Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/cuge1995/awesome-3D-point-cloud-attacks
List of state of the art papers, code, and other resources
https://github.com/cuge1995/awesome-3D-point-cloud-attacks
List: awesome-3D-point-cloud-attacks
adversarial-attacks adversarial-example adversarial-point-clouds attacks deep-learning defense point-cloud
Last synced: 16 days ago
JSON representation
List of state of the art papers, code, and other resources
- Host: GitHub
- URL: https://github.com/cuge1995/awesome-3D-point-cloud-attacks
- Owner: cuge1995
- Created: 2020-10-13T11:20:27.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2022-12-03T07:05:23.000Z (about 2 years ago)
- Last Synced: 2024-05-20T13:03:21.287Z (7 months ago)
- Topics: adversarial-attacks, adversarial-example, adversarial-point-clouds, attacks, deep-learning, defense, point-cloud
- Homepage:
- Size: 38.1 KB
- Stars: 89
- Watchers: 3
- Forks: 13
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-3D-point-cloud-attacks - List of state of the art papers, code, and other resources. (Other Lists / Monkey C Lists)
README
# awesome-3D-point-cloud-attacks
List of state of the art papers, code, and other resources focus on 3D point cloud attacks and defense## Attacks
- [Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers.](https://arxiv.org/pdf/1901.03006.pdf)
- [[Code](https://github.com/Daniel-Liu-c0deb0t/3D-Neural-Network-Adversarial-Attacks)]- [Adversarial point perturbations on 3D objects.](https://arxiv.org/pdf/1908.06062.pdf) `ECCV 2020`
- [[Code](https://github.com/Daniel-Liu-c0deb0t/Adversarial-point-perturbations-on-3D-objects)]- [PointCloud Saliency Maps.](https://openaccess.thecvf.com/content_ICCV_2019/papers/Zheng_PointCloud_Saliency_Maps_ICCV_2019_paper.pdf) `ICCV 2019` `drop points attack`
- [[Code](https://github.com/tianzheng4/Learning-PointCloud-Saliency-Maps)]- [LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack of Point Cloud Based Deep Networks.](https://openaccess.thecvf.com/content_CVPR_2020/html/Zhou_LG-GAN_Label_Guided_Adversarial_Network_for_Flexible_Targeted_Attack_of_CVPR_2020_paper.html) `CVPR 2020`
- [[Code](https://github.com/RyanHangZhou/LG-GAN)]- [Robust Adversarial Objects against Deep Learning Models.](https://www.aaai.org/ojs/index.php/AAAI/article/view/5443/5299) `AAAI 2020` `knn attack`
- [[Code](https://github.com/jinyier/ai_pointnet_attack)]- [Self-Robust 3D Point Recognition via Gather-Vector Guidance.](https://openaccess.thecvf.com/content_CVPR_2020/papers/Dong_Self-Robust_3D_Point_Recognition_via_Gather-Vector_Guidance_CVPR_2020_paper.pdf) `CVPR 2020` `FGM IFGM MIFGM PGD`
- [On Isometry Robustness of Deep 3D Point Cloud Models Under Adversarial Attacks.](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhao_On_Isometry_Robustness_of_Deep_3D_Point_Cloud_Models_Under_CVPR_2020_paper.pdf) `CVPR 2020`
- [[Code](https://github.com/skywalker6174/3d-isometry-robust)]- [Adversarial Autoencoders for Generating 3D Point Clouds.](https://arxiv.org/abs/1811.07605.pdf)
- [Generating 3D Adversarial Point Clouds.](https://arxiv.org/abs/1809.07016.pdf) `CVPR 2019` `CW attack`
- [[Code](https://github.com/xiangchong1/3d-adv-pc)]- [PU-GAN: a Point Cloud Upsampling Adversarial Network.](https://arxiv.org/pdf/1907.10844.pdf)
- [[Code](https://github.com/liruihui/PU-GAN)]- [3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions.](https://arxiv.org/pdf/1905.06292.pdf)
- [[Code](https://github.com/seowok/TreeGAN)]- [Adversarial Autoencoders for Compact Representations of 3D Point Clouds.](https://arxiv.org/abs/1811.07605v3)
- [[Code](https://github.com/MaciejZamorski/3d-AAE)]- [Physically Realizable Adversarial Examples for LiDAR Object Detection.](https://arxiv.org/pdf/2004.00543.pdf) `CVPR 2020`
- [AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds.](https://arxiv.org/abs/1912.00461) `ECCV 2020`
- [[Code](https://github.com/ajhamdi/AdvPC)]- [ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds.](https://arxiv.org/abs/2005.11626)
- [[Code]()]- [Robustness of 3D Deep Learning in an Adversarial Setting.](https://arxiv.org/abs/1904.00923) `CVPR 2019`
- [[Code](https://github.com/matthewwicker/IterativeSalienceOcclusion)]- [Nudge Attacks on Point-Cloud DNNs.](https://arxiv.org/pdf/2011.11637)
- [Generating Adversarial Surfaces via Band‐Limited Perturbations](https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14083)
- [Geometry-aware generation of adversarial point clouds.](https://arxiv.org/pdf/1912.11171) `TRAMI`
- [[Code](https://github.com/Yuxin-Wen/GeoA3)]- [Efficient Joint Gradient Based Attack Against SOR Defense for 3D Point Cloud Classification.](https://dl.acm.org/doi/abs/10.1145/3394171.3413875) `ACM MM`
- [Adversarial Objects Against LiDAR Based Autonomous Driving Systems.](https://arxiv.org/pdf/1907.05418.pdf)
- [Minimal Adversarial Examples for Deep Learning on 3D Point Clouds.](https://arxiv.org/pdf/2008.12066.pdf)
- [Towards Robust LiDAR-based Perception in Autonomous Driving: General Black-box Adversarial Sensor Attack and Countermeasures.](https://www.usenix.org/system/files/sec20-sun.pdf)
- [Geometric Adversarial Attacks and Defenses on 3D Point Clouds.](https://arxiv.org/pdf/2012.05657) `autoencoder attack`
- [[Code](https://github.com/itailang/geometric_adv)]- [Towards Universal Physical Attacks On Cascaded Camera-Lidar 3D Object Detection Models.](https://arxiv.org/pdf/2101.10747)
- [Object Removal Attacks on LiDAR-based 3D Object Detectors.](https://arxiv.org/pdf/2102.03722)
- [On the Adversarial Robustness of 3D Point Cloud Classification.](https://arxiv.org/pdf/2011.11922)
- [Exploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving.](https://arxiv.org/pdf/2101.06784)
- [Fooling LiDAR Perception via Adversarial Trajectory Perturbation.](https://arxiv.org/pdf/2103.15326.pdf)
- [[Code](https://ai4ce.github.io/FLAT/)]- [PointBA: Towards Backdoor Attacks in 3D Point Cloud.](https://arxiv.org/pdf/2103.16074.pdf)
- [3D Adversarial Attacks Beyond Point Cloud.](https://arxiv.org/abs/2104.12146.pdf) `mesh attack`
- [[Code](https://github.com/cuge1995/Mesh-Attack)]- [Explainability-Aware One Point Attack for Point Cloud Neural Networks.](https://arxiv.org/abs/2110.04158) `one point attack`
- [[Code](https://github.com/Explain3D/Exp-One-Point-Atk-PC)]- [Adversarial Attack by Limited Point Cloud Surface Modifications.](https://arxiv.org/abs/2110.03745)
- [PointBA: Towards Backdoor Attacks in 3D Point Cloud.](https://openaccess.thecvf.com/content/ICCV2021/papers/Li_PointBA_Towards_Backdoor_Attacks_in_3D_Point_Cloud_ICCV_2021_paper.pdf) `ICCV 2021`
- [A Backdoor Attack Against 3D Point Cloud Classifiers.](https://openaccess.thecvf.com/content/ICCV2021/papers/Xiang_A_Backdoor_Attack_Against_3D_Point_Cloud_Classifiers_ICCV_2021_paper.pdf) `ICCV 2021`
- [Generating Unrestricted 3D Adversarial Point Clouds.](https://arxiv.org/pdf/2111.08973.pdf)
- [Local Aggressive Adversarial Attack of 3D point Cloud.](https://arxiv.org/pdf/2105.09090.pdf) `ACML oral`
- [[Code](https://github.com/Chenfeng1271/L3A)]- [Imperceptible Transfer Attack and Defense on 3D Point Cloud Classification.](https://arxiv.org/pdf/2111.10990.pdf)
- [Attacking Point Cloud Segmentation with Color-only Perturbation](https://arxiv.org/pdf/2112.05871.pdf) `segmentation`
- [Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network](https://arxiv.org/pdf/2112.09428.pdf) `segmentation`
- [Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks.](https://arxiv.org/abs/2106.09249) `IEEE S&P`
- [[Code](https://github.com/ASGuard-UCI/MSF-ADV)]- [Boosting 3D Adversarial Attacks with Attacking On Frequency](https://arxiv.org/pdf/2201.10937) `AOF attack`
- [[Code](https://github.com/code-roamer/AOF)]- [Shape-invariant 3D Adversarial Point Clouds.](https://arxiv.org/pdf/2203.04041.pdf) `CVPR 2022`
- [[Code](https://github.com/shikiw/SI-Adv)]- [Shape Prior Guided Attack: Sparser Perturbations on 3D Point Clouds]() `AAAI 2022`
- [Improving transferability of 3D adversarial attacks with scale and shear transformations]() `SS attack`
- [Isometric 3D Adversarial Examples in the Physical World]() `NeurIPS 2022`
- [Rethinking Perturbation Directions for Imperceptible Adversarial Attacks on Point Clouds]() `IEEE Internet of Things Journal`
## Defenses
- [The art of defense: letting networks fool the attacker.](https://arxiv.org/abs/2104.02963)
- [[Code](https://github.com/cuge1995/IT-Defense)]- [DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense.](https://arxiv.org/abs/1812.11017)
- [IF-Defense: 3D Adversarial Point Cloud Defense via Implicit Function based Restoration.](https://arxiv.org/pdf/2010.05272)
- [[Code](https://github.com/Wuziyi616/IF-Defense)]- [PointCutMix: Regularization Strategy for Point Cloud Classification.](https://arxiv.org/abs/2101.01461.pdf)
- [[Code](https://github.com/cuge1995/PointCutMix)]- [PointGuard: Provably Robust 3D Point Cloud Classification.](https://arxiv.org/pdf/2103.03046.pdf) `CVPR 2021`
- [Defense-pointnet: Protecting pointnet against adversarial attacks.](https://arxiv.org/pdf/2002.11881)
- [LPF-Defense: 3D Adversarial Defense based on Frequency Analysis.](https://arxiv.org/pdf/2202.11287.pdf)
- [[Code](https://github.com/kimianoorbakhsh/LPF-Defence)]- [Robust Structured Declarative Classifiers for 3D Point Clouds: Defending Adversarial Attacks with Implicit Gradients.](https://arxiv.org/pdf/2203.15245.pdf) `CVPR 2022`
- [Improving Adversarial Robustness of 3D Point Cloud Classification Models](https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136640663.pdf) `ECCV 2022`
- [[Code](https://github.com/GuanlinLee/CCNAMS)]- [Ada3Diff: Defending against 3D Adversarial Point Clouds via Adaptive Diffusion](https://arxiv.org/pdf/2211.16247.pdf)