mining for Fake Face Detection (*2021 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Representative_Forgery_Mining_for_Fake_Face_Detection_CVPR_2021_paper.pdf)] [[Code](https://github.com/crywang/RFM)]
* FReTAL: Generalizing Deepfake Detection using Knowledge Distillation and Representation Learning (*2021 CVPRW*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021W/WMF/papers/Kim_FReTAL_Generalizing_Deepfake_Detection_Using_Knowledge_Distillation_and_Representation_Learning_CVPRW_2021_paper.pdf)] [[Code](https://github.com/alsgkals2/FReTAL-Generalizing_Deepfakes_using_Knowledge_Distillation_and_Representation_Learning)]
* On the Robustness and Generalizability of Face Synthesis Detection Methods (*2021 CVPRW*) [[Paper](https://openaccess.thecvf.com/content/CVPR2021W/WMF/html/Sabel_On_the_Robustness_and_Generalizability_of_Face_Synthesis_Detection_Methods_CVPRW_2021_paper.html)]
* Are GAN generated images easy to detect? A critical analysis of the state-of-the-art (*2021 ICME*) [[Paper](https://arxiv.org/abs/2104.02617)]
* DeepfakeUCL: Deepfake Detection via Unsupervised Contrastive Learning (*2021 IJCNN*) [[Paper](https://arxiv.org/abs/2104.11507)]
* Unified Detection of Digital and Physical Face Attacks (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.02156)]
* Beyond the Spectrum: Detecting Deepfakes via Re-synthesis (*2021 IJCAI*) [[Paper](https://arxiv.org/abs/2105.14376)] [[Code](https://github.com/SSAW14/BeyondtheSpectrum)]
* One Detector to Rule Them All: Towards a General Deepfake Attack Detection Framework (*2021 WWW*) [[Paper](https://arxiv.org/abs/2105.00187)] [[Code](https://github.com/shahroztariq/CLRNet)]
* TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly Supervised Learning (*2021 IFIP*) [[Paper](https://arxiv.org/abs/2105.06117)] [[Code](https://github.com/Clench/TAR_resAE)]
* Towards Discovery and Attribution of Open-world GAN Generated Images (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2105.04580)]
* Automated Deepfake Detection (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.10705)]
* FakeTagger: Robust Safeguards against DeepFake Dissemination via Provenance Tracking (*2021 ACMMM*) [[Paper](https://arxiv.org/abs/2009.09869)]
* Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data (*2021 ICCV*) [[Paper](https://arxiv.org/pdf/2007.08457.pdf)] [[Code](https://github.com/ningyu1991/ArtificialGANFingerprints)]
* Exploring Temporal Coherence for More General Video Face Forgery Detection (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2108.06693)] [[Code](https://github.com/yinglinzheng/FTCN)]
* Detecting Compressed Deepfake Videos in Social Networks Using Frame-Temporality Two-Stream Convolutional Network (*2021 TCSVT*) [[Paper](https://ieeexplore.ieee.org/document/9408664)]
* Towards Universal GAN Image Detection (*2021 VCIP*) [[Paper](https://arxiv.org/abs/2112.12606)]
* FaceGuard: Proactive Deepfake Detection (*202109 arXiv*) [[Paper](https://arxiv.org/abs/2109.05673)]
* Improved Xception with Dual Attention Mechanism and Feature Fusion for Face Forgery Detection (*202109 arXiv*) [[Paper](https://arxiv.org/abs/2109.14136)]
* MC-LCR: Multi-modal contrastive classification by locally correlated representations for effective face forgery detection (*2022 K-BS*) [[Paper](https://www.sciencedirect.com/science/article/pii/S0950705122005494)]
* Impact of Benign Modifications on Discriminative Performance of Deepfake Detectors (*202111 arXiv*) [[Paper](https://arxiv.org/abs/2111.07468)]
* DA-FDFtNet: Dual Attention Fake Detection Fine-tuning Network to Detect Various AI-Generated Fake Images (*202112 arXiv*) [[Paper](https://arxiv.org/abs/2112.12001)]
* Deepfake Network Architecture Attribution (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2202.13843)]
* Dual Contrastive Learning for General Face Forgery Detection (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2112.13522)]
* ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2112.03553)] [[Code](https://github.com/Leminhbinh0209/ADD)]
* Responsible Disclosure of Generative Models Using Scalable Fingerprinting (*2022 ICLR*) [[Paper](https://arxiv.org/abs/2012.08726)] [[Code](https://github.com/ningyu1991/ScalableGANFingerprints)]
* Learning Forgery Region-Aware and ID-Independent Features for Face Manipulation Detection (*2022 TBIOM*) [[Paper](https://ieeexplore.ieee.org/document/9568641)]
* Improving Generalization by Commonality Learning in Face Forgery Detection (*2022 TIFS*) [[Paper](https://ieeexplore.ieee.org/document/9694644)]
* Robust Attentive Deep Neural Network for Exposing GAN-generated Faces (*2022 IEEE Access*) [[Paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9729775)]
* Block shuffling learning for Deepfake Detection (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.02819)]
* End-to-End Reconstruction-Classification Learning for Face Forgery Detection (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Cao_End-to-End_Reconstruction-Classification_Learning_for_Face_Forgery_Detection_CVPR_2022_paper.pdf)] [[Code](https://github.com/VISION-SJTU/RECCE)]
* Learning Second Order Local Anomaly for General Face Forgery Detection (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Fei_Learning_Second_Order_Local_Anomaly_for_General_Face_Forgery_Detection_CVPR_2022_paper.pdf)]
* Robust Image Forgery Detection over Online Social Network Shared Images (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Wu_Robust_Image_Forgery_Detection_Over_Online_Social_Network_Shared_Images_CVPR_2022_paper.pdf)] [[Code](https://github.com/HighwayWu/ImageForensicsOSN)]
* Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection (*2022 CVPR*) [[Paper](https://arxiv.org/pdf/2203.12208.pdf)] [[Code](https://github.com/liangchen527/SLADD)]
* On Improving Cross-dataset Generalization of Deepfake Detectors (*2022 CVPRW*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022W/WMF/papers/Nadimpalli_On_Improving_Cross-Dataset_Generalization_of_Deepfake_Detectors_CVPRW_2022_paper.pdf)]
* ADT: Anti-Deepfake Transformer (*2022 ICASSP*) [[Paper](https://ieeexplore.ieee.org/document/9746888)]
* Improving Generalization of Deepfake Detection With Data Farming and Few-Shot Learning (*2022 IEEE TBIOM*) [[Paper](https://ieeexplore.ieee.org/document/9684526)]
* Generalized Facial Manipulation Detection with Edge Region Feature Extraction (*2022 WACV*) [[Paper](https://openaccess.thecvf.com/content/WACV2022/papers/Kim_Generalized_Facial_Manipulation_Detection_With_Edge_Region_Feature_Extraction_WACV_2022_paper.pdf)]
* Supervised Contrastive Learning for Generalizable and Explainable DeepFakes Detection (*2022 WACVW*) [[Paper](https://openaccess.thecvf.com/content/WACV2022W/XAI4B/papers/Xu_Supervised_Contrastive_Learning_for_Generalizable_and_Explainable_DeepFakes_Detection_WACVW_2022_paper.pdf)] [[Code](https://github.com/xuyingzhongguo/deepfake_supcon)]
* A New Approach to Improve Learning-based Deepfake Detection in Realistic Conditions (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.11807)]
* MRI-GAN: A Generalized Approach to Detect DeepFakes using Perceptual Image Assessment (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.00108)] [[Code](https://github.com/pratikpv/mri_gan_deepfake)]
* Few-shot Forgery Detection via Guided Adversarial Interpolation (*202204 arXiv*) [[Paper](https://arxiv.org/abs/2204.05905)]### Spoofing Forgery Detection
* Security of Facial Forensics Models Against Adversarial Attacks (*2020 ICIP*) [[Paper](https://arxiv.org/pdf/1911.00660.pdf)]* Real or Fake? Spoofing State-Of-The-Art Face Synthesis Detection Systems (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1911.05351.pdf)]
* Adversarial Perturbations Fool Deepfake Detectors (*2020 IJCNN*) [[Paper](https://arxiv.org/pdf/2003.10596.pdf)] [[Code](https://github.com/ApGa/adversarial_deepfakes)]
* Disrupting DeepFakes: Adversarial Attacks Against Conditional Image Translation Networks and Facial Manipulation Systems (*2020 ECCV*) [[Paper](https://arxiv.org/pdf/2003.01279.pdf)] [[Code](https://github.com/natanielruiz/disrupting-deepfakes)]
* Evading Deepfake-Image Detectors with White- and Black-Box Attacks (*2020 CVPRW*) [[Paper](https://arxiv.org/pdf/2004.00622.pdf)]
* Defending against GAN-based Deepfake Attacks via Transformation-aware Adversarial Faces (*2021 IJCNN*) [[Paper](https://arxiv.org/pdf/2006.07421.pdf)]
* Disrupting Deepfakes with an Adversarial Attack that Survives Training (*202006 arXiv*) [[Paper](https://arxiv.org/pdf/2006.12247.pdf)]
* FakePolisher: Making DeepFakes More Detection-Evasive by Shallow Reconstruction (*2020 ACMMM*) [[Paper](https://arxiv.org/pdf/2006.07533.pdf)]
* Protecting Against Image Translation Deepfakes by Leaking Universal Perturbations from Black-Box Neural Networks (*202006 arXiv*) [[Paper](https://arxiv.org/pdf/2006.06493.pdf)]
* Not My Deepfake: Towards Plausible Deniability for Machine-Generated Media (*202008 arXiv*) [[Paper](https://arxiv.org/pdf/2008.09194.pdf)]
* FakeRetouch: Evading DeepFakes Detection via the Guidance of Deliberate Noise (*202009 arXiv*) [[Paper](https://arxiv.org/pdf/2009.09213.pdf)]
* Perception Matters: Exploring Imperceptible and Transferable Anti-forensics for GAN-generated Fake Face Imagery Detection (*2021 PRL*) [[Paper](https://arxiv.org/abs/2010.15886)] [[Code](https://github.com/enkiwang/Imperceptible-fake-face-antiforensic)]
* Adversarial Threats to DeepFake Detection: A Practical Perspective (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2011.09957)]
* Exploring Adversarial Fake Images on Face Manifold (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2101.03272)]
* Landmark Breaker: Obstructing DeepFake By Disturbing Landmark Extraction (*2020 WIFS*) [[Paper](https://arxiv.org/abs/2102.00798)], (*2021 Deep Learning-Based Face Analytics*) [[Paper](https://link.springer.com/chapter/10.1007/978-3-030-74697-1_12)]
* GANprintR: Improved Fakes and Evaluation of the State of the Art in Face Manipulation Detection (*2020 TVCG*) [[Paper](https://arxiv.org/abs/1911.05351)] [[Code](https://github.com/joaocneves/gan_fingerprint_removal)]
* A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images Detection (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.17195)] [[Code](https://github.com/sutd-visual-computing-group/Fourier-Discrepancies-CNN-Detection/)]
* MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.14211)]
* A Closer Look at Fourier Spectrum Discrepancies for CNN-generated Images Detection (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.17195)] [[Code](https://github.com/sutd-visual-computing-group/Fourier-Discrepancies-CNN-Detection/)]
* Adversarial Deepfakes: Evaluating Vulnerability of Deepfake Detectors to Adversarial Examples (*2021 WACV*) [[Paper](https://openaccess.thecvf.com/content/WACV2021/papers/Hussain_Adversarial_Deepfakes_Evaluating_Vulnerability_of_Deepfake_Detectors_to_Adversarial_Examples_WACV_2021_paper.pdf)] [[Project](https://adversarialdeepfakes.github.io/)]
* Making GAN-Generated Images Difficult To Spot: A New Attack Against Synthetic Image Detectors (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.12069)]
* Imperceptible Adversarial Examples for Fake Image Detection (*2021 ICIP*) [[Paper](https://arxiv.org/abs/2106.01615)]
* Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.07873)] [[Code](https://github.com/vishal3477/Reverse_Engineering_GMs)]
* Understanding the Security of Deepfake Detection (*202107 arXiv*) [[Paper](https://arxiv.org/abs/2107.02045)]
* TAFIM: Targeted Adversarial Attacks against Facial Image Manipulations (*202112 arXiv*) [[Paper](https://arxiv.org/abs/2112.09151)] [[Code](https://shivangi-aneja.github.io/projects/tafim/)]
* Seeing is Living? Rethinking the Security of Facial Liveness Verification in the Deepfake Era (*2022 USENIX*) [[Paper](https://arxiv.org/abs/2202.10673)]
* CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (*2022 AAAI*) [[Paper](https://arxiv.org/abs/2105.10872)] [[Code](https://github.com/VDIGPKU/CMUA-Watermark)]
* DeepFake Disrupter: The Detector of DeepFake Is My Friend (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_DeepFake_Disrupter_The_Detector_of_DeepFake_Is_My_Friend_CVPR_2022_paper.pdf)]
* Exploring Frequency Adversarial Attacks for Face Forgery Detection (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Jia_Exploring_Frequency_Adversarial_Attacks_for_Face_Forgery_Detection_CVPR_2022_paper.pdf)]
* Proactive Image Manipulation Detection (*2022 CVPR*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022/papers/Asnani_Proactive_Image_Manipulation_Detection_CVPR_2022_paper.pdf)] [[Code](https://github.com/vishal3477/proactive_IMD)]
* On the Exploitation of Deepfake Model Recognition (*2022 CVPRW*) [[Paper](https://openaccess.thecvf.com/content/CVPR2022W/WMF/papers/Guarnera_On_the_Exploitation_of_Deepfake_Model_Recognition_CVPRW_2022_paper.pdf)]
* Towards Adversarially Robust Deepfake Detection: An Ensemble Approach (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.05687)]
* Making DeepFakes more spurious: evading deep face forgery detection via trace removal attack (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.11433)]
* Transferable Class-Modelling for Decentralized Source Attribution of GAN-Generated Images (*202203 arXiv*) [[Paper](https://arxiv.org/abs/2203.09777)] [[Code](https://github.com/quarxilon/generator_attribution)]
* FaceSigns: Semi-Fragile Neural Watermarks for Media Authentication and Countering Deepfakes (*202204 arXiv*) [[Paper](https://arxiv.org/pdf/2204.01960.pdf)]
* Metamorphic Testing-based Adversarial Attack to Fool Deepfake Detectors (*2022 ICPR*) [[Paper](https://arxiv.org/pdf/2204.01960.pdf)]
* Restricted Black-box Adversarial Attack Against DeepFake Face Swapping (*202204 arXiv*) [[Paper](https://arxiv.org/abs/2204.12347)]
## Challenges
***
* DeeperForensics Challenge 2020 on Real-World Face Forgery Detection: Methods and Results (*2020 ECCV*) [[Paper](https://arxiv.org/abs/2102.09471)] [[Website](https://competitions.codalab.org/competitions/25228)]
* DFGC 2021: A DeepFake Game Competition (*2021 IJCB*) [[Paper](https://arxiv.org/abs/2106.01217)] [[Website](http://dfgc2021.iapr-tc4.org/)]
* ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis(*2021 CVPR*) [[Paper1](https://openaccess.thecvf.com/content/CVPR2021/papers/He_ForgeryNet_A_Versatile_Benchmark_for_Comprehensive_Forgery_Analysis_CVPR_2021_paper.pdf)] [[Paper2](https://arxiv.org/abs/2112.08325)] [[Website](https://competitions.codalab.org/competitions/33386)]## Others
* Detecting Video Speed Manipulation (*2020 CVPRW*) [[Paper](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w39/Hosler_Detecting_Video_Speed_Manipulation_CVPRW_2020_paper.pdf)]
* The eyes know it: FakeET- An Eye-tracking Database to Understand Deepfake Perception (*2020 ICMI*) [[Paper](https://arxiv.org/pdf/2006.06961.pdf)]
* Deepfake detection humans vs machines (*202009 arXiv*) [[Paper](https://arxiv.org/pdf/2009.03155.pdf)]
* DeepFake-o-meter: An Open Platform for DeepFake Detection (*2021 SPW*) [[Paper](https://arxiv.org/abs/2103.02018)] [[Code](https://github.com/yuezunli/deepfake-o-meter)] [[Website](http://zinc.cse.buffalo.edu/ubmdfl/deep-o-meter/)]
* An Examination of Fairness of AI Models for Deepfake Detection (*2021 IJCAI*) [[Paper](https://arxiv.org/abs/2105.00558)]
* What's wrong with this video? Comparing Explainers for Deepfake Detection (*202105 arXiv*) [[Paper](https://arxiv.org/abs/2105.05902)]
* Automated Side Channel Analysis of Media Software with Manifold Learning (*2022 USENIX*) [[Paper](https://www.usenix.org/conference/usenixsecurity22/presentation/yuan-yuanyuan)] [[Code](https://github.com/Yuanyuan-Yuan/Manifold-SCA)]
* Fairness Evaluation in Deepfake Detection Models using Metamorphic Testing (*2022 MET*) [[Paper](https://arxiv.org/abs/2203.06825)]
* The MeVer DeepFake Detection Service: Lessons Learnt from Developing and Deploying in the Wild (*202204 arXiv*) [[Paper](https://arxiv.org/abs/2204.12816)]## Databases
***
* [*FFW*] Fake Face Detection Methods: Can They Be Generalized? (*2018 BIOSIG*) [[Paper](http://ali.khodabakhsh.org/wp-content/uploads/Publications/BIOSIG_2018_Fake%20Face%20Detection%20Methods%20Can%20They%20Be%20Generalized.pdf)] [[Download](http://ali.khodabakhsh.org/research/ffw/)]
* [*UADFV*] In Ictu Oculi: Exposing AI created fake videos by detecting eye blinking (*2018 WIFS*) [[Paper](https://arxiv.org/pdf/1806.02877.pdf)] [[Download](https://github.com/danmohaha/WIFS2018_In_Ictu_Oculi)]
* [*DeepfakeTIMIT*] Deepfakes: a new threat to face recognition? assessment and detection (*2018 arXiv*) [[Paper](https://arxiv.org/pdf/1812.08685.pdf)] [[Download](https://www.idiap.ch/dataset/deepfaketimit)]
* [*FaceForensics++ & DFD*] FaceForensics++: Learning to Detect Manipulated Facial Images (*2019 ICCV*) [[Paper](http://openaccess.thecvf.com/content_ICCV_2019/papers/Rossler_FaceForensics_Learning_to_Detect_Manipulated_Facial_Images_ICCV_2019_paper.pdf)] [[Download](https://github.com/ondyari/FaceForensics)]
* [*Celeb-DF*] Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/1909.12962.pdf)] [[Download](https://github.com/danmohaha/celeb-deepfakeforensics)]
* [*DFFD (Diverse Fake Face Dataset)*] On the detection of digital face manipulation (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/1910.01717.pdf)]
* [*DFDC (Deepfake Detection Challenge)*] The Deepfake Detection Challenge (DFDC) Preview Dataset (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1910.08854.pdf)] [[Download](https://deepfakedetectionchallenge.ai/)]
* [*DeeperForensics-1.0*] DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection (*2020 CVPR*) [[Paper](https://arxiv.org/pdf/2001.03024.pdf)] [[Download](https://github.com/EndlessSora/DeeperForensics-1.0)]
* [*WildDeepfake*] WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection (*2020 ACMMM*) [[Paper](https://arxiv.org/abs/2101.01456)] [[Download](https://github.com/deepfakeinthewild/deepfake-in-the-wild)]
* [*DF-W*] Deepfakes in the Wild: Detection and Analysis (*2021 ACM WWW*) [[Paper](https://arxiv.org/abs/2103.04263)] [[Download](https://github.com/jmpu/webconf21-deepfakes-in-the-wild)]
* [*FFIW*] Face Forensics in the Wild (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.16076)] [[Download](https://github.com/tfzhou/FFIW)]
* [*ForgeryNet*] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis (*2021 CVPR*) [[Paper](https://arxiv.org/abs/2103.05630)] [[Download](https://github.com/yinanhe/forgerynet)]
* [*KoDF*] KoDF: A Large-scale Korean DeepFake Detection Dataset (*2021 ICCV*) [[Paper](https://arxiv.org/abs/2103.10094)] [[Download](https://moneybrain-research.github.io/kodf/)]
* DeepFake MNIST+: A DeepFake Facial Animation Dataset (*2021 ICCVW*) [[Paper](https://arxiv.org/abs/2108.07949)] [[Download](https://github.com/huangjiadidi/DeepFakeMnist)]
* FakeAVCeleb: A Novel Audio-Video Multimodal Deepfake Dataset (*2021 NeurIPS*) [[Paper](https://arxiv.org/abs/2108.05080)] [[Download](https://sites.google.com/view/fakeavcelebdash-lab/)]
* Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos (*202112 arXiv*) [[Paper](https://arxiv.org/abs/2112.08117)] [[Download](https://github.com/lajlksdf/vtl)]
* Model Attribution of Face-swap Deepfake Videos (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.12951)]
* **ForgeryNIR: Deep Face Forgery and Detection in Near-Infrared Scenario** (*2022 TIFS*) [[Paper](https://ieeexplore.ieee.org/document/9693897)] [[Download](https://github.com/AEP-WYK/forgerynir)]
* FMFCC-V: An Asian Large-Scale Challenging Dataset for DeepFake Detection (*2022 IH&MMSec*) [[Paper](https://dl.acm.org/doi/abs/10.1145/3531536.3532946)] [[Download](https://github.com/iiecasligen/FMFCC-V)]## Survey & Benchmark
***
* Deep Learning for Deepfakes Creation and Detection (*2019 arXiv*) [[Paper](https://arxiv.org/pdf/1909.11573.pdf)]
* DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection (*2020 Information Fusion*) [[Paper](https://arxiv.org/pdf/2001.00179.pdf)]
* Media Forensics and DeepFakes: an Overview (*2020 IEEE JSTSP*) [[Paper](https://arxiv.org/pdf/2001.06564.pdf)]
* DeepFake Detection: Current Challenges and Next Steps (*2020 ICMEW*) [[Paper](https://arxiv.org/pdf/2003.09234.pdf)]
* The Creation and Detection of Deepfakes: A Survey (*2021 CSUR*) [[Paper](https://arxiv.org/pdf/2004.11138.pdf)]
* Deepfakes Generation and Detection: State-of-the-art, open challenges, countermeasures, and way forward (*202103 arXiv*) [[Paper](https://arxiv.org/abs/2103.00484)]
* Unified Detection of Digital and Physical Face Attacks (*202104 arXiv*) [[Paper](https://arxiv.org/abs/2104.02156)]
* Deep Fake Detection: Survey of Facial Manipulation Detection Solutions (*202106 arXiv*) [[Paper](https://arxiv.org/abs/2106.12605)]
* DeepFakes: Detecting Forged and Synthetic Media Content Using Machine Learning (*2021 AICS*) [[Paper](https://arxiv.org/abs/2109.02874)]
* A dual benchmarking study of facial forgery and facial forensics (*202111 arXiv*) [[Paper](https://arxiv.org/abs/2111.12912)] [[Code](https://github.com/tamlhp/dfd_benchmark)]
* A Review of Deep Learning-based Approaches for Deepfake Content Detection (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.06095)]
* GAN-generated Faces Detection: A Survey and New Perspectives (*202202 arXiv*) [[Paper](https://arxiv.org/abs/2202.07145)]
* Robust Deepfake On Unrestricted Media: Generation And Detection (*2022 Frontiers in Fake Media Generation and Detection*) [[Paper](https://arxiv.org/abs/2202.06228)]
* Countering Malicious DeepFakes: Survey, Battleground, and Horizon (*2022 IJCV*) [[Paper](https://arxiv.org/abs/2103.00218)]
* Deepfake Detection: A Systematic Literature Review (*2022 IEEE Access*) [[Paper](https://ieeexplore.ieee.org/document/9721302)]
* DeepFake Detection for Human Face Images and Videos: A Survey (*2022 IEEE Access*) [[Paper](https://ieeexplore.ieee.org/document/9712265)]
* Towards Benchmarking and Evaluating Deepfake Detection (*202203 arXiv*) [[Paper](https://arxiv.org/pdf/2203.02115.pdf)]
* An Overview of Recent Work in Media Forensics: Methods and Threats (*202204 arXiv*) [[Paper](https://arxiv.org/abs/2204.12067)]
* A Continual Deepfake Detection Benchmark: Dataset, Methods, and Essentials (*202205 arXiv*) [[Paper](https://arxiv.org/abs/2205.05467)]## Related Links
**** [Daisy-Zhang/Awesome-Deepfakes-Detection](https://github.com/Daisy-Zhang/Awesome-Deepfakes-Detection)
* [datamllab/awesome-deepfakes-materials](https://github.com/datamllab/awesome-deepfakes-materials)
* [Qingcsai/awesome-Deepfakes](https://github.com/Qingcsai/awesome-Deepfakes)
* [drimpossible/awesome-deepfake-detection](https://github.com/drimpossible/awesome-deepfake-detection)
* [subinium/awesome-deepfake-porn-detection](https://github.com/subinium/awesome-deepfake-porn-detection)
* [aerophile/awesome-deepfakes](https://github.com/aerophile/awesome-deepfakes)
* [592McAvoy/fake-face-detection](https://github.com/592McAvoy/fake-face-detection)## License
***[![CC0](http://i.creativecommons.org/p/zero/1.0/88x31.png)](http://creativecommons.org/publicdomain/zero/1.0/)