An open API service indexing awesome lists of open source software.

https://github.com/correia-jpv/fucking-awesome-datascience

๐Ÿ“ An awesome Data Science repository to learn and apply for real world problems. With repository starsโญ and forks๐Ÿด
https://github.com/correia-jpv/fucking-awesome-datascience

List: fucking-awesome-datascience

analytics awesome awesome-list data-mining data-science data-scientists data-visualization deep-learning hacktoberfest machine-learning science

Last synced: 6 months ago
JSON representation

๐Ÿ“ An awesome Data Science repository to learn and apply for real world problems. With repository starsโญ and forks๐Ÿด

Awesome Lists containing this project

README

          

# AWESOME DATA SCIENCE

[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)

**An open-source Data Science repository to learn and apply towards solving real world problems.**

This is a shortcut path to start studying **Data Science**. Just follow the steps to answer the questions, "What is Data Science and what should I study to learn Data Science?"

## Sponsors

| Sponsor | Pitch |
| --- | --- |
| --- | Be the first to sponsor! `github@academic.io` |


## Table of Contents

- [What is Data Science?](#what-is-data-science)
- [Where do I Start?](#where-do-i-start)
- [Training Resources](#training-resources)
- [Tutorials](#tutorials)
- [Free Courses](#free-courses)
- [Massively Open Online Courses](#moocs)
- [Intensive Programs](#intensive-programs)
- [Colleges](#colleges)
- [The Data Science Toolbox](#the-data-science-toolbox)
- [Algorithms](#algorithms)
- [Supervised Learning](#supervised-learning)
- [Unsupervised Learning](#unsupervised-learning)
- [Semi-Supervised Learning](#semi-supervised-learning)
- [Reinforcement Learning](#reinforcement-learning)
- [Data Mining Algorithms](#data-mining-algorithms)
- [Deep Learning Architectures](#deep-learning-architectures)
- [General Machine Learning Packages](#general-machine-learning-packages)
- [Deep Learning Packages](#deep-learning-packages)
- [PyTorch Ecosystem](#pytorch-ecosystem)
- [TensorFlow Ecosystem](#tensorflow-ecosystem)
- [Keras Ecosystem](#keras-ecosystem)
- [Visualization Tools](#visualization-tools)
- [Miscellaneous Tools](#miscellaneous-tools)
- [Literature and Media](#literature-and-media)
- [Books](#books)
- [Book Deals (Affiliated)](#book-deals-affiliated)
- [Journals, Publications, and Magazines](#journals-publications-and-magazines)
- [Newsletters](#newsletters)
- [Bloggers](#bloggers)
- [Presentations](#presentations)
- [Podcasts](#podcasts)
- [YouTube Videos & Channels](#youtube-videos--channels)
- [Socialize](#socialize)
- [Facebook Accounts](#facebook-accounts)
- [Twitter Accounts](#twitter-accounts)
- [Telegram Channels](#telegram-channels)
- [Slack Communities](#slack-communities)
- [GitHub Groups](#github-groups)
- [Data Science Competitions](#data-science-competitions)
- [Fun](#fun)
- [Infographics](#infographics)
- [Datasets](#datasets)
- [Comics](#comics)
- [Other Awesome Lists](#other-awesome-lists)
- [Hobby](#hobby)

## What is Data Science?
**[`^ back to top ^`](#awesome-data-science)**

Data Science is one of the hottest topics on the Computer and Internet farmland nowadays. People have gathered data from applications and systems until today and now is the time to analyze them. The next steps are producing suggestions from the data and creating predictions about the future. ๐ŸŒŽ [Here](www.quora.com/Data-Science/What-is-data-science) you can find the biggest question for **Data Science** and hundreds of answers from experts.

| Link | Preview |
| --- | --- |
| ๐ŸŒŽ [What is Data Science @ O'reilly](www.oreilly.com/ideas/what-is-data-science) | _Data scientists combine entrepreneurship with patience, the willingness to build data products incrementally, the ability to explore, and the ability to iterate over a solution. They are inherently interdisciplinary. They can tackle all aspects of a problem, from initial data collection and data conditioning to drawing conclusions. They can think outside the box to come up with new ways to view the problem, or to work with very broadly defined problems: โ€œhereโ€™s a lot of data, what can you make from it?โ€_ |
| ๐ŸŒŽ [What is Data Science @ Quora](www.quora.com/Data-Science/What-is-data-science) | Data Science is a combination of a number of aspects of Data such as Technology, Algorithm development, and data interference to study the data, analyse it, and find innovative solutions to difficult problems. Basically Data Science is all about Analysing data and driving for business growth by finding creative ways. |
| ๐ŸŒŽ [The sexiest job of 21st century](hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century) | _Data scientists today are akin to Wall Street โ€œquantsโ€ of the 1980s and 1990s. In those days people with backgrounds in physics and math streamed to investment banks and hedge funds, where they could devise entirely new algorithms and data strategies. Then a variety of universities developed masterโ€™s programs in financial engineering, which churned out a second generation of talent that was more accessible to mainstream firms. The pattern was repeated later in the 1990s with search engineers, whose rarefied skills soon came to be taught in computer science programs._ |
| ๐ŸŒŽ [Wikipedia](en.wikipedia.org/wiki/Data_science) | _Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insights from many structural and unstructured data. Data science is related to data mining, machine learning and big data._ |
| ๐ŸŒŽ [How to Become a Data Scientist](www.mastersindatascience.org/careers/data-scientist/) | _Data scientists are big data wranglers, gathering and analyzing large sets of structured and unstructured data. A data scientistโ€™s role combines computer science, statistics, and mathematics. They analyze, process, and model data then interpret the results to create actionable plans for companies and other organizations._ |
| ๐ŸŒŽ [a very short history of #datascience](www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/) | _The story of how data scientists became sexy is mostly the story of the coupling of the mature discipline of statistics with a very young one--computer science. The term โ€œData Scienceโ€ has emerged only recently to specifically designate a new profession that is expected to make sense of the vast stores of big data. But making sense of data has a long history and has been discussed by scientists, statisticians, librarians, computer scientists and others for years. The following timeline traces the evolution of the term โ€œData Scienceโ€ and its use, attempts to define it, and related terms._ |
๐ŸŒŽ [Software Development Resources for Data Scientists](www.rstudio.com/blog/software-development-resources-for-data-scientists/)|_Data scientists concentrate on making sense of data through exploratory analysis, statistics, and models. Software developers apply a separate set of knowledge with different tools. Although their focus may seem unrelated, data science teams can benefit from adopting software development best practices. Version control, automated testing, and other dev skills help create reproducible, production-ready code and tools._|
๐ŸŒŽ [Data Scientist Roadmap](www.scaler.com/blog/how-to-become-a-data-scientist/)|_Data science is an excellent career choice in todayโ€™s data-driven world where approx 328.77 million terabytes of data are generated daily. And this number is only increasing day by day, which in turn increases the demand for skilled data scientists who can utilize this data to drive business growth._|
๐ŸŒŽ [Navigating Your Path to Becoming a Data Scientist](www.appliedaicourse.com/blog/how-to-become-a-data-scientist/)|_Data science is one of the most in-demand careers today. With businesses increasingly relying on data to make decisions, the need for skilled data scientists has grown rapidly. Whether itโ€™s tech companies, healthcare organizations, or even government institutions, data scientists play a crucial role in turning raw data into valuable insights. But how do you become a data scientist, especially if youโ€™re just starting out? _|

## Where do I Start?
**[`^ back to top ^`](#awesome-data-science)**

While not strictly necessary, having a programming language is a crucial skill to be effective as a data scientist. Currently, the most popular language is _Python_, closely followed by _R_. Python is a general-purpose scripting language that sees applications in a wide variety of fields. R is a domain-specific language for statistics, which contains a lot of common statistics tools out of the box.
๐ŸŒŽ [Python](python.org/) is by far the most popular language in science, due in no small part to the ease at which it can be used and the vibrant ecosystem of user-generated packages. To install packages, there are two main methods: Pip (invoked as `pip install`), the package manager that comes bundled with Python, and ๐ŸŒŽ [Anaconda](www.anaconda.com) (invoked as `conda install`), a powerful package manager that can install packages for Python, R, and can download executables like Git.

Unlike R, Python was not built from the ground up with data science in mind, but there are plenty of third party libraries to make up for this. A much more exhaustive list of packages can be found later in this document, but these four packages are a good set of choices to start your data science journey with: ๐ŸŒŽ [Scikit-Learn](scikit-learn.org/stable/index.html) is a general-purpose data science package which implements the most popular algorithms - it also includes rich documentation, tutorials, and examples of the models it implements. Even if you prefer to write your own implementations, Scikit-Learn is a valuable reference to the nuts-and-bolts behind many of the common algorithms you'll find. With ๐ŸŒŽ [Pandas](pandas.pydata.org/), one can collect and analyze their data into a convenient table format. ๐ŸŒŽ [Numpy](numpy.org/) provides very fast tooling for mathematical operations, with a focus on vectors and matrices. ๐ŸŒŽ [Seaborn](seaborn.pydata.org/), itself based on the ๐ŸŒŽ [Matplotlib](matplotlib.org/) package, is a quick way to generate beautiful visualizations of your data, with many good defaults available out of the box, as well as a gallery showing how to produce many common visualizations of your data.

When embarking on your journey to becoming a data scientist, the choice of language isn't particularly important, and both Python and R have their pros and cons. Pick a language you like, and check out one of the [Free courses](#free-courses) we've listed below!

## Real World
**[`^ back to top ^`](#awesome-data-science)**

Data science is a powerful tool that is utilized in various fields to solve real-world problems by extracting insights and patterns from complex data.

### Disaster
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [deprem-ml](huggingface.co/deprem-ml) ๐ŸŒŽ [AYA: Aรงฤฑk Yazฤฑlฤฑm AฤŸฤฑ](linktr.ee/acikyazilimagi) (+25k developers) is trying to help disaster response using artificial intelligence. Everything is open-sourced ๐ŸŒŽ [afet.org](afet.org).

## Training Resources
**[`^ back to top ^`](#awesome-data-science)**

How do you learn data science? By doing data science, of course! Okay, okay - that might not be particularly helpful when you're first starting out. In this section, we've listed some learning resources, in rough order from least to greatest commitment - [Tutorials](#tutorials), [Massively Open Online Courses (MOOCs)](#moocs), [Intensive Programs](#intensive-programs), and [Colleges](#colleges).

### Tutorials
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [1000 Data Science Projects](cloud.blobcity.com/#/ps/explore) you can run on the browser with IPython.
- ย ย 7294โญ ย ย 2443๐Ÿด [#tidytuesday](https://github.com/rfordatascience/tidytuesday)) A weekly data project aimed at the R ecosystem.
- ย ย ย 606โญ ย ย ย 256๐Ÿด [Data science your way](https://github.com/jadianes/data-science-your-way))
- ย ย ย 522โญ ย ย ย 167๐Ÿด [PySpark Cheatsheet](https://github.com/kevinschaich/pyspark-cheatsheet))
- ๐ŸŒŽ [Machine Learning, Data Science and Deep Learning with Python ](www.manning.com/livevideo/machine-learning-data-science-and-deep-learning-with-python)
- ๐ŸŒŽ [Your Guide to Latent Dirichlet Allocation](medium.com/@lettier/how-does-lda-work-ill-explain-using-emoji-108abf40fa7d)
- ย ย 1225โญ ย ย ย 451๐Ÿด [Tutorials of source code from the book Genetic Algorithms with Python by Clinton Sheppard](https://github.com/handcraftsman/GeneticAlgorithmsWithPython))
- ย ย ย ย 71โญ ย ย ย ย 23๐Ÿด [Tutorials to get started on signal processing for machine learning](https://github.com/jinglescode/python-signal-processing))
- ๐ŸŒŽ [Realtime deployment](www.microprediction.com/python-1) Tutorial on Python time-series model deployment.
- ๐ŸŒŽ [Python for Data Science: A Beginnerโ€™s Guide](learntocodewith.me/posts/python-for-data-science/)
- ย 10587โญ ย ย 1712๐Ÿด [Minimum Viable Study Plan for Machine Learning Interviews](https://github.com/khangich/machine-learning-interview))
- [Understand and Know Machine Learning Engineering by Building Solid Projects](http://mlzoomcamp.com/)
- ๐ŸŒŽ [12 free Data Science projects to practice Python and Pandas](www.datawars.io/articles/12-free-data-science-projects-to-practice-python-and-pandas)
- ๐ŸŒŽ [Best CV/Resume for Data Science Freshers](enhancv.com/resume-examples/data-scientist/)
- ๐ŸŒŽ [Understand Data Science Course in Java](www.alter-solutions.com/articles/java-data-science)
- ๐ŸŒŽ [Data Analytics Interview Questions (Beginner to Advanced)](www.appliedaicourse.com/blog/data-analytics-interview-questions/)
- ๐ŸŒŽ [Top 100+ Data Science Interview Questions and Answers](www.appliedaicourse.com/blog/data-science-interview-questions/)

### Free Courses
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Data Scientist with R](www.datacamp.com/tracks/data-scientist-with-r)
- ๐ŸŒŽ [Data Scientist with Python](www.datacamp.com/tracks/data-scientist-with-python)
- ๐ŸŒŽ [Genetic Algorithms OCW Course](ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-1-introduction-and-scope/)
- ย 29753โญ ย ย 2522๐Ÿด [AI Expert Roadmap](https://github.com/AMAI-GmbH/AI-Expert-Roadmap)) - Roadmap to becoming an Artificial Intelligence Expert
- ๐ŸŒŽ [Convex Optimization](www.edx.org/course/convex-optimization) - Convex Optimization (basics of convex analysis; least-squares, linear and quadratic programs, semidefinite programming, minimax, extremal volume, and other problems; optimality conditions, duality theory...)
- ๐ŸŒŽ [Learning from Data](home.work.caltech.edu/telecourse.html) - Introduction to machine learning covering basic theory, algorithms and applications
- ๐ŸŒŽ [Kaggle](www.kaggle.com/learn) - Learn about Data Science, Machine Learning, Python etc
- ๐ŸŒŽ [ML Observability Fundamentals](arize.com/ml-observability-fundamentals/) - Learn how to monitor and root-cause production ML issues.
- ๐ŸŒŽ [Weights & Biases Effective MLOps: Model Development](www.wandb.courses/courses/effective-mlops-model-development) - Free Course and Certification for building an end-to-end machine using W&B
- ๐ŸŒŽ [Python for Data Science by Scaler](www.scaler.com/topics/course/python-for-data-science/) - This course is designed to empower beginners with the essential skills to excel in today's data-driven world. The comprehensive curriculum will give you a solid foundation in statistics, programming, data visualization, and machine learning.
- ย ย ย 443โญ ย ย ย ย 45๐Ÿด [MLSys-NYU-2022](https://github.com/jacopotagliabue/MLSys-NYU-2022/tree/main)) - Slides, scripts and materials for the Machine Learning in Finance course at NYU Tandon, 2022.
- ย ย ย 815โญ ย ย ย 136๐Ÿด [Hands-on Train and Deploy ML](https://github.com/Paulescu/hands-on-train-and-deploy-ml)) - A hands-on course to train and deploy a serverless API that predicts crypto prices.
- ๐ŸŒŽ [LLMOps: Building Real-World Applications With Large Language Models](www.comet.com/site/llm-course/) - Learn to build modern software with LLMs using the newest tools and techniques in the field.
- ๐ŸŒŽ [Prompt Engineering for Vision Models](www.deeplearning.ai/short-courses/prompt-engineering-for-vision-models/) - Learn to prompt cutting-edge computer vision models with natural language, coordinate points, bounding boxes, segmentation masks, and even other images in this free course from DeepLearning.AI.
- ๐ŸŒŽ [Data Science Course By IBM](skillsbuild.org/students/course-catalog/data-science) - Free resources and learn what data science is and how itโ€™s used in different industries.


### MOOC's
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Coursera Introduction to Data Science](www.coursera.org/specializations/data-science)
- ๐ŸŒŽ [Data Science - 9 Steps Courses, A Specialization on Coursera](www.coursera.org/specializations/jhu-data-science)
- ๐ŸŒŽ [Data Mining - 5 Steps Courses, A Specialization on Coursera](www.coursera.org/specializations/data-mining)
- ๐ŸŒŽ [Machine Learning โ€“ 5 Steps Courses, A Specialization on Coursera](www.coursera.org/specializations/machine-learning)
- ๐ŸŒŽ [CS 109 Data Science](cs109.github.io/2015/)
- ๐ŸŒŽ [OpenIntro](www.openintro.org/)
- ๐ŸŒŽ [CS 171 Visualization](www.cs171.org/#!index.md)
- ๐ŸŒŽ [Process Mining: Data science in Action](www.coursera.org/learn/process-mining)
- ๐ŸŒŽ [Oxford Deep Learning](www.cs.ox.ac.uk/projects/DeepLearn/)
- ๐ŸŒŽ [Oxford Deep Learning - video](www.youtube.com/playlist?list=PLE6Wd9FR--EfW8dtjAuPoTuPcqmOV53Fu)
- ๐ŸŒŽ [Oxford Machine Learning](www.cs.ox.ac.uk/research/ai_ml/index.html)
- ๐ŸŒŽ [UBC Machine Learning - video](www.cs.ubc.ca/~nando/540-2013/lectures.html)
- ย ย 4087โญ ย 31318๐Ÿด [Data Science Specialization](https://github.com/DataScienceSpecialization/courses))
- ๐ŸŒŽ [Coursera Big Data Specialization](www.coursera.org/specializations/big-data)
- ๐ŸŒŽ [Statistical Thinking for Data Science and Analytics by Edx](www.edx.org/course/statistical-thinking-for-data-science-and-analytic)
- ๐ŸŒŽ [Cognitive Class AI by IBM](cognitiveclass.ai/)
- ๐ŸŒŽ [Udacity - Deep Learning](www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187)
- ๐ŸŒŽ [Keras in Motion](www.manning.com/livevideo/keras-in-motion)
- ๐ŸŒŽ [Microsoft Professional Program for Data Science](academy.microsoft.com/en-us/professional-program/tracks/data-science/)
- ๐ŸŒŽ [COMP3222/COMP6246 - Machine Learning Technologies](tdgunes.com/COMP6246-2019Fall/)
- ๐ŸŒŽ [CS 231 - Convolutional Neural Networks for Visual Recognition](cs231n.github.io/)
- ๐ŸŒŽ [Coursera Tensorflow in practice](www.coursera.org/professional-certificates/tensorflow-in-practice)
- ๐ŸŒŽ [Coursera Deep Learning Specialization](www.coursera.org/specializations/deep-learning)
- ๐ŸŒŽ [365 Data Science Course](365datascience.com/)
- ๐ŸŒŽ [Coursera Natural Language Processing Specialization](www.coursera.org/specializations/natural-language-processing)
- ๐ŸŒŽ [Coursera GAN Specialization](www.coursera.org/specializations/generative-adversarial-networks-gans)
- ๐ŸŒŽ [Codecademy's Data Science](www.codecademy.com/learn/paths/data-science)
- ๐ŸŒŽ [Linear Algebra](ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/) - Linear Algebra course by Gilbert Strang
- ๐ŸŒŽ [A 2020 Vision of Linear Algebra (G. Strang)](ocw.mit.edu/resources/res-18-010-a-2020-vision-of-linear-algebra-spring-2020/)
- ๐ŸŒŽ [Python for Data Science Foundation Course](intellipaat.com/academy/course/python-for-data-science-free-training/)
- ๐ŸŒŽ [Data Science: Statistics & Machine Learning](www.coursera.org/specializations/data-science-statistics-machine-learning)
- ๐ŸŒŽ [Machine Learning Engineering for Production (MLOps)](www.coursera.org/specializations/machine-learning-engineering-for-production-mlops)
- ๐ŸŒŽ [Recommender Systems Specialization from University of Minnesota](www.coursera.org/specializations/recommender-systems) is an intermediate/advanced level specialization focused on Recommender System on the Coursera platform.
- ๐ŸŒŽ [Stanford Artificial Intelligence Professional Program](online.stanford.edu/programs/artificial-intelligence-professional-program)
- ๐ŸŒŽ [Data Scientist with Python](app.datacamp.com/learn/career-tracks/data-scientist-with-python)
- ๐ŸŒŽ [Programming with Julia](www.udemy.com/course/programming-with-julia/)
- ๐ŸŒŽ [Scaler Data Science & Machine Learning Program](www.scaler.com/data-science-course/)
- ๐ŸŒŽ [Data Science Skill Tree](labex.io/skilltrees/data-science)
- ๐ŸŒŽ [Data Science for Beginners - Learn with AI tutor](codekidz.ai/lesson-intro/data-science-368dbf)
- ๐ŸŒŽ [Machine Learning for Beginners - Learn with AI tutor](codekidz.ai/lesson-intro/machine-lear-36abfb)

### Intensive Programs
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [S2DS](www.s2ds.org/)

### Colleges
**[`^ back to top ^`](#awesome-data-science)**

- ย ย ย 153โญ ย ย ย 198๐Ÿด [A list of colleges and universities offering degrees in data science.](https://github.com/ryanswanstrom/awesome-datascience-colleges))
- ๐ŸŒŽ [Data Science Degree @ Berkeley](ischoolonline.berkeley.edu/data-science/)
- ๐ŸŒŽ [Data Science Degree @ UVA](datascience.virginia.edu/)
- ๐ŸŒŽ [Data Science Degree @ Wisconsin](datasciencedegree.wisconsin.edu/)
- ๐ŸŒŽ [BS in Data Science & Applications](study.iitm.ac.in/ds/)
- ๐ŸŒŽ [MS in Computer Information Systems @ Boston University](www.bu.edu/online/programs/graduate-programs/computer-information-systems-masters-degree/)
- ๐ŸŒŽ [MS in Business Analytics @ ASU Online](asuonline.asu.edu/online-degree-programs/graduate/master-science-business-analytics/)
- ๐ŸŒŽ [MS in Applied Data Science @ Syracuse](ischool.syr.edu/academics/applied-data-science-masters-degree/)
- ๐ŸŒŽ [M.S. Management & Data Science @ Leuphana](www.leuphana.de/en/graduate-school/masters-programmes/management-data-science.html)
- ๐ŸŒŽ [Master of Data Science @ Melbourne University](study.unimelb.edu.au/find/courses/graduate/master-of-data-science/#overview)
- ๐ŸŒŽ [Msc in Data Science @ The University of Edinburgh](www.ed.ac.uk/studying/postgraduate/degrees/index.php?r=site/view&id=902)
- ๐ŸŒŽ [Master of Management Analytics @ Queen's University](smith.queensu.ca/grad_studies/mma/index.php)
- ๐ŸŒŽ [Master of Data Science @ Illinois Institute of Technology](www.iit.edu/academics/programs/data-science-mas)
- ๐ŸŒŽ [Master of Applied Data Science @ The University of Michigan](www.si.umich.edu/programs/master-applied-data-science)
- ๐ŸŒŽ [Master Data Science and Artificial Intelligence @ Eindhoven University of Technology](www.tue.nl/en/education/graduate-school/master-data-science-and-artificial-intelligence/)
- ๐ŸŒŽ [Master's Degree in Data Science and Computer Engineering @ University of Granada](masteres.ugr.es/datcom/)

## The Data Science Toolbox
**[`^ back to top ^`](#awesome-data-science)**

This section is a collection of packages, tools, algorithms, and other useful items in the data science world.

### Algorithms
**[`^ back to top ^`](#awesome-data-science)**

These are some Machine Learning and Data Mining algorithms and models help you to understand your data and derive meaning from it.

#### Three kinds of Machine Learning Systems

- Based on training with human supervision
- Based on learning incrementally on fly
- Based on data points comparison and pattern detection

### Comparison
- ย ย ย 540โญ ย ย ย 139๐Ÿด [datacompy](https://github.com/capitalone/datacompy)) - DataComPy is a package to compare two Pandas DataFrames.

#### Supervised Learning

- ๐ŸŒŽ [Regression](en.wikipedia.org/wiki/Regression)
- ๐ŸŒŽ [Linear Regression](en.wikipedia.org/wiki/Linear_regression)
- ๐ŸŒŽ [Ordinary Least Squares](en.wikipedia.org/wiki/Ordinary_least_squares)
- ๐ŸŒŽ [Logistic Regression](en.wikipedia.org/wiki/Logistic_regression)
- ๐ŸŒŽ [Stepwise Regression](en.wikipedia.org/wiki/Stepwise_regression)
- ๐ŸŒŽ [Multivariate Adaptive Regression Splines](en.wikipedia.org/wiki/Multivariate_adaptive_regression_spline)
- ๐ŸŒŽ [Softmax Regression](d2l.ai/chapter_linear-classification/softmax-regression.html)
- ๐ŸŒŽ [Locally Estimated Scatterplot Smoothing](en.wikipedia.org/wiki/Local_regression)
- Classification
- ๐ŸŒŽ [k-nearest neighbor](en.wikipedia.org/wiki/K-nearest_neighbors_algorithm)
- ๐ŸŒŽ [Support Vector Machines](en.wikipedia.org/wiki/Support_vector_machine)
- ๐ŸŒŽ [Decision Trees](en.wikipedia.org/wiki/Decision_tree)
- ๐ŸŒŽ [ID3 algorithm](en.wikipedia.org/wiki/ID3_algorithm)
- ๐ŸŒŽ [C4.5 algorithm](en.wikipedia.org/wiki/C4.5_algorithm)
- ๐ŸŒŽ [Ensemble Learning](scikit-learn.org/stable/modules/ensemble.html)
- [Boosting](https://en.wikipedia.org/wiki/Boosting_(machine_learning))
- ๐ŸŒŽ [Stacking](machinelearningmastery.com/stacking-ensemble-machine-learning-with-python)
- ๐ŸŒŽ [Bagging](en.wikipedia.org/wiki/Bootstrap_aggregating)
- ๐ŸŒŽ [Random Forest](en.wikipedia.org/wiki/Random_forest)
- ๐ŸŒŽ [AdaBoost](en.wikipedia.org/wiki/AdaBoost)

#### Unsupervised Learning
- ๐ŸŒŽ [Clustering](scikit-learn.org/stable/modules/clustering.html#clustering)
- ๐ŸŒŽ [Hierchical clustering](scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering)
- ๐ŸŒŽ [k-means](scikit-learn.org/stable/modules/clustering.html#k-means)
- ๐ŸŒŽ [Density-based clustering](scikit-learn.org/stable/modules/clustering.html#dbscan)
- ๐ŸŒŽ [Fuzzy clustering](en.wikipedia.org/wiki/Fuzzy_clustering)
- ๐ŸŒŽ [Mixture models](en.wikipedia.org/wiki/Mixture_model)
- ๐ŸŒŽ [Dimension Reduction](en.wikipedia.org/wiki/Dimensionality_reduction)
- ๐ŸŒŽ [Principal Component Analysis (PCA)](scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca)
- ๐ŸŒŽ [t-SNE; t-distributed Stochastic Neighbor Embedding](scikit-learn.org/stable/modules/decomposition.html#principal-component-analysis-pca)
- ๐ŸŒŽ [Factor Analysis](scikit-learn.org/stable/modules/decomposition.html#factor-analysis)
- ๐ŸŒŽ [Latent Dirichlet Allocation (LDA)](scikit-learn.org/stable/modules/decomposition.html#latent-dirichlet-allocation-lda)
- ๐ŸŒŽ [Neural Networks](en.wikipedia.org/wiki/Neural_network)
- ๐ŸŒŽ [Self-organizing map](en.wikipedia.org/wiki/Self-organizing_map)
- ๐ŸŒŽ [Adaptive resonance theory](en.wikipedia.org/wiki/Adaptive_resonance_theory)
- ๐ŸŒŽ [Hidden Markov Models (HMM)](en.wikipedia.org/wiki/Hidden_Markov_model)

#### Semi-Supervised Learning

- S3VM
- ๐ŸŒŽ [Clustering](en.wikipedia.org/wiki/Weak_supervision#Cluster_assumption)
- ๐ŸŒŽ [Generative models](en.wikipedia.org/wiki/Weak_supervision#Generative_models)
- ๐ŸŒŽ [Low-density separation](en.wikipedia.org/wiki/Weak_supervision#Low-density_separation)
- ๐ŸŒŽ [Laplacian regularization](en.wikipedia.org/wiki/Weak_supervision#Laplacian_regularization)
- ๐ŸŒŽ [Heuristic approaches](en.wikipedia.org/wiki/Weak_supervision#Heuristic_approaches)

#### Reinforcement Learning

- ๐ŸŒŽ [Q Learning](en.wikipedia.org/wiki/Q-learning)
- ๐ŸŒŽ [SARSA (State-Action-Reward-State-Action) algorithm](en.wikipedia.org/wiki/State%E2%80%93action%E2%80%93reward%E2%80%93state%E2%80%93action)
- [Temporal difference learning](https://en.wikipedia.org/wiki/Temporal_difference_learning#:~:text=Temporal%20difference%20(TD)%20learning%20refers,estimate%20of%20the%20value%20function.)

#### Data Mining Algorithms

- ๐ŸŒŽ [C4.5](en.wikipedia.org/wiki/C4.5_algorithm)
- ๐ŸŒŽ [k-Means](en.wikipedia.org/wiki/K-means_clustering)
- ๐ŸŒŽ [SVM (Support Vector Machine)](en.wikipedia.org/wiki/Support_vector_machine)
- ๐ŸŒŽ [Apriori](en.wikipedia.org/wiki/Apriori_algorithm)
- ๐ŸŒŽ [EM (Expectation-Maximization)](en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm)
- ๐ŸŒŽ [PageRank](en.wikipedia.org/wiki/PageRank)
- ๐ŸŒŽ [AdaBoost](en.wikipedia.org/wiki/AdaBoost)
- ๐ŸŒŽ [KNN (K-Nearest Neighbors)](en.wikipedia.org/wiki/K-nearest_neighbors_algorithm)
- ๐ŸŒŽ [Naive Bayes](en.wikipedia.org/wiki/Naive_Bayes_classifier)
- ๐ŸŒŽ [CART (Classification and Regression Trees)](en.wikipedia.org/wiki/Decision_tree_learning)

#### Deep Learning architectures

- ๐ŸŒŽ [Multilayer Perceptron](en.wikipedia.org/wiki/Multilayer_perceptron)
- ๐ŸŒŽ [Convolutional Neural Network (CNN)](en.wikipedia.org/wiki/Convolutional_neural_network)
- ๐ŸŒŽ [Recurrent Neural Network (RNN)](en.wikipedia.org/wiki/Recurrent_neural_network)
- ๐ŸŒŽ [Boltzmann Machines](en.wikipedia.org/wiki/Boltzmann_machine)
- ๐ŸŒŽ [Autoencoder](www.tensorflow.org/tutorials/generative/autoencoder)
- ๐ŸŒŽ [Generative Adversarial Network (GAN)](developers.google.com/machine-learning/gan/gan_structure)
- ๐ŸŒŽ [Self-Organized Maps](en.wikipedia.org/wiki/Self-organizing_map)
- ๐ŸŒŽ [Transformer](www.tensorflow.org/text/tutorials/transformer)
- ๐ŸŒŽ [Conditional Random Field (CRF)](towardsdatascience.com/conditional-random-fields-explained-e5b8256da776)
- ๐ŸŒŽ [ML System Designs)](www.evidentlyai.com/ml-system-design)

### General Machine Learning Packages
**[`^ back to top ^`](#awesome-data-science)**

* ๐ŸŒŽ [scikit-learn](scikit-learn.org/)
* ย ย ย 931โญ ย ย ย 180๐Ÿด [scikit-multilearn](https://github.com/scikit-multilearn/scikit-multilearn))
* ย ย ย 488โญ ย ย ย ย 72๐Ÿด [sklearn-expertsys](https://github.com/tmadl/sklearn-expertsys))
* ย ย 1530โญ ย ย ย 442๐Ÿด [scikit-feature](https://github.com/jundongl/scikit-feature))
* ย ย ย 416โญ ย ย ย ย 73๐Ÿด [scikit-rebate](https://github.com/EpistasisLab/scikit-rebate))
* ย ย ย 694โญ ย ย ย 101๐Ÿด [seqlearn](https://github.com/larsmans/seqlearn))
* ย ย ย 517โญ ย ย ย 119๐Ÿด [sklearn-bayes](https://github.com/AmazaspShumik/sklearn-bayes))
* ย ย ย 427โญ ย ย ย 215๐Ÿด [sklearn-crfsuite](https://github.com/TeamHG-Memex/sklearn-crfsuite))
* ย ย ย 772โญ ย ย ย 129๐Ÿด [sklearn-deap](https://github.com/rsteca/sklearn-deap))
* ย ย ย ย 75โญ ย ย ย ย 11๐Ÿด [sigopt_sklearn](https://github.com/sigopt/sigopt-sklearn))
* ย ย ย ย ย 3โญ ย ย ย ย ย 0๐Ÿด [sklearn-evaluation](https://github.com/edublancas/sklearn-evaluation))
* ย ย 6222โญ ย ย 2275๐Ÿด [scikit-image](https://github.com/scikit-image/scikit-image))
* ย ย 5482โญ ย ย 1001๐Ÿด [scikit-opt](https://github.com/guofei9987/scikit-opt))
* ย ย ย 365โญ ย ย ย ย 40๐Ÿด [scikit-posthocs](https://github.com/maximtrp/scikit-posthocs))
* ย ย ย 665โญ ย ย ย 173๐Ÿด [pystruct](https://github.com/pystruct/pystruct))
* ๐ŸŒŽ [Shogun](www.shogun-toolbox.org/)
* ย ย 3091โญ ย ย ย 518๐Ÿด [xLearn](https://github.com/aksnzhy/xlearn))
* ย ย 4623โญ ย ย ย 566๐Ÿด [cuML](https://github.com/rapidsai/cuml))
* ย ย 5343โญ ย ย ย 805๐Ÿด [causalml](https://github.com/uber/causalml))
* ย ย 5317โญ ย ย 1657๐Ÿด [mlpack](https://github.com/mlpack/mlpack))
* ย ย 4993โญ ย ย ย 879๐Ÿด [MLxtend](https://github.com/rasbt/mlxtend))
* ย ย 2275โญ ย ย ย 325๐Ÿด [modAL](https://github.com/modAL-python/modAL))
* ย ย 1154โญ ย ย ย 256๐Ÿด [Sparkit-learn](https://github.com/lensacom/sparkit-learn))
* ย ย 2112โญ ย ย ย 137๐Ÿด [hyperlearn](https://github.com/danielhanchen/hyperlearn))
* ย 13937โญ ย ย 3417๐Ÿด [dlib](https://github.com/davisking/dlib))
* ย ย 1443โญ ย ย ย 124๐Ÿด [imodels](https://github.com/csinva/imodels))
* ย ย ย 420โญ ย ย ย 113๐Ÿด [RuleFit](https://github.com/christophM/rulefit))
* ย ย ย 893โญ ย ย ย 168๐Ÿด [pyGAM](https://github.com/dswah/pyGAM))
* ย ย 3764โญ ย ย ย 267๐Ÿด [Deepchecks](https://github.com/deepchecks/deepchecks))
* ๐ŸŒŽ [scikit-survival](scikit-survival.readthedocs.io/en/stable)
* ๐ŸŒŽ [interpretable](pypi.org/project/interpretable)
* ย 26811โญ ย ย 8761๐Ÿด [XGBoost](https://github.com/dmlc/xgboost))
* ย 17124โญ ย ย 3875๐Ÿด [LightGBM](https://github.com/microsoft/LightGBM))
* ย ย 8348โญ ย ย 1213๐Ÿด [CatBoost](https://github.com/catboost/catboost))
* ย ย ย 458โญ ย ย ย ย 24๐Ÿด [PerpetualBooster](https://github.com/perpetual-ml/perpetual))
* ย 31920โญ ย ย 2976๐Ÿด [JAX](https://github.com/google/jax))

### Deep Learning Packages

#### PyTorch Ecosystem
* ย 88934โญ ย 23833๐Ÿด [PyTorch](https://github.com/pytorch/pytorch))
* ย 16753โญ ย ย 7032๐Ÿด [torchvision](https://github.com/pytorch/vision))
* ย ย 3533โญ ย ย ย 813๐Ÿด [torchtext](https://github.com/pytorch/text))
* ย ย 2647โญ ย ย ย 683๐Ÿด [torchaudio](https://github.com/pytorch/audio))
* ย ย 4648โญ ย ย ย 645๐Ÿด [ignite](https://github.com/pytorch/ignite))
* ย ย 1687โญ ย ย ย 283๐Ÿด [PyTorchNet](https://github.com/pytorch/tnt))
* ย ย ย 572โญ ย ย ย ย 65๐Ÿด [PyToune](https://github.com/GRAAL-Research/poutyne))
* ย ย 6003โญ ย ย ย 396๐Ÿด [skorch](https://github.com/skorch-dev/skorch))
* ย ย ย 359โญ ย ย ย ย 50๐Ÿด [PyVarInf](https://github.com/ctallec/pyvarinf))
* ย 22208โญ ย ย 3793๐Ÿด [pytorch_geometric](https://github.com/pyg-team/pytorch_geometric))
* ย ย 3680โญ ย ย ย 563๐Ÿด [GPyTorch](https://github.com/cornellius-gp/gpytorch))
* ย ย 8723โญ ย ย ย 985๐Ÿด [pyro](https://github.com/pyro-ppl/pyro))
* ย ย 3342โญ ย ย ย 393๐Ÿด [Catalyst](https://github.com/catalyst-team/catalyst))
* ย ย 1480โญ ย ย ย 152๐Ÿด [pytorch_tabular](https://github.com/manujosephv/pytorch_tabular))
* ย 10369โญ ย ย 3452๐Ÿด [Yolov3](https://github.com/ultralytics/yolov3))
* ย 53385โญ ย 16814๐Ÿด [Yolov5](https://github.com/ultralytics/yolov5))
* ย 39341โญ ย ย 7632๐Ÿด [Yolov8](https://github.com/ultralytics/ultralytics))

#### TensorFlow Ecosystem
* 189356โญ ย 74639๐Ÿด [TensorFlow](https://github.com/tensorflow/tensorflow))
* ย ย 7355โญ ย ย 1606๐Ÿด [TensorLayer](https://github.com/tensorlayer/TensorLayer))
* ย ย 9623โญ ย ย 2407๐Ÿด [TFLearn](https://github.com/tflearn/tflearn))
* ย ย 9836โญ ย ย 1303๐Ÿด [Sonnet](https://github.com/deepmind/sonnet))
* ย ย 6309โญ ย ย 1804๐Ÿด [tensorpack](https://github.com/tensorpack/tensorpack))
* ย ย 3138โญ ย ย ย 387๐Ÿด [TRFL](https://github.com/deepmind/trfl))
* ย ย 3628โญ ย ย ย 317๐Ÿด [Polyaxon](https://github.com/polyaxon/polyaxon))
* ย ย ย 738โญ ย ย ย 160๐Ÿด [NeuPy](https://github.com/itdxer/neupy))
* ย ย ย 354โญ ย ย ย ย 36๐Ÿด [tfdeploy](https://github.com/riga/tfdeploy))
* ย ย ย 690โญ ย ย ย ย 98๐Ÿด [tensorflow-upstream](https://github.com/ROCmSoftwarePlatform/tensorflow-upstream))
* ย ย 1824โญ ย ย ย 267๐Ÿด [TensorFlow Fold](https://github.com/tensorflow/fold))
* ย ย ย ย 60โญ ย ย ย ย 29๐Ÿด [tensorlm](https://github.com/batzner/tensorlm))
* ย ย ย ย 11โญ ย ย ย ย ย 5๐Ÿด [TensorLight](https://github.com/bsautermeister/tensorlight))
* ย ย 1604โญ ย ย ย 256๐Ÿด [Mesh TensorFlow](https://github.com/tensorflow/mesh))
* ย 11415โญ ย ย 1205๐Ÿด [Ludwig](https://github.com/ludwig-ai/ludwig))
* ย ย 2895โญ ย ย ย 733๐Ÿด [TF-Agents](https://github.com/tensorflow/agents))
* ย ย 3310โญ ย ย ย 529๐Ÿด [TensorForce](https://github.com/tensorforce/tensorforce))

#### Keras Ecosystem

* ๐ŸŒŽ [Keras](keras.io)
* ย ย 1577โญ ย ย ย 651๐Ÿด [keras-contrib](https://github.com/keras-team/keras-contrib))
* ย ย 2180โญ ย ย ย 318๐Ÿด [Hyperas](https://github.com/maxpumperla/hyperas))
* ย ย 1573โญ ย ย ย 311๐Ÿด [Elephas](https://github.com/maxpumperla/elephas))
* ย ย ย 487โญ ย ย ย ย 47๐Ÿด [Hera](https://github.com/keplr-io/hera))
* ย ย 2378โญ ย ย ย 333๐Ÿด [Spektral](https://github.com/danielegrattarola/spektral))
* ย ย ย 562โญ ย ย ย 105๐Ÿด [qkeras](https://github.com/google/qkeras))
* ย ย 5546โญ ย ย 1362๐Ÿด [keras-rl](https://github.com/keras-rl/keras-rl))
* ย ย 1634โญ ย ย ย 267๐Ÿด [Talos](https://github.com/autonomio/talos))

#### Visualization Tools
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [altair](altair-viz.github.io/)
- ๐ŸŒŽ [amcharts](www.amcharts.com/)
- ๐ŸŒŽ [anychart](www.anychart.com/)
- ๐ŸŒŽ [bokeh](bokeh.org/)
- ๐ŸŒŽ [Comet](www.comet.com/site/products/ml-experiment-tracking/?utm_source=awesome-datascience)
- ๐ŸŒŽ [slemma](slemma.com/)
- ๐ŸŒŽ [cartodb](cartodb.github.io/odyssey.js/)
- ๐ŸŒŽ [Cube](square.github.io/cube/)
- ๐ŸŒŽ [d3plus](d3plus.org/)
- ๐ŸŒŽ [Data-Driven Documents(D3js)](d3js.org/)
- ๐ŸŒŽ [dygraphs](dygraphs.com/)
- ๐ŸŒŽ [exhibit](www.simile-widgets.org/exhibit/)
- ๐ŸŒŽ [gephi](gephi.org/)
- ๐ŸŒŽ [ggplot2](ggplot2.tidyverse.org/)
- [Glue](http://docs.glueviz.org/en/latest/index.html)
- ๐ŸŒŽ [Google Chart Gallery](developers.google.com/chart/interactive/docs/gallery)
- ๐ŸŒŽ [highcarts](www.highcharts.com/)
- ๐ŸŒŽ [import.io](www.import.io/)
- ๐ŸŒŽ [Matplotlib](matplotlib.org/)
- ๐ŸŒŽ [nvd3](nvd3.org/)
- ย 29907โญ ย ย 2879๐Ÿด [Netron](https://github.com/lutzroeder/netron))
- ๐ŸŒŽ [Openrefine](openrefine.org/)
- ๐ŸŒŽ [plot.ly](plot.ly/)
- ๐ŸŒŽ [raw](rawgraphs.io)
- ย ย ย ย ย 5โญ ย ย ย ย ย 0๐Ÿด [Resseract Lite](https://github.com/abistarun/resseract-lite))
- ๐ŸŒŽ [Seaborn](seaborn.pydata.org/)
- ๐ŸŒŽ [techanjs](techanjs.org/)
- ๐ŸŒŽ [Timeline](timeline.knightlab.com/)
- ๐ŸŒŽ [variancecharts](variancecharts.com/index.html)
- ๐ŸŒŽ [vida](vida.io/)
- ย ย 1962โญ ย ย ย ย 83๐Ÿด [vizzu](https://github.com/vizzuhq/vizzu-lib))
- [Wrangler](http://vis.stanford.edu/wrangler/)
- [r2d3](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/)
- ๐ŸŒŽ [NetworkX](networkx.org/)
- ๐ŸŒŽ [Redash](redash.io/)
- ๐ŸŒŽ [C3](c3js.org/)
- ย ย 3438โญ ย ย ย 362๐Ÿด [TensorWatch](https://github.com/microsoft/tensorwatch))
- ๐ŸŒŽ [geomap](pypi.org/project/geomap/)
- ๐ŸŒŽ [Dash](plotly.com/dash/)

### Miscellaneous Tools
**[`^ back to top ^`](#awesome-data-science)**

| Link | Description |
| --- | --- |
| ย ย ย 506โญ ย ย ย ย 71๐Ÿด [The Data Science Lifecycle Process](https://github.com/dslp/dslp)) | The Data Science Lifecycle Process is a process for taking data science teams from Idea to Value repeatedly and sustainably. The process is documented in this repo |
| ย ย ย 191โญ ย ย ย ย 55๐Ÿด [Data Science Lifecycle Template Repo](https://github.com/dslp/dslp-repo-template)) | Template repository for data science lifecycle project |
| ย ย ย 280โญ ย ย ย ย 25๐Ÿด [RexMex](https://github.com/AstraZeneca/rexmex)) | A general purpose recommender metrics library for fair evaluation. |
| ย ย ย 738โญ ย ย ย ย 89๐Ÿด [ChemicalX](https://github.com/AstraZeneca/chemicalx)) | A PyTorch based deep learning library for drug pair scoring. |
| ย ย 2780โญ ย ย ย 389๐Ÿด [PyTorch Geometric Temporal](https://github.com/benedekrozemberczki/pytorch_geometric_temporal)) | Representation learning on dynamic graphs. |
| ย ย ย 709โญ ย ย ย ย 56๐Ÿด [Little Ball of Fur](https://github.com/benedekrozemberczki/littleballoffur)) | A graph sampling library for NetworkX with a Scikit-Learn like API. |
| ย ย 2215โญ ย ย ย 247๐Ÿด [Karate Club](https://github.com/benedekrozemberczki/karateclub)) | An unsupervised machine learning extension library for NetworkX with a Scikit-Learn like API. |
| ย ย 3486โญ ย ย ย 453๐Ÿด [ML Workspace](https://github.com/ml-tooling/ml-workspace)) | All-in-one web-based IDE for machine learning and data science. The workspace is deployed as a Docker container and is preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch) and dev tools (e.g., Jupyter, VS Code) |
| ๐ŸŒŽ [Neptune.ai](neptune.ai) | Community-friendly platform supporting data scientists in creating and sharing machine learning models. Neptune facilitates teamwork, infrastructure management, models comparison and reproducibility. |
| ย ย ย 134โญ ย ย ย ย 32๐Ÿด [steppy](https://github.com/minerva-ml/steppy)) | Lightweight, Python library for fast and reproducible machine learning experimentation. Introduces very simple interface that enables clean machine learning pipeline design. |
| ย ย ย ย 22โญ ย ย ย ย ย 9๐Ÿด [steppy-toolkit](https://github.com/minerva-ml/steppy-toolkit)) | Curated collection of the neural networks, transformers and models that make your machine learning work faster and more effective. |
| ๐ŸŒŽ [Datalab from Google](cloud.google.com/datalab/docs/) | easily explore, visualize, analyze, and transform data using familiar languages, such as Python and SQL, interactively. |
| ๐ŸŒŽ [Hortonworks Sandbox](www.cloudera.com/downloads/hortonworks-sandbox.html) | is a personal, portable Hadoop environment that comes with a dozen interactive Hadoop tutorials. |
| ๐ŸŒŽ [R](www.r-project.org/) | is a free software environment for statistical computing and graphics. |
| ๐ŸŒŽ [Tidyverse](www.tidyverse.org/) | is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures. |
| ๐ŸŒŽ [RStudio](www.rstudio.com) | IDE โ€“ powerful user interface for R. Itโ€™s free and open source, and works on Windows, Mac, and Linux. |
| ๐ŸŒŽ [Python - Pandas - Anaconda](www.anaconda.com) | Completely free enterprise-ready Python distribution for large-scale data processing, predictive analytics, and scientific computing |
| ย ย 3229โญ ย ย ย 234๐Ÿด [Pandas GUI](https://github.com/adrotog/PandasGUI)) | Pandas GUI |
| ๐ŸŒŽ [Scikit-Learn](scikit-learn.org/stable/) | Machine Learning in Python |
| ๐ŸŒŽ [NumPy](numpy.org/) | NumPy is fundamental for scientific computing with Python. It supports large, multi-dimensional arrays and matrices and includes an assortment of high-level mathematical functions to operate on these arrays. |
| ๐ŸŒŽ [Vaex](vaex.io/) | Vaex is a Python library that allows you to visualize large datasets and calculate statistics at high speeds. |
| ๐ŸŒŽ [SciPy](scipy.org/) | SciPy works with NumPy arrays and provides efficient routines for numerical integration and optimization. |
| ๐ŸŒŽ [Data Science Toolbox](www.coursera.org/learn/data-scientists-tools) | Coursera Course |
| ๐ŸŒŽ [Data Science Toolbox](datasciencetoolbox.org/) | Blog |
| ๐ŸŒŽ [Wolfram Data Science Platform](www.wolfram.com/data-science-platform/) | Take numerical, textual, image, GIS or other data and give it the Wolfram treatment, carrying out a full spectrum of data science analysis and visualization and automatically generate rich interactive reportsโ€”all powered by the revolutionary knowledge-based Wolfram Language. |
| ๐ŸŒŽ [Datadog](www.datadoghq.com/) | Solutions, code, and devops for high-scale data science. |
| ๐ŸŒŽ [Variance](variancecharts.com/) | Build powerful data visualizations for the web without writing JavaScript |
| [Kite Development Kit](http://kitesdk.org/docs/current/index.html) | The Kite Software Development Kit (Apache License, Version 2.0), or Kite for short, is a set of libraries, tools, examples, and documentation focused on making it easier to build systems on top of the Hadoop ecosystem. |
| ๐ŸŒŽ [Domino Data Labs](www.dominodatalab.com) | Run, scale, share, and deploy your models โ€” without any infrastructure or setup. |
| ๐ŸŒŽ [Apache Flink](flink.apache.org/) | A platform for efficient, distributed, general-purpose data processing. |
| ๐ŸŒŽ [Apache Hama](hama.apache.org/) | Apache Hama is an Apache Top-Level open source project, allowing you to do advanced analytics beyond MapReduce. |
| ๐ŸŒŽ [Weka](ml.cms.waikato.ac.nz/weka/index.html) | Weka is a collection of machine learning algorithms for data mining tasks. |
| ๐ŸŒŽ [Octave](www.gnu.org/software/octave/) | GNU Octave is a high-level interpreted language, primarily intended for numerical computations.(Free Matlab) |
| ๐ŸŒŽ [Apache Spark](spark.apache.org/) | Lightning-fast cluster computing |
| ย ย ย 325โญ ย ย ย ย 68๐Ÿด [Hydrosphere Mist](https://github.com/Hydrospheredata/mist)) | a service for exposing Apache Spark analytics jobs and machine learning models as realtime, batch or reactive web services. |
| ๐ŸŒŽ [Data Mechanics](www.datamechanics.co) | A data science and engineering platform making Apache Spark more developer-friendly and cost-effective. |
| ๐ŸŒŽ [Caffe](caffe.berkeleyvision.org/) | Deep Learning Framework |
| [Torch](http://torch.ch/) | A SCIENTIFIC COMPUTING FRAMEWORK FOR LUAJIT |
| ย ย 3876โญ ย ย ย 811๐Ÿด [Nervana's python based Deep Learning Framework](https://github.com/NervanaSystems/neon)) | Intelยฎ Nervanaโ„ข reference deep learning framework committed to best performance on all hardware. |
| ย ย ย 397โญ ย ย ย ย 52๐Ÿด [Skale](https://github.com/skale-me/skale)) | High performance distributed data processing in NodeJS |
| ๐ŸŒŽ [Aerosolve](airbnb.io/aerosolve/) | A machine learning package built for humans. |
| ย ย ย 313โญ ย ย ย ย 84๐Ÿด [Intel framework](https://github.com/intel/idlf)) | Intelยฎ Deep Learning Framework |
| ๐ŸŒŽ [Datawrapper](www.datawrapper.de/) | An open source data visualization platform helping everyone to create simple, correct and embeddable charts. Also at ย ย 1391โญ ย ย ย 280๐Ÿด [github.com](https://github.com/datawrapper/datawrapper)) |
| ๐ŸŒŽ [Tensor Flow](www.tensorflow.org/) | TensorFlow is an Open Source Software Library for Machine Intelligence |
| ๐ŸŒŽ [Natural Language Toolkit](www.nltk.org/) | An introductory yet powerful toolkit for natural language processing and classification |
| ๐ŸŒŽ [Annotation Lab](www.johnsnowlabs.com/annotation-lab/) | Free End-to-End No-Code platform for text annotation and DL model training/tuning. Out-of-the-box support for Named Entity Recognition, Classification, Relation extraction and Assertion Status Spark NLP models. Unlimited support for users, teams, projects, documents. |
| ๐ŸŒŽ [nlp-toolkit for node.js](www.npmjs.com/package/nlp-toolkit) | This module covers some basic nlp principles and implementations. The main focus is performance. When we deal with sample or training data in nlp, we quickly run out of memory. Therefore every implementation in this module is written as stream to only hold that data in memory that is currently processed at any step. |
| ๐ŸŒŽ [Julia](julialang.org) | high-level, high-performance dynamic programming language for technical computing |
| ย ย 2824โญ ย ย ย 417๐Ÿด [IJulia](https://github.com/JuliaLang/IJulia.jl)) | a Julia-language backend combined with the Jupyter interactive environment |
| ๐ŸŒŽ [Apache Zeppelin](zeppelin.apache.org/) | Web-based notebook that enables data-driven, interactive data analytics and collaborative documents with SQL, Scala and more |
| ย ย 7416โญ ย ย ย 892๐Ÿด [Featuretools](https://github.com/alteryx/featuretools)) | An open source framework for automated feature engineering written in python |
| ย ย 1501โญ ย ย ย 233๐Ÿด [Optimus](https://github.com/hi-primus/optimus)) | Cleansing, pre-processing, feature engineering, exploratory data analysis and easy ML with PySpark backend. |
| ย 14796โญ ย ย 1678๐Ÿด [Albumentations](https://github.com/albumentations-team/albumentations)) | ะ fast and framework agnostic image augmentation library that implements a diverse set of augmentation techniques. Supports classification, segmentation, and detection out of the box. Was used to win a number of Deep Learning competitions at Kaggle, Topcoder and those that were a part of the CVPR workshops. |
| ย 14360โญ ย ย 1207๐Ÿด [DVC](https://github.com/iterative/dvc)) | An open-source data science version control system. It helps track, organize and make data science projects reproducible. In its very basic scenario it helps version control and share large data and model files. |
| ย ย ย ย 24โญ ย ย ย ย ย 4๐Ÿด [Lambdo](https://github.com/asavinov/lambdo)) | is a workflow engine that significantly simplifies data analysis by combining in one analysis pipeline (i) feature engineering and machine learning (ii) model training and prediction (iii) table population and column evaluation. |
| ย ย 5937โญ ย ย 1070๐Ÿด [Feast](https://github.com/feast-dev/feast)) | A feature store for the management, discovery, and access of machine learning features. Feast provides a consistent view of feature data for both model training and model serving. |
| ย ย 3628โญ ย ย ย 317๐Ÿด [Polyaxon](https://github.com/polyaxon/polyaxon)) | A platform for reproducible and scalable machine learning and deep learning. |
| ๐ŸŒŽ [UBIAI](ubiai.tools) | Easy-to-use text annotation tool for teams with most comprehensive auto-annotation features. Supports NER, relations and document classification as well as OCR annotation for invoice labeling |
| ย ย 5927โญ ย ย ย 672๐Ÿด [Trains](https://github.com/allegroai/clearml)) | Auto-Magical Experiment Manager, Version Control & DevOps for AI |
| ย ย 1219โญ ย ย ย 150๐Ÿด [Hopsworks](https://github.com/logicalclocks/hopsworks)) | Open-source data-intensive machine learning platform with a feature store. Ingest and manage features for both online (MySQL Cluster) and offline (Apache Hive) access, train and serve models at scale. |
| ย 27705โญ ย ย 4958๐Ÿด [MindsDB](https://github.com/mindsdb/mindsdb)) | MindsDB is an Explainable AutoML framework for developers. With MindsDB you can build, train and use state of the art ML models in as simple as one line of code. |
| ย ย ย 463โญ ย ย ย ย 94๐Ÿด [Lightwood](https://github.com/mindsdb/lightwood)) | A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glued together seamlessly with an objective to build predictive models with one line of code. |
| ย ย 4002โญ ย ย ย 705๐Ÿด [AWS Data Wrangler](https://github.com/awslabs/aws-data-wrangler)) | An open-source Python package that extends the power of Pandas library to AWS connecting DataFrames and AWS data related services (Amazon Redshift, AWS Glue, Amazon Athena, Amazon EMR, etc). |
| ๐ŸŒŽ [Amazon Rekognition](aws.amazon.com/rekognition/) | AWS Rekognition is a service that lets developers working with Amazon Web Services add image analysis to their applications. Catalog assets, automate workflows, and extract meaning from your media and applications.|
| ๐ŸŒŽ [Amazon Textract](aws.amazon.com/textract/) | Automatically extract printed text, handwriting, and data from any document. |
| ๐ŸŒŽ [Amazon Lookout for Vision](aws.amazon.com/lookout-for-vision/) | Spot product defects using computer vision to automate quality inspection. Identify missing product components, vehicle and structure damage, and irregularities for comprehensive quality control.|
| ๐ŸŒŽ [Amazon CodeGuru](aws.amazon.com/codeguru/) | Automate code reviews and optimize application performance with ML-powered recommendations.|
| ย ย 4088โญ ย ย ย 343๐Ÿด [CML](https://github.com/iterative/cml)) | An open source toolkit for using continuous integration in data science projects. Automatically train and test models in production-like environments with GitHub Actions & GitLab CI, and autogenerate visual reports on pull/merge requests. |
| ๐ŸŒŽ [Dask](dask.org/) | An open source Python library to painlessly transition your analytics code to distributed computing systems (Big Data) |
| ๐ŸŒŽ [Statsmodels](www.statsmodels.org/stable/index.html) | A Python-based inferential statistics, hypothesis testing and regression framework |
| ๐ŸŒŽ [Gensim](radimrehurek.com/gensim/) | An open-source library for topic modeling of natural language text |
| ๐ŸŒŽ [spaCy](spacy.io/) | A performant natural language processing toolkit |
| ย ย 8873โญ ย ย 1507๐Ÿด [Grid Studio](https://github.com/ricklamers/gridstudio)) | Grid studio is a web-based spreadsheet application with full integration of the Python programming language. |
|ย 44281โญ ย 18257๐Ÿด [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook))|Python Data Science Handbook: full text in Jupyter Notebooks|
| ย ย ย 219โญ ย ย ย ย 35๐Ÿด [Shapley](https://github.com/benedekrozemberczki/shapley)) | A data-driven framework to quantify the value of classifiers in a machine learning ensemble. |
| ๐ŸŒŽ [DAGsHub](dagshub.com) | A platform built on open source tools for data, model and pipeline management. |
| ๐ŸŒŽ [Deepnote](deepnote.com) | A new kind of data science notebook. Jupyter-compatible, with real-time collaboration and running in the cloud. |
| ๐ŸŒŽ [Valohai](valohai.com) | An MLOps platform that handles machine orchestration, automatic reproducibility and deployment. |
| ๐ŸŒŽ [PyMC3](docs.pymc.io/) | A Python Library for Probabalistic Programming (Bayesian Inference and Machine Learning) |
| ๐ŸŒŽ [PyStan](pypi.org/project/pystan/) | Python interface to Stan (Bayesian inference and modeling) |
| ๐ŸŒŽ [hmmlearn](pypi.org/project/hmmlearn/) | Unsupervised learning and inference of Hidden Markov Models |
| ย ย ย ย ย ?โญ ย ย ย ย ย ?๐Ÿด [Chaos Genius](https://github.com/chaos-genius/chaos_genius/)) | ML powered analytics engine for outlier/anomaly detection and root cause analysis |
| ๐ŸŒŽ [Nimblebox](nimblebox.ai/) | A full-stack MLOps platform designed to help data scientists and machine learning practitioners around the world discover, create, and launch multi-cloud apps from their web browser. |
| ย ย 3350โญ ย ย ย 258๐Ÿด [Towhee](https://github.com/towhee-io/towhee)) | A Python library that helps you encode your unstructured data into embeddings. |
| ย ย ย 666โญ ย ย ย ย 57๐Ÿด [LineaPy](https://github.com/LineaLabs/lineapy)) | Ever been frustrated with cleaning up long, messy Jupyter notebooks? With LineaPy, an open source Python library, it takes as little as two lines of code to transform messy development code into production pipelines. |
| ย ย 2108โญ ย ย ย 160๐Ÿด [envd](https://github.com/tensorchord/envd)) | ๐Ÿ•๏ธ machine learning development environment for data science and AI/ML engineering teams |
| ๐ŸŒŽ [Explore Data Science Libraries](kandi.openweaver.com/explore/data-science) | A search engine ๐Ÿ”Ž tool to discover & find a curated list of popular & new libraries, top authors, trending project kits, discussions, tutorials & learning resources |
| ย ย ย 719โญ ย ย ย ย 43๐Ÿด [MLEM](https://github.com/iterative/mlem)) | ๐Ÿถ Version and deploy your ML models following GitOps principles |
| ๐ŸŒŽ [MLflow](mlflow.org/) | MLOps framework for managing ML models across their full lifecycle |
| ย 10460โญ ย ย ย 822๐Ÿด [cleanlab](https://github.com/cleanlab/cleanlab)) | Python library for data-centric AI and automatically detecting various issues in ML datasets |
| ย ย 8646โญ ย ย ย 989๐Ÿด [AutoGluon](https://github.com/awslabs/autogluon)) | AutoML to easily produce accurate predictions for image, text, tabular, time-series, and multi-modal data |
| ๐ŸŒŽ [Arize AI](arize.com/) | Arize AI community tier observability tool for monitoring machine learning models in production and root-causing issues such as data quality and performance drift. |
| ๐ŸŒŽ [Aureo.io](aureo.io) | Aureo.io is a low-code platform that focuses on building artificial intelligence. It provides users with the capability to create pipelines, automations and integrate them with artificial intelligence models โ€“ all with their basic data. |
| ๐ŸŒŽ [ERD Lab](www.erdlab.io/) | Free cloud based entity relationship diagram (ERD) tool made for developers.
| ๐ŸŒŽ [Arize-Phoenix](docs.arize.com/phoenix) | MLOps in a notebook - uncover insights, surface problems, monitor, and fine tune your models. |
| ย ย ย 156โญ ย ย ย ย 62๐Ÿด [Comet](https://github.com/comet-ml/comet-examples)) | An MLOps platform with experiment tracking, model production management, a model registry, and full data lineage to support your ML workflow from training straight through to production. |
| ย ย 6418โญ ย ย ย 455๐Ÿด [Opik](https://github.com/comet-ml/opik)) | Evaluate, test, and ship LLM applications across your dev and production lifecycles. |
| ๐ŸŒŽ [Synthical](synthical.com) | AI-powered collaborative environment for research. Find relevant papers, create collections to manage bibliography, and summarize content โ€” all in one place |
| ย ย ย ย 12โญ ย ย ย ย ย 0๐Ÿด [teeplot](https://github.com/mmore500/teeplot)) | Workflow tool to automatically organize data visualization output |
| ย 38787โญ ย ย 3385๐Ÿด [Streamlit](https://github.com/streamlit/streamlit)) | App framework for Machine Learning and Data Science projects |
| ย 37437โญ ย ย 2844๐Ÿด [Gradio](https://github.com/gradio-app/gradio)) | Create customizable UI components around machine learning models |
| ย ย 9740โญ ย ย ย 728๐Ÿด [Weights & Biases](https://github.com/wandb/wandb)) | Experiment tracking, dataset versioning, and model management |
| ย 14360โญ ย ย 1207๐Ÿด [DVC](https://github.com/iterative/dvc)) | Open-source version control system for machine learning projects |
| ย 11750โญ ย ย 1086๐Ÿด [Optuna](https://github.com/optuna/optuna)) | Automatic hyperparameter optimization software framework |
| ย 36533โญ ย ย 6204๐Ÿด [Ray Tune](https://github.com/ray-project/ray)) | Scalable hyperparameter tuning library |
| ย 39593โญ ย 14882๐Ÿด [Apache Airflow](https://github.com/apache/airflow)) | Platform to programmatically author, schedule, and monitor workflows |
| ย 18936โญ ย ย 1781๐Ÿด [Prefect](https://github.com/PrefectHQ/prefect)) | Workflow management system for modern data stacks |
| ย 10267โญ ย ย ย 937๐Ÿด [Kedro](https://github.com/kedro-org/kedro)) | Open-source Python framework for creating reproducible, maintainable data science code |
| ย ย 2090โญ ย ย ย 143๐Ÿด [Hamilton](https://github.com/dagworks-inc/hamilton)) | Lightweight library to author and manage reliable data transformations |
| ย 23707โญ ย ย 3355๐Ÿด [SHAP](https://github.com/slundberg/shap)) | Game theoretic approach to explain the output of any machine learning model |
| ย 11844โญ ย ย 1832๐Ÿด [LIME](https://github.com/marcotcr/lime)) | Explaining the predictions of any machine learning classifier |
| ย ย 6175โญ ย ย ย 714๐Ÿด [flyte](https://github.com/flyteorg/flyte)) | Workflow automation platform for machine learning |
| ย 10644โญ ย ย 1705๐Ÿด [dbt](https://github.com/dbt-labs/dbt-core)) | Data build tool |
| ย 23707โญ ย ย 3355๐Ÿด [SHAP](https://github.com/slundberg/shap)) | Game theoretic approach to explain the output of any machine learning model |
| ย 11844โญ ย ย 1832๐Ÿด [LIME](https://github.com/marcotcr/lime)) | Explaining the predictions of any machine learning classifier |
| ย ย 2013โญ ย ย ย ย 56๐Ÿด [zasper](https://github.com/zasper-io/zasper)) | Supercharged IDE for Data Scienceย |

## Literature and Media
**[`^ back to top ^`](#awesome-data-science)**

This section includes some additional reading material, channels to watch, and talks to listen to.

### Books
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Data Science From Scratch: First Principles with Python](www.amazon.com/Data-Science-Scratch-Principles-Python-dp-1492041130/dp/1492041130/ref=dp_ob_title_bk)
- ๐ŸŒŽ [Artificial Intelligence with Python - Tutorialspoint](www.tutorialspoint.com/artificial_intelligence_with_python/artificial_intelligence_with_python_tutorial.pdf)
- ๐ŸŒŽ [Machine Learning from Scratch](dafriedman97.github.io/mlbook/content/introduction.html)
- ๐ŸŒŽ [Probabilistic Machine Learning: An Introduction](probml.github.io/pml-book/book1.html)
- ๐ŸŒŽ [How to Lead in Data Science](www.manning.com/books/how-to-lead-in-data-science) - Early Access
- ๐ŸŒŽ [Fighting Churn With Data](www.manning.com/books/fighting-churn-with-data)
- ๐ŸŒŽ [Data Science at Scale with Python and Dask](www.manning.com/books/data-science-with-python-and-dask)
- ๐ŸŒŽ [Python Data Science Handbook](jakevdp.github.io/PythonDataScienceHandbook/)
- ๐ŸŒŽ [The Data Science Handbook: Advice and Insights from 25 Amazing Data Scientists](www.thedatasciencehandbook.com/)
- ๐ŸŒŽ [Think Like a Data Scientist](www.manning.com/books/think-like-a-data-scientist)
- ๐ŸŒŽ [Introducing Data Science](www.manning.com/books/introducing-data-science)
- ๐ŸŒŽ [Practical Data Science with R](www.manning.com/books/practical-data-science-with-r)
- ๐ŸŒŽ [Everyday Data Science](www.amazon.com/dp/B08TZ1MT3W/ref=cm_sw_r_cp_apa_fabc_a0ceGbWECF9A8) & ๐ŸŒŽ [(cheaper PDF version)](gum.co/everydaydata)
- ๐ŸŒŽ [Exploring Data Science](www.manning.com/books/exploring-data-science) - free eBook sampler
- ๐ŸŒŽ [Exploring the Data Jungle](www.manning.com/books/exploring-the-data-jungle) - free eBook sampler
- ๐ŸŒŽ [Classic Computer Science Problems in Python](www.manning.com/books/classic-computer-science-problems-in-python)
- ๐ŸŒŽ [Math for Programmers](www.manning.com/books/math-for-programmers) Early access
- ๐ŸŒŽ [R in Action, Third Edition](www.manning.com/books/r-in-action-third-edition) Early Access
- ๐ŸŒŽ [Data Science Bookcamp](www.manning.com/books/data-science-bookcamp) Early access
- ๐ŸŒŽ [Data Science Thinking: The Next Scientific, Technological and Economic Revolution](www.springer.com/gp/book/9783319950914)
- ๐ŸŒŽ [Applied Data Science: Lessons Learned for the Data-Driven Business](www.springer.com/gp/book/9783030118204)
- ๐ŸŒŽ [The Data Science Handbook](www.amazon.com/Data-Science-Handbook-Field-Cady/dp/1119092949)
- ๐ŸŒŽ [Essential Natural Language Processing](www.manning.com/books/getting-started-with-natural-language-processing) - Early access
- [Mining Massive Datasets](http://www.mmds.org/) - free e-book comprehended by an online course
- ๐ŸŒŽ [Pandas in Action](www.manning.com/books/pandas-in-action) - Early access
- ๐ŸŒŽ [Genetic Algorithms and Genetic Programming](www.taylorfrancis.com/books/9780429141973)
- ๐ŸŒŽ [Advances in Evolutionary Algorithms](www.intechopen.com/books/advances_in_evolutionary_algorithms) - Free Download
- ๐ŸŒŽ [Genetic Programming: New Approaches and Successful Applications](www.intechopen.com/books/genetic-programming-new-approaches-and-successful-applications) - Free Download
- ๐ŸŒŽ [Evolutionary Algorithms](www.intechopen.com/books/evolutionary-algorithms) - Free Download
- [Advances in Genetic Programming, Vol. 3](http://www0.cs.ucl.ac.uk/staff/W.Langdon/aigp3/) - Free Download
- ๐ŸŒŽ [Genetic Algorithms and Evolutionary Computation](www.talkorigins.org/faqs/genalg/genalg.html) - Free Download
- ๐ŸŒŽ [Convex Optimization](web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) - Convex Optimization book by Stephen Boyd - Free Download
- ๐ŸŒŽ [Data Analysis with Python and PySpark](www.manning.com/books/data-analysis-with-python-and-pyspark) - Early Access
- ๐ŸŒŽ [R for Data Science](r4ds.had.co.nz/)
- ๐ŸŒŽ [Build a Career in Data Science](www.manning.com/books/build-a-career-in-data-science)
- ๐ŸŒŽ [Machine Learning Bookcamp](mlbookcamp.com/) - Early access
- ๐ŸŒŽ [Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition](www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/)
- ๐ŸŒŽ [Effective Data Science Infrastructure](www.manning.com/books/effective-data-science-infrastructure)
- ๐ŸŒŽ [Practical MLOps: How to Get Ready for Production Models](valohai.com/mlops-ebook/)
- ๐ŸŒŽ [Data Analysis with Python and PySpark](www.manning.com/books/data-analysis-with-python-and-pyspark)
- ๐ŸŒŽ [Regression, a Friendly guide](www.manning.com/books/regression-a-friendly-guide) - Early Access
- ๐ŸŒŽ [Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing](www.oreilly.com/library/view/streaming-systems/9781491983867/)
- ๐ŸŒŽ [Data Science at the Command Line: Facing the Future with Time-Tested Tools](www.oreilly.com/library/view/data-science-at/9781491947845/)
- ๐ŸŒŽ [Machine Learning with Python - Tutorialspoint](www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_tutorial.pdf)
- ๐ŸŒŽ [Deep Learning](www.deeplearningbook.org/)
- ๐ŸŒŽ [Designing Cloud Data Platforms](www.manning.com/books/designing-cloud-data-platforms) - Early Access
- ๐ŸŒŽ [An Introduction to Statistical Learning with Applications in R](www.statlearning.com/)
- ๐ŸŒŽ [The Elements of Statistical Learning: Data Mining, Inference, and Prediction](hastie.su.domains/ElemStatLearn/)
- ๐ŸŒŽ [Deep Learning with PyTorch](www.simonandschuster.com/books/Deep-Learning-with-PyTorch/Eli-Stevens/9781617295263)
- [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com)
- ๐ŸŒŽ [Deep Learning Cookbook](www.oreilly.com/library/view/deep-learning-cookbook/9781491995839/)
- ๐ŸŒŽ [Introduction to Machine Learning with Python](www.oreilly.com/library/view/introduction-to-machine/9781449369880/)
- ๐ŸŒŽ [Artificial Intelligence: Foundations of Computational Agents, 2nd Edition](artint.info/index.html) - Free HTML version
- ๐ŸŒŽ [The Quest for Artificial Intelligence: A History of Ideas and Achievements](ai.stanford.edu/~nilsson/QAI/qai.pdf) - Free Download
- ๐ŸŒŽ [Graph Algorithms for Data Science](www.manning.com/books/graph-algorithms-for-data-science) - Early Access
- ๐ŸŒŽ [Data Mesh in Action](www.manning.com/books/data-mesh-in-action) - Early Access
- ๐ŸŒŽ [Julia for Data Analysis](www.manning.com/books/julia-for-data-analysis) - Early Access
- ๐ŸŒŽ [Casual Inference for Data Science](www.manning.com/books/julia-for-data-analysis) - Early Access
- ๐ŸŒŽ [Regular Expression Puzzles and AI Coding Assistants](www.manning.com/books/regular-expression-puzzles-and-ai-coding-assistants) by David Mertz
- ๐ŸŒŽ [Dive into Deep Learning](d2l.ai/)
- ๐ŸŒŽ [Data for All](www.manning.com/books/data-for-all)
- ๐ŸŒŽ [Interpretable Machine Learning: A Guide for Making Black Box Models Explainable](christophm.github.io/interpretable-ml-book/) - Free GitHub version
- ๐ŸŒŽ [Foundations of Data Science](www.cs.cornell.edu/jeh/book.pdf) Free Download
- ๐ŸŒŽ [Comet for DataScience: Enhance your ability to manage and optimize the life cycle of your data science project](www.amazon.com/Comet-Data-Science-Enhance-optimize/dp/1801814430)
- ๐ŸŒŽ [Software Engineering for Data Scientists](www.manning.com/books/software-engineering-for-data-scientists) - Early Access
- ๐ŸŒŽ [Julia for Data Science](www.manning.com/books/julia-for-data-science) - Early Access
- ๐ŸŒŽ [An Introduction to Statistical Learning](www.statlearning.com/) - Download Page
- ๐ŸŒŽ [Machine Learning For Absolute Beginners](www.amazon.in/Machine-Learning-Absolute-Beginners-Introduction-ebook/dp/B07335JNW1)
- ๐ŸŒŽ [Unifying Business, Data, and Code: Designing Data Products with JSON Schema](learning.oreilly.com/library/view/unifying-business-data/9781098144999/)

#### Book Deals (Affiliated)

- ๐ŸŒŽ [eBook sale - Save up to 45% on eBooks!](www.manning.com/?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=ebook_sale_8_8_22)

- ๐ŸŒŽ [Causal Machine Learning](www.manning.com/books/causal-machine-learning?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_ness_causal_7_26_22&a_aid=mikrobusiness&a_bid=43a2198b
)
- ๐ŸŒŽ [Managing ML Projects](www.manning.com/books/managing-machine-learning-projects?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_thompson_managing_6_14_22)
- ๐ŸŒŽ [Causal Inference for Data Science](www.manning.com/books/causal-inference-for-data-science?utm_source=mikrobusiness&utm_medium=affiliate&utm_campaign=book_ruizdevilla_causal_6_6_22)
- ๐ŸŒŽ [Data for All](www.manning.com/books/data-for-all?utm_source=mikrobusiness&utm_medium=affiliate)

### Journals, Publications and Magazines
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [ICML](icml.cc/2015/) - International Conference on Machine Learning
- ๐ŸŒŽ [GECCO](gecco-2019.sigevo.org/index.html/HomePage) - The Genetic and Evolutionary Computation Conference (GECCO)
- ๐ŸŒŽ [epjdatascience](epjdatascience.springeropen.com/)
- ๐ŸŒŽ [Journal of Data Science](jds-online.org/journal/JDS) - an international journal devoted to applications of statistical methods at large
- ๐ŸŒŽ [Big Data Research](www.journals.elsevier.com/big-data-research)
- ๐ŸŒŽ [Journal of Big Data](journalofbigdata.springeropen.com/)
- ๐ŸŒŽ [Big Data & Society](journals.sagepub.com/home/bds)
- ๐ŸŒŽ [Data Science Journal](www.jstage.jst.go.jp/browse/dsj)
- ๐ŸŒŽ [datatau.com/news](www.datatau.com/news) - Like Hacker News, but for data
- ๐ŸŒŽ [Data Science Trello Board](trello.com/b/rbpEfMld/data-science)
- ๐ŸŒŽ [Medium Data Science Topic](medium.com/tag/data-science) - Data Science related publications on medium
- ๐ŸŒŽ [Towards Data Science Genetic Algorithm Topic](towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3#:~:text=A%20genetic%20algorithm%20is%20a,offspring%20of%20the%20next%20generation.) -Genetic Algorithm related Publications towards Data Science

### Newsletters
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [DataTalks.Club](datatalks.club). A weekly newsletter about data-related things. ๐ŸŒŽ [Archive](us19.campaign-archive.com/home/?u=0d7822ab98152f5afc118c176&id=97178021aa).
- ๐ŸŒŽ [The Analytics Engineering Roundup](roundup.getdbt.com/about). A newsletter about data science. ๐ŸŒŽ [Archive](roundup.getdbt.com/archive).

### Bloggers
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Wes McKinney](wesmckinney.com/archives.html) - Wes McKinney Archives.
- ๐ŸŒŽ [Matthew Russell](miningthesocialweb.com/) - Mining The Social Web.
- [Greg Reda](http://www.gregreda.com/) - Greg Reda Personal Blog
- ๐ŸŒŽ [Kevin Davenport](kldavenport.com/) - Kevin Davenport Personal Blog
- ๐ŸŒŽ [Julia Evans](jvns.ca/) - Recurse Center alumna
- ๐ŸŒŽ [Hakan Kardas](www.cse.unr.edu/~hkardes/) - Personal Web Page
- ๐ŸŒŽ [Sean J. Taylor](seanjtaylor.com/) - Personal Web Page
- [Drew Conway](http://drewconway.com/) - Personal Web Page
- ๐ŸŒŽ [Hilary Mason](hilarymason.com/) - Personal Web Page
- [Noah Iliinsky](http://complexdiagrams.com/) - Personal Blog
- ๐ŸŒŽ [Matt Harrison](hairysun.com/) - Personal Blog
- ๐ŸŒŽ [Vamshi Ambati](allthingsds.wordpress.com/) - AllThings Data Sciene
- ๐ŸŒŽ [Prash Chan](www.mdmgeek.com/) - Tech Blog on Master Data Management And Every Buzz Surrounding It
- [Clare Corthell](http://datasciencemasters.org/) - The Open Source Data Science Masters
- [Datawrangling](http://www.datawrangling.org) by Peter Skomoroch. MACHINE LEARNING, DATA MINING, AND MORE
- ๐ŸŒŽ [Quora Data Science](www.quora.com/topic/Data-Science) - Data Science Questions and Answers from experts
- ๐ŸŒŽ [Siah](openresearch.wordpress.com/) a PhD student at Berkeley
- ๐ŸŒŽ [Louis Dorard](www.ownml.co/blog/) a technology guy with a penchant for the web and for data, big and small
- ๐ŸŒŽ [Machine Learning Mastery](machinelearningmastery.com/) about helping professional programmers confidently apply machine learning algorithms to address complex problems.
- ๐ŸŒŽ [Daniel Forsyth](www.danielforsyth.me/) - Personal Blog
- ๐ŸŒŽ [Data Science Weekly](www.datascienceweekly.org/) - Weekly News Blog
- ๐ŸŒŽ [Revolution Analytics](blog.revolutionanalytics.com/) - Data Science Blog
- ๐ŸŒŽ [R Bloggers](www.r-bloggers.com/) - R Bloggers
- ๐ŸŒŽ [The Practical Quant](practicalquant.blogspot.com/) Big data
- ๐ŸŒŽ [Yet Another Data Blog](yet-another-data-blog.blogspot.com/) Yet Another Data Blog
- ๐ŸŒŽ [Spenczar](spenczar.com/) a data scientist at _Twitch_. I handle the whole data pipeline, from tracking to model-building to reporting.
- ๐ŸŒŽ [KD Nuggets](www.kdnuggets.com/) Data Mining, Analytics, Big Data, Data, Science not a blog a portal
- ๐ŸŒŽ [Meta Brown](www.metabrown.com/blog/) - Personal Blog
- ๐ŸŒŽ [Data Scientist](datascientists.com/) is building the data scientist culture.
- ๐ŸŒŽ [WhatSTheBigData](whatsthebigdata.com/) is some of, all of, or much more than the above and this blog explores its impact on information technology, the business world, government agencies, and our lives.
- ๐ŸŒŽ [Tevfik Kosar](magnus-notitia.blogspot.com/) - Magnus Notitia
- ๐ŸŒŽ [New Data Scientist](newdatascientist.blogspot.com/) How a Social Scientist Jumps into the World of Big Data
- ๐ŸŒŽ [Harvard Data Science](harvarddatascience.com/) - Thoughts on Statistical Computing and Visualization
- ๐ŸŒŽ [Data Science 101](ryanswanstrom.com/datascience101/) - Learning To Be A Data Scientist
- ๐ŸŒŽ [Kaggle Past Solutions](www.chioka.in/kaggle-competition-solutions/)
- ๐ŸŒŽ [DataScientistJourney](datascientistjourney.wordpress.com/category/data-science/)
- ๐ŸŒŽ [NYC Taxi Visualization Blog](chriswhong.github.io/nyctaxi/)
- ๐ŸŒŽ [Data-Mania](www.data-mania.com/)
- ๐ŸŒŽ [Data-Magnum](data-magnum.com/)
- ๐ŸŒŽ [datascopeanalytics](datascopeanalytics.com/blog/)
- ๐ŸŒŽ [Digital transformation](tarrysingh.com/)
- ๐ŸŒŽ [datascientistjourney](datascientistjourney.wordpress.com/category/data-science/)
- ๐ŸŒŽ [Data Mania Blog](www.data-mania.com/blog/) - ๐ŸŒŽ [The File Drawer](chris-said.io/) - Chris Said's science blog
- [Emilio Ferrara's web page](http://www.emilio.ferrara.name/)
- ๐ŸŒŽ [DataNews](datanews.tumblr.com/)
- ๐ŸŒŽ [Reddit TextMining](www.reddit.com/r/textdatamining/)
- ๐ŸŒŽ [Periscopic](periscopic.com/#!/news)
- ๐ŸŒŽ [Hilary Parker](hilaryparker.com/)
- ๐ŸŒŽ [Data Stories](datastori.es/)
- ๐ŸŒŽ [Data Science Lab](datasciencelab.wordpress.com/)
- ๐ŸŒŽ [Meaning of](www.kennybastani.com/)
- ๐ŸŒŽ [Adventures in Data Land](blog.smola.org)
- ๐ŸŒŽ [Dataclysm](theblog.okcupid.com/)
- ๐ŸŒŽ [FlowingData](flowingdata.com/) - Visualization and Statistics
- ๐ŸŒŽ [Calculated Risk](www.calculatedriskblog.com/)
- ๐ŸŒŽ [O'reilly Learning Blog](www.oreilly.com/content/topics/oreilly-learning/)
- ๐ŸŒŽ [Dominodatalab](blog.dominodatalab.com/)
- ๐ŸŒŽ [i am trask](iamtrask.github.io/) - A Machine Learning Craftsmanship Blog
- ๐ŸŒŽ [Vademecum of Practical Data Science](datasciencevademecum.wordpress.com/) - Handbook and recipes for data-driven solutions of real-world problems
- ๐ŸŒŽ [Dataconomy](dataconomy.com/) - A blog on the newly emerging data economy
- ๐ŸŒŽ [Springboard](www.springboard.com/blog/) - A blog with resources for data science learners
- ๐ŸŒŽ [Analytics Vidhya](www.analyticsvidhya.com/) - A full-fledged website about data science and analytics study material.
- ๐ŸŒŽ [Occam's Razor](www.kaushik.net/avinash/) - Focused on Web Analytics.
- ๐ŸŒŽ [Data School](www.dataschool.io/) - Data science tutorials for beginners!
- ๐ŸŒŽ [Colah's Blog](colah.github.io) - Blog for understanding Neural Networks!
- ๐ŸŒŽ [Sebastian's Blog](ruder.io/#open) - Blog for NLP and transfer learning!
- ๐ŸŒŽ [Distill](distill.pub) - Dedicated to clear explanations of machine learning!
- ๐ŸŒŽ [Chris Albon's Website](chrisalbon.com/) - Data Science and AI notes
- ๐ŸŒŽ [Andrew Carr](andrewnc.github.io/blog/blog.html) - Data Science with Esoteric programming languages
- ๐ŸŒŽ [floydhub](blog.floydhub.com/introduction-to-genetic-algorithms/) - Blog for Evolutionary Algorithms
- ๐ŸŒŽ [Jingles](jinglescode.github.io/) - Review and extract key concepts from academic papers
- ๐ŸŒŽ [nbshare](www.nbshare.io/notebooks/data-science/) - Data Science notebooks
- ๐ŸŒŽ [Loic Tetrel](ltetrel.github.io/) - Data science blog
- ๐ŸŒŽ [Chip Huyen's Blog](huyenchip.com/blog/) - ML Engineering, MLOps, and the use of ML in startups
- ๐ŸŒŽ [Maria Khalusova](www.mariakhalusova.com/) - Data science blog
- ๐ŸŒŽ [Aditi Rastogi](medium.com/@aditi2507rastogi) - ML,DL,Data Science blog
- ๐ŸŒŽ [Santiago Basulto](medium.com/@santiagobasulto) - Data Science with Python
- ๐ŸŒŽ [Akhil Soni](medium.com/@akhil0435) - ML, DL and Data Science
- ๐ŸŒŽ [Akhil Soni](akhilworld.hashnode.dev/) - ML, DL and Data Science

### Presentations
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [How to Become a Data Scientist](www.slideshare.net/ryanorban/how-to-become-a-data-scientist)
- ๐ŸŒŽ [Introduction to Data Science](www.slideshare.net/NikoVuokko/introduction-to-data-science-25391618)
- ๐ŸŒŽ [Intro to Data Science for Enterprise Big Data](www.slideshare.net/pacoid/intro-to-data-science-for-enterprise-big-data)
- ๐ŸŒŽ [How to Interview a Data Scientist](www.slideshare.net/dtunkelang/how-to-interview-a-data-scientist)
- ย ย 6599โญ 243643๐Ÿด [How to Share Data with a Statistician](https://github.com/jtleek/datasharing))
- ๐ŸŒŽ [The Science of a Great Career in Data Science](www.slideshare.net/katemats/the-science-of-a-great-career-in-data-science)
- ๐ŸŒŽ [What Does a Data Scientist Do?](www.slideshare.net/datasciencelondon/big-data-sorry-data-science-what-does-a-data-scientist-do)
- ๐ŸŒŽ [Building Data Start-Ups: Fast, Big, and Focused](www.slideshare.net/medriscoll/driscoll-strata-buildingdatastartups25may2011clean)
- ๐ŸŒŽ [How to win data science competitions with Deep Learning](www.slideshare.net/0xdata/how-to-win-data-science-competitions-with-deep-learning)
- ๐ŸŒŽ [Full-Stack Data Scientist](www.slideshare.net/AlexeyGrigorev/fullstack-data-scientist)

### Podcasts
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [AI at Home](podcasts.apple.com/us/podcast/data-science-at-home/id1069871378)
- ๐ŸŒŽ [AI Today](www.cognilytica.com/aitoday/)
- ๐ŸŒŽ [Adversarial Learning](adversariallearning.com/)
- ๐ŸŒŽ [Chai time Data Science](www.youtube.com/playlist?list=PLLvvXm0q8zUbiNdoIazGzlENMXvZ9bd3x)
- ๐ŸŒŽ [Data Engineering Podcast](www.dataengineeringpodcast.com/)
- ๐ŸŒŽ [Data Science at Home](datascienceathome.com/)
- ๐ŸŒŽ [Data Science Mixer](community.alteryx.com/t5/Data-Science-Mixer/bg-p/mixer)
- ๐ŸŒŽ [Data Skeptic](dataskeptic.com/)
- ๐ŸŒŽ [Data Stories](datastori.es/)
- ๐ŸŒŽ [Datacast](jameskle.com/writes/category/Datacast)
- ๐ŸŒŽ [DataFramed](www.datacamp.com/community/podcast)
- ๐ŸŒŽ [DataTalks.Club](anchor.fm/datatalksclub)
- ๐ŸŒŽ [Gradient Descent](wandb.ai/fully-connected/gradient-descent)
- ๐ŸŒŽ [Learning Machines 101](www.learningmachines101.com/)
- ๐ŸŒŽ [Let's Data (Brazil)](www.youtube.com/playlist?list=PLn_z5E4dh_Lj5eogejMxfOiNX3nOhmhmM)
- ๐ŸŒŽ [Linear Digressions](lineardigressions.com/)
- ๐ŸŒŽ [Not So Standard Deviations](nssdeviations.com/)
- ๐ŸŒŽ [O'Reilly Data Show Podcast](www.oreilly.com/radar/topics/oreilly-data-show-podcast/)
- [Partially Derivative](http://partiallyderivative.com/)
- ๐ŸŒŽ [Superdatascience](www.superdatascience.com/podcast/)
- ๐ŸŒŽ [The Data Engineering Show](www.dataengineeringshow.com/)
- ๐ŸŒŽ [The Radical AI Podcast](www.radicalai.org/)
- ๐ŸŒŽ [What's The Point](fivethirtyeight.com/tag/whats-the-point/)
- ๐ŸŒŽ [The Analytics Engineering Podcast](roundup.getdbt.com/s/the-analytics-engineering-podcast)

### YouTube Videos & Channels
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [What is machine learning?](www.youtube.com/watch?v=WXHM_i-fgGo)
- ๐ŸŒŽ [Andrew Ng: Deep Learning, Self-Taught Learning and Unsupervised Feature Learning](www.youtube.com/watch?v=n1ViNeWhC24)
- ๐ŸŒŽ [Data36 - Data Science for Beginners by Tomi Mester](www.youtube.com/c/TomiMesterData36comDataScienceForBeginners)
- ๐ŸŒŽ [Deep Learning: Intelligence from Big Data](www.youtube.com/watch?v=czLI3oLDe8M)
- ๐ŸŒŽ [Interview with Google's AI and Deep Learning 'Godfather' Geoffrey Hinton](www.youtube.com/watch?v=1Wp3IIpssEc)
- ๐ŸŒŽ [Introduction to Deep Learning with Python](www.youtube.com/watch?v=S75EdAcXHKk)
- ๐ŸŒŽ [What is machine learning, and how does it work?](www.youtube.com/watch?v=elojMnjn4kk)
- ๐ŸŒŽ [Data School](www.youtube.com/channel/UCnVzApLJE2ljPZSeQylSEyg) - Data Science Education
- ๐ŸŒŽ [Neural Nets for Newbies by Melanie Warrick (May 2015)](www.youtube.com/watch?v=Cu6A96TUy_o)
- ๐ŸŒŽ [Neural Networks video series by Hugo Larochelle](www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH)
- ๐ŸŒŽ [Google DeepMind co-founder Shane Legg - Machine Super Intelligence](www.youtube.com/watch?v=evNCyRL3DOU)
- ๐ŸŒŽ [Data Science Primer](www.youtube.com/watch?v=cHzvYxBN9Ls&list=PLPqVjP3T4RIRsjaW07zoGzH-Z4dBACpxY)
- ๐ŸŒŽ [Data Science with Genetic Algorithms](www.youtube.com/watch?v=lpD38NxTOnk)
- ๐ŸŒŽ [Data Science for Beginners](www.youtube.com/playlist?list=PL2zq7klxX5ATMsmyRazei7ZXkP1GHt-vs)
- ๐ŸŒŽ [DataTalks.Club](www.youtube.com/channel/UCDvErgK0j5ur3aLgn6U-LqQ)
- ๐ŸŒŽ [Mildlyoverfitted - Tutorials on intermediate ML/DL topics](www.youtube.com/channel/UCYBSjwkGTK06NnDnFsOcR7g)
- ๐ŸŒŽ [mlops.community - Interviews of industry experts about production ML](www.youtube.com/channel/UCYBSjwkGTK06NnDnFsOcR7g)
- ๐ŸŒŽ [ML Street Talk - Unabashedly technical and non-commercial, so you will hear no annoying pitches.](www.youtube.com/c/machinelearningstreettalk)
- ๐ŸŒŽ [Neural networks by 3Blue1Brown ](www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi)
- ๐ŸŒŽ [Neural networks from scratch by Sentdex](www.youtube.com/playlist?list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3)
- ๐ŸŒŽ [Manning Publications YouTube channel](www.youtube.com/c/ManningPublications/featured)
- ๐ŸŒŽ [Ask Dr Chong: How to Lead in Data Science - Part 1](youtu.be/JYuQZii5o58)
- ๐ŸŒŽ [Ask Dr Chong: How to Lead in Data Science - Part 2](youtu.be/SzqIXV-O-ko)
- ๐ŸŒŽ [Ask Dr Chong: How to Lead in Data Science - Part 3](youtu.be/Ogwm7k_smTA)
- ๐ŸŒŽ [Ask Dr Chong: How to Lead in Data Science - Part 4](youtu.be/a9usjdzTxTU)
- ๐ŸŒŽ [Ask Dr Chong: How to Lead in Data Science - Part 5](youtu.be/MYdQq-F3Ws0)
- ๐ŸŒŽ [Ask Dr Chong: How to Lead in Data Science - Part 6](youtu.be/LOOt4OVC3hY)
- ๐ŸŒŽ [Regression Models: Applying simple Poisson regression](www.youtube.com/watch?v=9Hk8K8jhiOo)
- ๐ŸŒŽ [Deep Learning Architectures](www.youtube.com/playlist?list=PLv8Cp2NvcY8DpVcsmOT71kymgMmcr59Mf)
- ๐ŸŒŽ [Time Series Modelling and Analysis](www.youtube.com/playlist?list=PL3N9eeOlCrP5cK0QRQxeJd6GrQvhAtpBK)

## Socialize
**[`^ back to top ^`](#awesome-data-science)**

Below are some Social Media links. Connect with other data scientists!

- [Facebook Accounts](#facebook-accounts)
- [Twitter Accounts](#twitter-accounts)
- [Telegram Channels](#telegram-channels)
- [Slack Communities](#slack-communities)
- [GitHub Groups](#github-groups)
- [Data Science Competitions](#data-science-competitions)

### Facebook Accounts
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Data](www.facebook.com/data)
- ๐ŸŒŽ [Big Data Scientist](www.facebook.com/Bigdatascientist)
- ๐ŸŒŽ [Data Science Day](www.facebook.com/datascienceday/)
- ๐ŸŒŽ [Data Science Academy](www.facebook.com/nycdatascience)
- ๐ŸŒŽ [Facebook Data Science Page](www.facebook.com/pages/Data-science/431299473579193?ref=br_rs)
- ๐ŸŒŽ [Data Science London](www.facebook.com/pages/Data-Science-London/226174337471513)
- ๐ŸŒŽ [Data Science Technology and Corporation](www.facebook.com/DataScienceTechnologyCorporation?ref=br_rs)
- ๐ŸŒŽ [Data Science - Closed Group](www.facebook.com/groups/1394010454157077/?ref=br_rs)
- ๐ŸŒŽ [Center for Data Science](www.facebook.com/centerdatasciences?ref=br_rs)
- ๐ŸŒŽ [Big data hadoop NOSQL Hive Hbase](www.facebook.com/groups/bigdatahadoop/)
- ๐ŸŒŽ [Analytics, Data Mining, Predictive Modeling, Artificial Intelligence](www.facebook.com/groups/data.analytics/)
- ๐ŸŒŽ [Big Data Analytics using R](www.facebook.com/groups/434352233255448/)
- ๐ŸŒŽ [Big Data Analytics with R and Hadoop](www.facebook.com/groups/rhadoop/)
- ๐ŸŒŽ [Big Data Learnings](www.facebook.com/groups/bigdatalearnings/)
- ๐ŸŒŽ [Big Data, Data Science, Data Mining & Statistics](www.facebook.com/groups/bigdatastatistics/)
- ๐ŸŒŽ [BigData/Hadoop Expert](www.facebook.com/groups/BigDataExpert/)
- ๐ŸŒŽ [Data Mining / Machine Learning / AI](www.facebook.com/groups/machinelearningforum/)
- ๐ŸŒŽ [Data Mining/Big Data - Social Network Ana](www.facebook.com/groups/dataminingsocialnetworks/)
- ๐ŸŒŽ [Vademecum of Practical Data Science](www.facebook.com/datasciencevademecum)
- ๐ŸŒŽ [Veri Bilimi Istanbul](www.facebook.com/groups/veribilimiistanbul/)
- ๐ŸŒŽ [The Data Science Blog](www.facebook.com/theDataScienceBlog/)

### Twitter Accounts
**[`^ back to top ^`](#awesome-data-science)**

| Twitter | Description |
| --- | --- |
| ๐ŸŒŽ [Big Data Combine](twitter.com/BigDataCombine) | Rapid-fire, live tryouts for data scientists seeking to monetize their models as trading strategies |
| Big Data Mania | Data Viz Wiz, Data Journalist, Growth Hacker, Author of Data Science for Dummies (2015) |
| ๐ŸŒŽ [Big Data Science](twitter.com/analyticbridge) | Big Data, Data Science, Predictive Modeling, Business Analytics, Hadoop, Decision and Operations Research. |
| Charlie Greenbacker | Director of Data Science at @ExploreAltamira |
| ๐ŸŒŽ [Chris Said](twitter.com/Chris_Said) | Data scientist at Twitter |
| ๐ŸŒŽ [Clare Corthell](twitter.com/clarecorthell) | Dev, Design, Data Science @mattermark #hackerei |
| ๐ŸŒŽ [DADI Charles-Abner](twitter.com/DadiCharles) | #datascientist @Ekimetrics. , #machinelearning #dataviz #DynamicCharts #Hadoop #R #Python #NLP #Bitcoin #dataenthousiast |
| ๐ŸŒŽ [Data Science Central](twitter.com/DataScienceCtrl) | Data Science Central is the industry's single resource for Big Data practitioners. |
| ๐ŸŒŽ [Data Science London](twitter.com/ds_ldn) | Data Science. Big Data. Data Hacks. Data Junkies. Data Startups. Open Data |
| ๐ŸŒŽ [Data Science Renee](twitter.com/BecomingDataSci) | Documenting my path from SQL Data Analyst pursuing an Engineering Master's Degree to Data Scientist |
| ๐ŸŒŽ [Data Science Report](twitter.com/TedOBrien93) | Mission is to help guide & advance careers in Data Science & Analytics |
| ๐ŸŒŽ [Data Science Tips](twitter.com/datasciencetips) | Tips and Tricks for Data Scientists around the world! #datascience #bigdata |
| ๐ŸŒŽ [Data Vizzard](twitter.com/DataVisualizati) | DataViz, Security, Military |
| ๐ŸŒŽ [DataScienceX](twitter.com/DataScienceX) | |
| deeplearning4j | |
| ๐ŸŒŽ [DJ Patil](twitter.com/dpatil) | White House Data Chief, VP @ RelateIQ. |
| ๐ŸŒŽ [Domino Data Lab](twitter.com/DominoDataLab) | |
| ๐ŸŒŽ [Drew Conway](twitter.com/drewconway) | Data nerd, hacker, student of conflict. |
| Emilio Ferrara | #Networks, #MachineLearning and #DataScience. I work on #Social Media. Postdoc at @IndianaUniv |
| ๐ŸŒŽ [Erin Bartolo](twitter.com/erinbartolo) | Running with #BigData--enjoying a love/hate relationship with its hype. @iSchoolSU #DataScience Program Mgr. |
| ๐ŸŒŽ [Greg Reda](twitter.com/gjreda) | Working @ _GrubHub_ about data and pandas |
| ๐ŸŒŽ [Gregory Piatetsky](twitter.com/kdnuggets) | KDnuggets President, Analytics/Big Data/Data Mining/Data Science expert, KDD & SIGKDD co-founder, was Chief Scientist at 2 startups, part-time philosopher. |
| ๐ŸŒŽ [Hadley Wickham](twitter.com/hadleywickham) | Chief Scientist at RStudio, and an Adjunct Professor of Statistics at the University of Auckland, Stanford University, and Rice University. |
| ๐ŸŒŽ [Hakan Kardas](twitter.com/hakan_kardes) | Data Scientist |
| ๐ŸŒŽ [Hilary Mason](twitter.com/hmason) | Data Scientist in Residence at @accel. |
| ๐ŸŒŽ [Jeff Hammerbacher](twitter.com/hackingdata) | ReTweeting about data science |
| ๐ŸŒŽ [John Myles White](twitter.com/johnmyleswhite) | Scientist at Facebook and Julia developer. Author of Machine Learning for Hackers and Bandit Algorithms for Website Optimization. Tweets reflect my views only. |
| ๐ŸŒŽ [Juan Miguel Lavista](twitter.com/BDataScientist) | Principal Data Scientist @ Microsoft Data Science Team |
| ๐ŸŒŽ [Julia Evans](twitter.com/b0rk) | Hacker - Pandas - Data Analyze |
| ๐ŸŒŽ [Kenneth Cukier](twitter.com/kncukier) | The Economist's Data Editor and co-author of Big Data (http://www.big-data-book.com/). |
| Kevin Davenport | Organizer of https://www.meetup.com/San-Diego-Data-Science-R-Users-Group/ |
| ๐ŸŒŽ [Kevin Markham](twitter.com/justmarkham) | Data science instructor, and founder of ๐ŸŒŽ [Data School](www.dataschool.io/) |
| ๐ŸŒŽ [Kim Rees](twitter.com/krees) | Interactive data visualization and tools. Data flaneur. |
| ๐ŸŒŽ [Kirk Borne](twitter.com/KirkDBorne) | DataScientist, PhD Astrophysicist, Top #BigData Influencer. |
| Linda Regber | Data storyteller, visualizations. |
| ๐ŸŒŽ [Luis Rei](twitter.com/lmrei) | PhD Student. Programming, Mobile, Web. Artificial Intelligence, Intelligent Robotics Machine Learning, Data Mining, Natural Language Processing, Data Science. |
| Mark Stevenson | Data Analytics Recruitment Specialist at Salt (@SaltJobs) Analytics - Insight - Big Data - Data science |
| ๐ŸŒŽ [Matt Harrison](twitter.com/__mharrison__) | Opinions of full-stack Python guy, author, instructor, currently playing Data Scientist. Occasional fathering, husbanding, organic gardening. |
| ๐ŸŒŽ [Matthew Russell](twitter.com/ptwobrussell) | Mining the Social Web. |
| ๐ŸŒŽ [Mert NuhoฤŸlu](twitter.com/mertnuhoglu) | Data Scientist at BizQualify, Developer |
| ๐ŸŒŽ [Monica Rogati](twitter.com/mrogati) | Data @ Jawbone. Turned data into stories & products at LinkedIn. Text mining, applied machine learning, recommender systems. Ex-gamer, ex-machine coder; namer. |
| ๐ŸŒŽ [Noah Iliinsky](twitter.com/noahi) | Visualization & interaction designer. Practical cyclist. Author of vis books: https://www.oreilly.com/pub/au/4419 |
| ๐ŸŒŽ [Paul Miller](twitter.com/PaulMiller) | Cloud Computing/ Big Data/ Open Data Analyst & Consultant. Writer, Speaker & Moderator. Gigaom Research Analyst. |
| ๐ŸŒŽ [Peter Skomoroch](twitter.com/peteskomoroch) | Creating intelligent systems to automate tasks & improve decisions. Entrepreneur, ex-Principal Data Scientist @LinkedIn. Machine Learning, ProductRei, Networks |
| ๐ŸŒŽ [Prash Chan](twitter.com/MDMGeek) | Solution Architect @ IBM, Master Data Management, Data Quality & Data Governance Blogger. Data Science, Hadoop, Big Data & Cloud. |
| ๐ŸŒŽ [Quora Data Science](twitter.com/q_datascience) | Quora's data science topic |
| ๐ŸŒŽ [R-Bloggers](twitter.com/Rbloggers) | Tweet blog posts from the R blogosphere, data science conferences, and (!) open jobs for data scientists. |
| ๐ŸŒŽ [Rand Hindi](twitter.com/randhindi) | |
| ๐ŸŒŽ [Randy Olson](twitter.com/randal_olson) | Computer scientist researching artificial intelligence. Data tinkerer. Community leader for @DataIsBeautiful. #OpenScience advocate. |
| ๐ŸŒŽ [Recep Erol](twitter.com/EROLRecep) | Data Science geek @ UALR |
| ๐ŸŒŽ [Ryan Orban](twitter.com/ryanorban) | Data scientist, genetic origamist, hardware aficionado |
| ๐ŸŒŽ [Sean J. Taylor](twitter.com/seanjtaylor) | Social Scientist. Hacker. Facebook Data Science Team. Keywords: Experiments, Causal Inference, Statistics, Machine Learning, Economics. |
| ๐ŸŒŽ [Silvia K. Spiva](twitter.com/silviakspiva) | #DataScience at Cisco |
| ๐ŸŒŽ [Harsh B. Gupta](twitter.com/harshbg) | Data Scientist at BBVA Compass |
| ๐ŸŒŽ [Spencer Nelson](twitter.com/spenczar_n) | Data nerd |
| ๐ŸŒŽ [Talha Oz](twitter.com/tozCSS) | Enjoys ABM, SNA, DM, ML, NLP, HI, Python, Java. Top percentile Kaggler/data scientist |
| ๐ŸŒŽ [Tasos Skarlatidis](twitter.com/anskarl) | Complex Event Processing, Big Data, Artificial Intelligence and Machine Learning. Passionate about programming and open-source. |
| ๐ŸŒŽ [Terry Timko](twitter.com/Terry_Timko) | InfoGov; Bigdata; Data as a Service; Data Science; Open, Social & Business Data Convergence |
| ๐ŸŒŽ [Tony Baer](twitter.com/TonyBaer) | IT analyst with Ovum covering Big Data & data management with some systems engineering thrown in. |
| ๐ŸŒŽ [Tony Ojeda](twitter.com/tonyojeda3) | Data Scientist , Author , Entrepreneur. Co-founder @DataCommunityDC. Founder @DistrictDataLab. #DataScience #BigData #DataDC |
| ๐ŸŒŽ [Vamshi Ambati](twitter.com/vambati) | Data Science @ PayPal. #NLP, #machinelearning; PhD, Carnegie Mellon alumni (Blog: https://allthingsds.wordpress.com ) |
| ๐ŸŒŽ [Wes McKinney](twitter.com/wesmckinn) | Pandas (Python Data Analysis library). |
| ๐ŸŒŽ [WileyEd](twitter.com/WileyEd) | Senior Manager - @Seagate Big Data Analytics @McKinsey Alum #BigData + #Analytics Evangelist #Hadoop, #Cloud, #Digital, & #R Enthusiast |
| ๐ŸŒŽ [WNYC Data News Team](twitter.com/datanews) | The data news crew at @WNYC. Practicing data-driven journalism, making it visual, and showing our work. |
| ๐ŸŒŽ [Alexey Grigorev](twitter.com/Al_Grigor) | Data science author |
| ๐ŸŒŽ [ฤฐlker Arslan](twitter.com/ilkerarslan_35) | Data science author. Shares mostly about Julia programming |
| ๐ŸŒŽ [INEVITABLE](twitter.com/WeAreInevitable) | AI & Data Science Start-up Company based in England, UK |

### Telegram Channels
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Open Data Science](t.me/opendatascience) โ€“ First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former.
- ๐ŸŒŽ [Loss function porn](t.me/loss_function_porn) โ€” Beautiful posts on DS/ML theme with video or graphic visualization.
- ๐ŸŒŽ [Machinelearning](t.me/ai_machinelearning_big_data) โ€“ Daily ML news.

### Slack Communities
[top](#awesome-data-science)

- ๐ŸŒŽ [DataTalks.Club](datatalks.club)

### GitHub Groups
- [Berkeley Institute for Data Science](https://github.com/BIDS)

### Data Science Competitions

Some data mining competition platforms

- ๐ŸŒŽ [Kaggle](www.kaggle.com/)
- ๐ŸŒŽ [DrivenData](www.drivendata.org/)
- ๐ŸŒŽ [Analytics Vidhya](datahack.analyticsvidhya.com/)
- ๐ŸŒŽ [InnoCentive](www.innocentive.com/)
- ๐ŸŒŽ [Microprediction](www.microprediction.com/python-1)

## Fun

- [Infographic](#infographics)
- [Datasets](#datasets)
- [Comics](#comics)

### Infographics
**[`^ back to top ^`](#awesome-data-science)**

| Preview | Description |
| ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| ๐ŸŒŽ [](i.imgur.com/0OoLaa5.png) | ๐ŸŒŽ [Key differences of a data scientist vs. data engineer](searchbusinessanalytics.techtarget.com/feature/Key-differences-of-a-data-scientist-vs-data-engineer) |
| ๐ŸŒŽ [](s3.amazonaws.com/assets.datacamp.com/blog_assets/DataScienceEightSteps_Full.png) | A visual guide to Becoming a Data Scientist in 8 Steps by ๐ŸŒŽ [DataCamp](www.datacamp.com) ๐ŸŒŽ [(img)](s3.amazonaws.com/assets.datacamp.com/blog_assets/DataScienceEightSteps_Full.png) |
| ๐ŸŒŽ [](i.imgur.com/FxsL3b8.png) | Mindmap on required skills ๐ŸŒŽ [img](i.imgur.com/FxsL3b8.png)) |
| ๐ŸŒŽ [](nirvacana.com/thoughts/wp-content/uploads/2013/07/RoadToDataScientist1.png) | Swami Chandrasekaran made a [Curriculum via Metro map](http://nirvacana.com/thoughts/2013/07/08/becoming-a-data-scientist/). |
| ๐ŸŒŽ [](i.imgur.com/4ZBBvb0.png) | by ๐ŸŒŽ [@kzawadz](twitter.com/kzawadz) via ๐ŸŒŽ [twitter](twitter.com/MktngDistillery/status/538671811991715840) |
| ๐ŸŒŽ [](i.imgur.com/xLY3XZn.jpg) | By ๐ŸŒŽ [Data Science Central](www.datasciencecentral.com/) |
| ๐ŸŒŽ [](i.imgur.com/0TydZ4M.png) | Data Science Wars: R vs Python |
| ๐ŸŒŽ [](i.imgur.com/HnRwlce.png) | How to select statistical or machine learning techniques |
| ๐ŸŒŽ [](scikit-learn.org/1.5/_downloads/b82bf6cd7438a351f19fac60fbc0d927/ml_map.svg) | ๐ŸŒŽ [Choosing the Right Estimator](scikit-learn.org/1.5/machine_learning_map.html#choosing-the-right-estimator) |
| ๐ŸŒŽ [](i.imgur.com/uEqMwZa.png) | The Data Science Industry: Who Does What |
| ๐ŸŒŽ [](i.imgur.com/RsHqY84.png) | Data Science ~~Venn~~ Euler Diagram |
| ๐ŸŒŽ [](www.springboard.com/blog/wp-content/uploads/2016/03/20160324_springboard_vennDiagram.png) | Different Data Science Skills and Roles from ๐ŸŒŽ [Springboard](www.springboard.com) |
| ๐ŸŒŽ [Data Fallacies To Avoid](data-literacy.geckoboard.com/poster/) | A simple and friendly way of teaching your non-data scientist/non-statistician colleagues ๐ŸŒŽ [how to avoid mistakes with data](data-literacy.geckoboard.com/poster/). From Geckoboard's ๐ŸŒŽ [Data Literacy Lessons](data-literacy.geckoboard.com/). |

### Datasets
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Academic Torrents](academictorrents.com/)
- ๐ŸŒŽ [ADS-B Exchange](www.adsbexchange.com/data-samples/) - Specific datasets for aircraft and Automatic Dependent Surveillance-Broadcast (ADS-B) sources.
- ๐ŸŒŽ [hadoopilluminated.com](hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html)
- ๐ŸŒŽ [data.gov](catalog.data.gov/dataset) - The home of the U.S. Government's open data
- ๐ŸŒŽ [United States Census Bureau](www.census.gov/)
- ๐ŸŒŽ [usgovxml.com](usgovxml.com/)
- ๐ŸŒŽ [enigma.com](enigma.com/) - Navigate the world of public data - Quickly search and analyze billions of public records published by governments, companies and organizations.
- ๐ŸŒŽ [datahub.io](datahub.io/)
- ๐ŸŒŽ [aws.amazon.com/datasets](aws.amazon.com/datasets/)
- ๐ŸŒŽ [datacite.org](datacite.org/)
- ๐ŸŒŽ [The official portal for European data](data.europa.eu/en)
- ๐ŸŒŽ [NASDAQ:DATA](data.nasdaq.com/) - Nasdaq Data Link A premier source for financial, economic and alternative datasets.
- ๐ŸŒŽ [figshare.com](figshare.com/)
- ๐ŸŒŽ [GeoLite Legacy Downloadable Databases](dev.maxmind.com/geoip)
- ๐ŸŒŽ [Quora's Big Datasets Answer](www.quora.com/Where-can-I-find-large-datasets-open-to-the-public)
- ๐ŸŒŽ [Public Big Data Sets](hadoopilluminated.com/hadoop_illuminated/Public_Bigdata_Sets.html)
- ๐ŸŒŽ [Kaggle Datasets](www.kaggle.com/datasets)
- ๐ŸŒŽ [A Deep Catalog of Human Genetic Variation](www.internationalgenome.org/data)
- ๐ŸŒŽ [A community-curated database of well-known people, places, and things](developers.google.com/freebase/)
- ๐ŸŒŽ [Google Public Data](www.google.com/publicdata/directory)
- ๐ŸŒŽ [World Bank Data](data.worldbank.org/)
- ๐ŸŒŽ [NYC Taxi data](chriswhong.github.io/nyctaxi/)
- ๐ŸŒŽ [Open Data Philly](www.opendataphilly.org/) Connecting people with data for Philadelphia
- ๐ŸŒŽ [grouplens.org](grouplens.org/datasets/) Sample movie (with ratings), book and wiki datasets
- ๐ŸŒŽ [UC Irvine Machine Learning Repository](archive.ics.uci.edu/ml/) - contains data sets good for machine learning
- ๐ŸŒŽ [research-quality data sets](web.archive.org/web/20150320022752/https://bitly.com/bundles/hmason/1) by ๐ŸŒŽ [Hilary Mason](web.archive.org/web/20150501033715/https://bitly.com/u/hmason/bundles)
- ๐ŸŒŽ [National Centers for Environmental Information](www.ncei.noaa.gov/)
- ๐ŸŒŽ [ClimateData.us](www.climatedata.us/) (related: ๐ŸŒŽ [U.S. Climate Resilience Toolkit](toolkit.climate.gov/))
- ๐ŸŒŽ [r/datasets](www.reddit.com/r/datasets/)
- ๐ŸŒŽ [MapLight](www.maplight.org/data-series) - provides a variety of data free of charge for uses that are freely available to the general public. Click on a data set below to learn more
- ๐ŸŒŽ [GHDx](ghdx.healthdata.org/) - Institute for Health Metrics and Evaluation - a catalog of health and demographic datasets from around the world and including IHME results
- ๐ŸŒŽ [St. Louis Federal Reserve Economic Data - FRED](fred.stlouisfed.org/)
- ๐ŸŒŽ [New Zealand Institute of Economic Research โ€“ Data1850](data1850.nz/)
- ย ย ย 507โญ ย ย ย 190๐Ÿด [Open Data Sources](https://github.com/datasciencemasters/data))
- ๐ŸŒŽ [UNICEF Data](data.unicef.org/)
- ๐ŸŒŽ [undata](data.un.org/)
- ๐ŸŒŽ [NASA SocioEconomic Data and Applications Center - SEDAC](earthdata.nasa.gov/centers/sedac-daac)
- ๐ŸŒŽ [The GDELT Project](www.gdeltproject.org/)
- ๐ŸŒŽ [Sweden, Statistics](www.scb.se/en/)
- ๐ŸŒŽ [StackExchange Data Explorer](data.stackexchange.com) - an open source tool for running arbitrary queries against public data from the Stack Exchange network.
- ๐ŸŒŽ [San Fransisco Government Open Data](datasf.org/opendata/)
- ๐ŸŒŽ [IBM Asset Dataset](developer.ibm.com/exchanges/data/)
- [Open data Index](http://index.okfn.org/)
- ย ย ย 329โญ ย ย ย ย 83๐Ÿด [Public Git Archive](https://github.com/src-d/datasets/tree/master/PublicGitArchive))
- ๐ŸŒŽ [GHTorrent](ghtorrent.org/)
- ๐ŸŒŽ [Microsoft Research Open Data](msropendata.com/)
- ๐ŸŒŽ [Open Government Data Platform India](data.gov.in/)
- ๐ŸŒŽ [Google Dataset Search (beta)](datasetsearch.research.google.com/)
- ย ย ย ย ย 3โญ ย ย ย ย ย 0๐Ÿด [NAYN.CO Turkish News with categories](https://github.com/naynco/nayn.data))
- ย ย 1167โญ ย ย ย 603๐Ÿด [Covid-19](https://github.com/datasets/covid-19))
- ย ย ย 118โญ ย ย ย ย 67๐Ÿด [Covid-19 Google](https://github.com/google-research/open-covid-19-data))
- ๐ŸŒŽ [Enron Email Dataset](www.cs.cmu.edu/~./enron/)
- ย ย ย 106โญ ย ย ย ย 34๐Ÿด [5000 Images of Clothes](https://github.com/alexeygrigorev/clothing-dataset))
- ๐ŸŒŽ [IBB Open Portal](data.ibb.gov.tr/en/)
- ๐ŸŒŽ [The Humanitarian Data Exchange](data.humdata.org/)
- ๐ŸŒŽ [250k+ Job Postings](aws.amazon.com/marketplace/pp/prodview-p2554p3tczbes) - An expanding dataset of historical job postings from Luxembourg from 2020 to today. Free with 250k+ job postings hosted on AWS Data Exchange.

### Comics
**[`^ back to top ^`](#awesome-data-science)**

- ๐ŸŒŽ [Comic compilation](medium.com/@nikhil_garg/a-compilation-of-comics-explaining-statistics-data-science-and-machine-learning-eeefbae91277)
- ๐ŸŒŽ [Cartoons](www.kdnuggets.com/websites/cartoons.html)
- ๐ŸŒŽ [Data Science Cartoons](www.cartoonstock.com/directory/d/data_science.asp)
- ๐ŸŒŽ [Data Science: The XKCD Edition](davidlindelof.com/data-science-the-xkcd-edition/)

## Other Awesome Lists

- Other amazingly awesome lists can be found in the ย 32506โญ ย ย 3572๐Ÿด [awesome-awesomeness](https://github.com/bayandin/awesome-awesomeness))
- ย 67565โญ ย 14848๐Ÿด [Awesome Machine Learning](https://github.com/josephmisiti/awesome-machine-learning))
- ย 10298โญ ย ย ย 719๐Ÿด [lists](https://github.com/jnv/lists))
- ย ย 3937โญ ย ย ย 430๐Ÿด [awesome-dataviz](https://github.com/javierluraschi/awesome-dataviz))
- 240342โญ ย 25542๐Ÿด [awesome-python](https://github.com/vinta/awesome-python))
- ย 28100โญ ย ย 7958๐Ÿด [Data Science IPython Notebooks.](https://github.com/donnemartin/data-science-ipython-notebooks))
- ย ย 6137โญ ย ย 1503๐Ÿด [awesome-r](https://github.com/qinwf/awesome-R))
- ย 62810โญ ย 10098๐Ÿด [awesome-datasets](https://github.com/awesomedata/awesome-public-datasets))
- ย 16085โญ ย ย 3845๐Ÿด [awesome-Machine Learning & Deep Learning Tutorials](https://github.com/ujjwalkarn/Machine-Learning-Tutorials/blob/master/README.md))
- ย ย ย 680โญ ย ย ย ย 87๐Ÿด [Awesome Data Science Ideas](https://github.com/JosPolfliet/awesome-ai-usecases))
- ย 28428โญ ย ย 6223๐Ÿด [Machine Learning for Software Engineers](https://github.com/ZuzooVn/machine-learning-for-software-engineers))
- ๐ŸŒŽ [Community Curated Data Science Resources](hackr.io/tutorials/learn-data-science)
- ย ย 6353โญ ย ย ย 840๐Ÿด [Awesome Machine Learning On Source Code](https://github.com/src-d/awesome-machine-learning-on-source-code))
- ย ย 2368โญ ย ย ย 364๐Ÿด [Awesome Community Detection](https://github.com/benedekrozemberczki/awesome-community-detection))
- ย ย 4790โญ ย ย ย 739๐Ÿด [Awesome Graph Classification](https://github.com/benedekrozemberczki/awesome-graph-classification))
- ย ย 2398โญ ย ย ย 341๐Ÿด [Awesome Decision Tree Papers](https://github.com/benedekrozemberczki/awesome-decision-tree-papers))
- ย ย 1692โญ ย ย ย 311๐Ÿด [Awesome Fraud Detection Papers](https://github.com/benedekrozemberczki/awesome-fraud-detection-papers))
- ย ย 1021โญ ย ย ย 158๐Ÿด [Awesome Gradient Boosting Papers](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers))
- ย ย ย 523โญ ย ย ย ย 94๐Ÿด [Awesome Computer Vision Models](https://github.com/nerox8664/awesome-computer-vision-models))
- ย ย ย 673โญ ย ย ย ย 74๐Ÿด [Awesome Monte Carlo Tree Search](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers))
- ๐ŸŒŽ [Glossary of common statistics and ML terms](www.analyticsvidhya.com/glossary-of-common-statistics-and-machine-learning-terms/)
- ย ย 3796โญ ย ย ย 568๐Ÿด [100 NLP Papers](https://github.com/mhagiwara/100-nlp-papers))
- ย ย ย 834โญ ย ย ย ย 55๐Ÿด [Awesome Game Datasets](https://github.com/leomaurodesenv/game-datasets#readme))
- ย ย 9263โญ ย ย 2034๐Ÿด [Data Science Interviews Questions](https://github.com/alexeygrigorev/data-science-interviews))
- ย ย 1960โญ ย ย ย 130๐Ÿด [Awesome Explainable Graph Reasoning](https://github.com/AstraZeneca/awesome-explainable-graph-reasoning))
- ๐ŸŒŽ [Top Data Science Interview Questions](www.interviewbit.com/data-science-interview-questions/)
- ย ย ย ย 94โญ ย ย ย ย 14๐Ÿด [Awesome Drug Synergy, Interaction and Polypharmacy Prediction](https://github.com/AstraZeneca/awesome-drug-pair-scoring))
- ๐ŸŒŽ [Deep Learning Interview Questions](www.adaface.com/blog/deep-learning-interview-questions/)
- ๐ŸŒŽ [Top Future Trends in Data Science in 2023](medium.com/the-modern-scientist/top-future-trends-in-data-science-in-2023-3e616c8998b8)
- ๐ŸŒŽ [How Generative AI Is Changing Creative Work](hbr.org/2022/11/how-generative-ai-is-changing-creative-work)
- ๐ŸŒŽ [What is generative AI?](www.techtarget.com/searchenterpriseai/definition/generative-AI)
- ๐ŸŒŽ [Top 100+ Machine Learning Interview Questions (Beginner to Advanced)](www.appliedaicourse.com/blog/machine-learning-interview-questions/)
- ย ย 1937โญ ย ย ย 489๐Ÿด [Data Science Projects](https://github.com/veb-101/Data-Science-Projects))
- ๐ŸŒŽ [Is Data Science a Good Career?](www.scaler.com/blog/is-data-science-a-good-career/)
- ๐ŸŒŽ [The Future of Data Science: Predictions and Trends](www.appliedaicourse.com/blog/future-of-data-science/)
- ๐ŸŒŽ [Data Science and Machine Learning: Whatโ€™s The Difference?](www.appliedaicourse.com/blog/data-science-and-machine-learning-whats-the-difference/)
- ๐ŸŒŽ [AI in Data Science: Uses, Roles, and Tools](www.scaler.com/blog/ai-in-data-science/)
- ๐ŸŒŽ [Top 13 Data Science Programming Languages](www.appliedaicourse.com/blog/data-science-programming-languages/)
- ๐ŸŒŽ [40+ Data Analytics Projects Ideas](www.appliedaicourse.com/blog/data-analytics-projects-ideas/)
- ๐ŸŒŽ [Best Data Science Courses with Certificates](www.appliedaicourse.com/blog/best-data-science-courses/)

### Hobby
- ย ย 1133โญ ย ย ย ย 84๐Ÿด [Awesome Music Production](https://github.com/ad-si/awesome-music-production))

window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());

gtag('config', 'G-YL0RV0E5XZ');

## Source
ย 26112โญ ย ย 6040๐Ÿด [academic/awesome-datascience](https://github.com/academic/awesome-datascience))