https://github.com/coding-kitties/investing-algorithm-framework
Framework for developing, backtesting, and deploying automated trading algorithms and trading bots.
https://github.com/coding-kitties/investing-algorithm-framework
algorithmic-trading backtesting backtesting-trading-strategies cryptocurrency python quantitative quantitative-analysis quantitative-finance quantitative-trading trade trading trading-bot trading-bots trading-strategies
Last synced: 3 days ago
JSON representation
Framework for developing, backtesting, and deploying automated trading algorithms and trading bots.
- Host: GitHub
- URL: https://github.com/coding-kitties/investing-algorithm-framework
- Owner: coding-kitties
- License: apache-2.0
- Created: 2019-12-18T11:20:36.000Z (about 6 years ago)
- Default Branch: main
- Last Pushed: 2026-01-18T22:48:26.000Z (5 days ago)
- Last Synced: 2026-01-19T07:09:26.730Z (5 days ago)
- Topics: algorithmic-trading, backtesting, backtesting-trading-strategies, cryptocurrency, python, quantitative, quantitative-analysis, quantitative-finance, quantitative-trading, trade, trading, trading-bot, trading-bots, trading-strategies
- Language: Python
- Homepage: https://coding-kitties.github.io/investing-algorithm-framework/
- Size: 36.5 MB
- Stars: 646
- Watchers: 12
- Forks: 89
- Open Issues: 29
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Authors: AUTHORS.md
Awesome Lists containing this project
- awesome-quant - Investing algorithm framework - Framework for developing, backtesting, and deploying automated trading algorithms. (Python / Trading & Backtesting)
- awesome-quant - Investing algorithm framework
README
โก Investing Algorithm Framework
๐ Build. Backtest. Deploy. Quantitative Trading Strategies at Scale
The fastest way to go from trading idea to production-ready trading bot

> โญ **If you like this project, please consider [starring](https://github.com/coding-kitties/investing-algorithm-framework) it!** Your support helps us build better tools for the community.
---
## ๐ก Why Investing Algorithm Framework?
Stop wasting time on boilerplate. The **Investing Algorithm Framework** handles all the heavy lifting:
โจ **From Idea to Production** โ Write your strategy once, deploy everywhere
๐ **Accurate Backtesting** โ Event-driven and vectorized engines for realistic results
โก **Lightning Fast** โ Optimized for speed and efficiency
๐ง **Extensible** โ Connect any exchange, broker, or data source
๐ **Production Ready** โ Built for real money trading
## Sponsors
## ๐ Plugins & Integrations
Extend your trading bot with powerful plugins:
| Plugin | Description |
|--------|-----------------------------------------------------------------------------|
| ๐ฏ **[PyIndicators](https://github.com/coding-kitties/PyIndicators)** | Technical analysis indicators for strategy development |
| ๐ช **[Finterion Plugin](https://github.com/Finterion/finterion-investing-algorithm-framework-plugin)** | Monetize & share your strategies with the public on Finterion's marketplace |
## ๐ Powerful Features
| Feature | Description |
|---------|-------------|
| ๐ **Python 3.10+** | Cross-platform support for Windows, macOS, and Linux |
| โ๏ธ **Event-Driven Backtest** | Accurate, realistic backtesting with event-driven architecture |
| โก **Vectorized Backtest** | Lightning-fast signal research and prototyping |
| ๐ **Advanced Metrics** | CAGR, Sharpe ratio, max drawdown, win rate, and 50+ more metrics |
| ๐ **Backtest Reports** | Generate detailed, comparison-ready reports |
| ๐ฏ **Statistical Testing** | Permutation testing for strategy significance evaluation |
| ๐ฑ **Live Trading** | Real-time execution across multiple exchanges (via CCXT) |
| ๐ผ **Portfolio Management** | Full position and trade management with persistence |
| ๐ **Market Data** | OHLCV, tickers, custom data โ Polars & Pandas native |
| ๐ **Data Integrations** | PyIndicators, multiple data sources, custom providers |
| โ๏ธ **Cloud Deployment** | Azure Functions, AWS Lambda, and more |
| ๐ **Web API** | REST API for bot interaction and monitoring |
| ๐งฉ **Fully Extensible** | Custom strategies, data providers, order executors |
| ๐๏ธ **Modular Design** | Build with reusable, composable components |
## ๐ Quickstart
### ๐ฆ Installation
Install the framework via [PyPI](https://pypi.org/project/investing-algorithm-framework/):
```bash
pip install investing-algorithm-framework
```
### ๐ฏ Initialize Your Project
Run the following command to scaffold a new trading bot:
```bash
investing-algorithm-framework init
```
For an AWS Lambda-ready project:
```bash
investing-algorithm-framework init --type aws_lambda
```
This creates:
- **app.py** โ Your bot's entry point (keep as-is)
- **strategy.py** โ Your trading strategy (customize this!)
> ๐ก **Tip:** You can also create `default_web` or `azure_function` projects
## ๐ Example: A Simple Trading Bot
The following example trading bot implements a simple moving average strategy.
The strategy will use data from bitvavo exchange and will calculate
the 20, 50 and 100 period exponential moving averages (EMA) and the
14 period relative strength index (RSI).
> This example uses [PyIndicators](https://github.com/coding-kitties/pyindicators) for technical analysis.
> This dependency is not part of the framework, but is used to perform technical analysis on the dataframes.
> You can install it using pip: pip install pyindicators.
```python
from typing import Dict, Any
from datetime import datetime, timezone
import pandas as pd
from pyindicators import ema, rsi, crossover, crossunder
from investing_algorithm_framework import TradingStrategy, DataSource, \
TimeUnit, DataType, PositionSize, create_app, RESOURCE_DIRECTORY, \
BacktestDateRange, BacktestReport, TakeProfitRule, StopLossRule
class RSIEMACrossoverStrategy(TradingStrategy):
time_unit = TimeUnit.HOUR
interval = 2
symbols = ["BTC"]
position_sizes = [
PositionSize(
symbol="BTC", percentage_of_portfolio=20.0
),
PositionSize(
symbol="ETH", percentage_of_portfolio=20.0
)
]
take_profits = [
TakeProfitRule(
symbol="BTC",
percentage_threshold=10,
trailing=True,
sell_percentage=100
),
TakeProfitRule(
symbol="ETH",
percentage_threshold=10,
trailing=True,
sell_percentage=100
)
]
stop_losses = [
StopLossRule(
symbol="BTC",
percentage_threshold=5,
trailing=False,
sell_percentage=100
),
StopLossRule(
symbol="ETH",
percentage_threshold=5,
trailing=False,
sell_percentage=100
)
]
def __init__(
self,
time_unit: TimeUnit,
interval: int,
market: str,
rsi_time_frame: str,
rsi_period: int,
rsi_overbought_threshold,
rsi_oversold_threshold,
ema_time_frame,
ema_short_period,
ema_long_period,
ema_cross_lookback_window: int = 10
):
self.rsi_time_frame = rsi_time_frame
self.rsi_period = rsi_period
self.rsi_result_column = f"rsi_{self.rsi_period}"
self.rsi_overbought_threshold = rsi_overbought_threshold
self.rsi_oversold_threshold = rsi_oversold_threshold
self.ema_time_frame = ema_time_frame
self.ema_short_result_column = f"ema_{ema_short_period}"
self.ema_long_result_column = f"ema_{ema_long_period}"
self.ema_crossunder_result_column = "ema_crossunder"
self.ema_crossover_result_column = "ema_crossover"
self.ema_short_period = ema_short_period
self.ema_long_period = ema_long_period
self.ema_cross_lookback_window = ema_cross_lookback_window
data_sources = []
for symbol in self.symbols:
full_symbol = f"{symbol}/EUR"
data_sources.append(
DataSource(
identifier=f"{symbol}_rsi_data",
data_type=DataType.OHLCV,
time_frame=self.rsi_time_frame,
market=market,
symbol=full_symbol,
pandas=True,
window_size=800
)
)
data_sources.append(
DataSource(
identifier=f"{symbol}_ema_data",
data_type=DataType.OHLCV,
time_frame=self.ema_time_frame,
market=market,
symbol=full_symbol,
pandas=True,
window_size=800
)
)
super().__init__(
data_sources=data_sources,
time_unit=time_unit,
interval=interval
)
def _prepare_indicators(
self,
rsi_data,
ema_data
):
"""
Helper function to prepare the indicators
for the strategy. The indicators are calculated
using the pyindicators library: https://github.com/coding-kitties/PyIndicators
"""
ema_data = ema(
ema_data,
period=self.ema_short_period,
source_column="Close",
result_column=self.ema_short_result_column
)
ema_data = ema(
ema_data,
period=self.ema_long_period,
source_column="Close",
result_column=self.ema_long_result_column
)
# Detect crossover (short EMA crosses above long EMA)
ema_data = crossover(
ema_data,
first_column=self.ema_short_result_column,
second_column=self.ema_long_result_column,
result_column=self.ema_crossover_result_column
)
# Detect crossunder (short EMA crosses below long EMA)
ema_data = crossunder(
ema_data,
first_column=self.ema_short_result_column,
second_column=self.ema_long_result_column,
result_column=self.ema_crossunder_result_column
)
rsi_data = rsi(
rsi_data,
period=self.rsi_period,
source_column="Close",
result_column=self.rsi_result_column
)
return ema_data, rsi_data
def generate_buy_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]:
"""
Generate buy signals based on the moving average crossover.
data (Dict[str, Any]): Dictionary containing all the data for
the strategy data sources.
Returns:
Dict[str, pd.Series]: A dictionary where keys are symbols and values
are pandas Series indicating buy signals (True/False).
"""
signals = {}
for symbol in self.symbols:
ema_data_identifier = f"{symbol}_ema_data"
rsi_data_identifier = f"{symbol}_rsi_data"
ema_data, rsi_data = self._prepare_indicators(
data[ema_data_identifier].copy(),
data[rsi_data_identifier].copy()
)
# crossover confirmed
ema_crossover_lookback = ema_data[
self.ema_crossover_result_column].rolling(
window=self.ema_cross_lookback_window
).max().astype(bool)
# use only RSI column
rsi_oversold = rsi_data[self.rsi_result_column] \
< self.rsi_oversold_threshold
buy_signal = rsi_oversold & ema_crossover_lookback
buy_signals = buy_signal.fillna(False).astype(bool)
signals[symbol] = buy_signals
return signals
def generate_sell_signals(self, data: Dict[str, Any]) -> Dict[str, pd.Series]:
"""
Generate sell signals based on the moving average crossover.
Args:
data (Dict[str, Any]): Dictionary containing all the data for
the strategy data sources.
Returns:
Dict[str, pd.Series]: A dictionary where keys are symbols and values
are pandas Series indicating sell signals (True/False).
"""
signals = {}
for symbol in self.symbols:
ema_data_identifier = f"{symbol}_ema_data"
rsi_data_identifier = f"{symbol}_rsi_data"
ema_data, rsi_data = self._prepare_indicators(
data[ema_data_identifier].copy(),
data[rsi_data_identifier].copy()
)
# Confirmed by crossover between short-term EMA and long-term EMA
# within a given lookback window
ema_crossunder_lookback = ema_data[
self.ema_crossunder_result_column].rolling(
window=self.ema_cross_lookback_window
).max().astype(bool)
# use only RSI column
rsi_overbought = rsi_data[self.rsi_result_column] \
>= self.rsi_overbought_threshold
# Combine both conditions
sell_signal = rsi_overbought & ema_crossunder_lookback
sell_signal = sell_signal.fillna(False).astype(bool)
signals[symbol] = sell_signal
return signals
if __name__ == "__main__":
app = create_app()
app.add_strategy(
RSIEMACrossoverStrategy(
time_unit=TimeUnit.HOUR,
interval=2,
market="bitvavo",
rsi_time_frame="2h",
rsi_period=14,
rsi_overbought_threshold=70,
rsi_oversold_threshold=30,
ema_time_frame="2h",
ema_short_period=12,
ema_long_period=26,
ema_cross_lookback_window=10
)
)
# Market credentials for coinbase for both the portfolio connection and data sources will
# be read from .env file, when not registering a market credential object in the app.
app.add_market(
market="bitvavo",
trading_symbol="EUR",
)
backtest_range = BacktestDateRange(
start_date=datetime(2023, 1, 1, tzinfo=timezone.utc),
end_date=datetime(2024, 6, 1, tzinfo=timezone.utc)
)
backtest = app.run_backtest(
backtest_date_range=backtest_range, initial_amount=1000
)
report = BacktestReport(backtest)
report.show(backtest_date_range=backtest_range, browser=True)
```
> You can find more examples [here](./examples) folder.
## ๐ Documentation
Comprehensive documentation is available at [github pages](https://coding-kitties.github.io/investing-algorithm-framework/).
## ๐ ๏ธ Development
### Setup
Clone the repository and install dependencies using Poetry:
> Make sure you have [Poetry](https://python-poetry.org/docs/#installation) installed.
```bash
git clone https://github.com/coding-kitties/investing-algorithm-framework.git
cd investing-algorithm-framework
poetry install
```
### Running Tests
```bash
# Run all tests
python -m unittest discover -s tests
# Run specific test
python -m unittest tests.services.test_trade_service.TestTradeService
```
## โ ๏ธ Risk Disclaimer
๐จ **Use at Your Own Risk**
If you use this framework for your investments, **do not risk money which you are afraid to lose** until you have a clear understanding of how the framework works.
**BEFORE YOU START USING MONEY WITH THE FRAMEWORK:**
- โ
Test your strategies thoroughly with backtesting
- โ
Review the source code of any plugins you use
- โ
Start with small amounts on paper trading first
- โ
Understand the risks involved
**We assume no responsibility for your investment results. The authors and all affiliates disclaim any liability for losses.**
---
## ๐ค Contributing
The investing algorithm framework is a **community-driven project**. We welcome contributions at all levels:
- ๐ **Found a bug?** [Open an issue](https://github.com/coding-kitties/investing-algorithm-framework/issues/new)
- ๐ก **Have an idea?** [Share it with us](https://github.com/coding-kitties/investing-algorithm-framework/issues/new)
- ๐ง **Want to code?** Check the [project board](https://github.com/coding-kitties/investing-algorithm-framework/projects?query=is%3Aopen)
**Guidelines:**
- Read the [Contributing Guide](https://coding-kitties.github.io/investing-algorithm-framework/Contributing%20Guide/contributing)
- Always create PRs against the `develop` branch, not `main`
- Open an issue before starting major feature work
---
## ๐ Documentation
Comprehensive documentation is available at [GitHub Pages](https://coding-kitties.github.io/investing-algorithm-framework/)
---
## ๐ฌ Community
Join us and connect with other traders and developers:
* ๐ฌ [Discord Community](https://discord.gg/dQsRmGZP) โ Real-time chat and support
* ๐ [Reddit Community](https://www.reddit.com/r/InvestingBots/) โ Share strategies and discuss
* ๐ [Documentation](https://coding-kitties.github.io/investing-algorithm-framework/) โ Guides and API references
---
## ๐ Acknowledgements
We want to thank all contributors to this project. A full list can be found in [AUTHORS.md](https://github.com/coding-kitties/investing-algorithm-framework/blob/master/AUTHORS.md)
### Report Issues
If you discover a bug in the framework, please [search our issue tracker](https://github.com/coding-kitties/investing-algorithm-framework/issues?q=is%3Aissue) first. If it hasn't been reported, please [create a new issue](https://github.com/coding-kitties/investing-algorithm-framework/issues/new).
---