Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/danieljf24/awesome-video-text-retrieval
A curated list of deep learning resources for video-text retrieval.
https://github.com/danieljf24/awesome-video-text-retrieval
List: awesome-video-text-retrieval
Last synced: 3 months ago
JSON representation
A curated list of deep learning resources for video-text retrieval.
- Host: GitHub
- URL: https://github.com/danieljf24/awesome-video-text-retrieval
- Owner: danieljf24
- Created: 2020-02-22T05:17:33.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2023-10-20T12:55:58.000Z (over 1 year ago)
- Last Synced: 2024-05-23T08:35:29.856Z (8 months ago)
- Size: 101 KB
- Stars: 548
- Watchers: 20
- Forks: 65
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-machine-learning-resources - **[List - video-text-retrieval?style=social) (Table of Contents)
- awesome-computer-vision - Awesome Video Text Retrieval
- ultimate-awesome - awesome-video-text-retrieval - A curated list of deep learning resources for video-text retrieval. (Other Lists / Monkey C Lists)
- awesome-genaitech - Awesome Video-Text Retrieval by Deep Learning - video-text-retrieval?style=social)) (video / Video-to-Text)
- awesome-genaitech - Awesome Video-Text Retrieval by Deep Learning - video-text-retrieval?style=social)) (video / Video-to-Text)
README
# Awesome Video-Text Retrieval by Deep Learning [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
A curated list of deep learning resources for video-text retrieval.
## Contributing
Please feel free to [pull requests](https://github.com/danieljf24/awesome-video-text-retrieval/pulls) to add papers.Markdown format:
```markdown
- `[Author Journal/Booktitle Year]` Title. Journal/Booktitle, Year. [[paper]](link) [[code]](link) [[homepage]](link)
```## Table of Contents
- [Implementations](#implementations)
- [PyTorch](#pytorch)
- [TensorFlow](#tensorflow)
- [Others](#others)
- [Papers](#papers)
- [2023](#2023) - [2022](#2022) - [2021](#2021) - [2020](#2020) - [2019](#2019) - [2018](#2018) - [Before](#before)
- [Ad-hoc Video Search](#ad-hoc-video-search)
- [Other Related](#other-related)
- [Datasets](#datasets)## Implementations
#### PyTorch
- [hybrid_space](https://github.com/danieljf24/hybrid_space)
- [dual_encoding](https://github.com/danieljf24/dual_encoding)
- [w2vvpp](https://github.com/li-xirong/w2vvpp)
- [Mixture-of-Embedding-Experts](https://github.com/antoine77340/Mixture-of-Embedding-Experts)
- [howto100m](https://github.com/antoine77340/howto100m)
- [collaborative](https://github.com/albanie/collaborative-experts)
- [hgr](https://github.com/cshizhe/hgr_v2t)
- [coot](https://github.com/gingsi/coot-videotext)
- [mmt](https://github.com/gabeur/mmt)
- [ClipBERT](https://github.com/jayleicn/ClipBERT)#### TensorFlow
- [jsfusion](https://github.com/yj-yu/lsmdc)#### Others
- [w2vv](https://github.com/danieljf24/w2vv)(Keras)#### Useful Toolkit
- [Extracting CNN features from video frames by MXNet](https://github.com/xuchaoxi/video-cnn-feat)## Papers
### 2023
- `[Pei et al. CVPR23]` CLIPPING: Distilling CLIP-Based Models with a Student Base for Video-Language Retrieval. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Pei_CLIPPING_Distilling_CLIP-Based_Models_With_a_Student_Base_for_Video-Language_CVPR_2023_paper.pdf)
- `[Li et al. CVPR23]` SViTT: Temporal Learning of Sparse Video-Text Transformers. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SViTT_Temporal_Learning_of_Sparse_Video-Text_Transformers_CVPR_2023_paper.pdf) [[code]](http://svcl.ucsd.edu/projects/svitt/)
- `[Wu et al. CVPR23]` Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Wu_Cap4Video_What_Can_Auxiliary_Captions_Do_for_Text-Video_Retrieval_CVPR_2023_paper.pdf) [[code]](https://github.com/whwu95/Cap4Video)
- `[Ko et al. CVPR23]` MELTR: Meta Loss Transformer for Learning to Fine-tune Video Foundation Models. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Ko_MELTR_Meta_Loss_Transformer_for_Learning_To_Fine-Tune_Video_Foundation_CVPR_2023_paper.pdf) [[code]](https://github.com/mlvlab/)
- `[Wang et al. CVPR23]` All in One: Exploring Unified Video-Language Pre-Training. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/html/Wang_All_in_One_Exploring_Unified_Video-Language_Pre-Training_CVPR_2023_paper.html) [[code]](https://github.com/showlab/all-in-one)
- `[Girdhar et al. CVPR23]` IMAGEBIND: One Embedding Space To Bind Them All. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Girdhar_ImageBind_One_Embedding_Space_To_Bind_Them_All_CVPR_2023_paper.pdf) [[code]](https://facebookresearch.github.io/ImageBind)
- `[Huang et al. CVPR23]` VoP: Text-Video Co-Operative Prompt Tuning for Cross-Modal Retrieval. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/html/Huang_VoP_Text-Video_Co-Operative_Prompt_Tuning_for_Cross-Modal_Retrieval_CVPR_2023_paper.html) [[code]](https://github.com/bighuang624/VoP)
- `[Li et al. CVPR23]` LAVENDER: Unifying Video-Language Understanding As Masked Language Modeling. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Li_LAVENDER_Unifying_Video-Language_Understanding_As_Masked_Language_Modeling_CVPR_2023_paper.pdf) [[code]](https://github.com/microsoft/LAVENDER)
- `[Huang et al. CVPR23]` Clover: Towards a Unified Video-Language Alignment and Fusion Model. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Huang_Clover_Towards_a_Unified_Video-Language_Alignment_and_Fusion_Model_CVPR_2023_paper.pdf) [[code]](https://github.com/LeeYN-43/Clover)
- `[Ji et al. CVPR23]` Seeing What You Miss: Vision-Language Pre-Training With Semantic Completion Learning. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Ji_Seeing_What_You_Miss_Vision-Language_Pre-Training_With_Semantic_Completion_Learning_CVPR_2023_paper.pdf)
- `[Gan et al. CVPR23]` CNVid-3.5M: Build, Filter, and Pre-train the Large-scale Public Chinese Video-text Dataset. CVPR, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Gan_CNVid-3.5M_Build_Filter_and_Pre-Train_the_Large-Scale_Public_Chinese_Video-Text_CVPR_2023_paper.pdf) [[code]](https://github.com/CNVid/CNVid-3.5M)
- `[Zhao et al. CVPRW23]` Cali-NCE: Boosting Cross-Modal Video Representation Learning With Calibrated Alignment. CVPRWorkshop, 2023. [[paper]](https://openaccess.thecvf.com/content/CVPR2023W/WFM/papers/Zhao_Cali-NCE_Boosting_Cross-Modal_Video_Representation_Learning_With_Calibrated_Alignment_CVPRW_2023_paper.pdf)
- `[Ma et al. TCSVT23]` Using Multimodal Contrastive Knowledge Distillation for Video-Text Retrieval. TCSVT, 2023. [[paper]](https://ieeexplore.ieee.org/abstract/document/10068529)
### 2022
- `[Dong et al. ACMMM22]` Partially Relevant Video Retrieval. ACM Multimedia, 2022. [[homepage]](http://danieljf24.github.io/prvr/) [[paper]](https://arxiv.org/abs/2208.12510) [[code]](https://github.com/HuiGuanLab/ms-sl) `A new text-to-video retrieval subtask`
- `[Wang et al. ACMMM22]` Cross-Lingual Cross-Modal Retrieval with Noise-Robust Learning. ACM Multimedia, 2022. [[paper]](https://arxiv.org/abs/2208.12526) [[code]](https://github.com/HuiGuanLab/nrccr)
- `[Wang et al. ACMMM22]` Learn to Understand Negation in Video Retrieval. ACM Multimedia, 2022. [[paper]](https://arxiv.org/abs/2205.00132) [[code]](https://github.com/ruc-aimc-lab/nt2vr)
- `[Falcon et al. ACMMM22]` A Feature-space Multimodal Data Augmentation Technique for Text-video Retrieval. ACM Multimedia, 2022. [[paper]](https://arxiv.org/abs/2208.02080) [[code]](https://github.com/aranciokov/FSMMDA_VideoRetrieval)
- `[Ma et al. ACMMM22]` X-CLIP: End-to-End Multi-grained Contrastive Learning for Video-Text Retrieval. ACM Multimedia, 2022. [[paper]](https://arxiv.org/abs/2207.07285)
- `[Hu et al. ECCV22]` Lightweight Attentional Feature Fusion: A New Baseline for Text-to-Video Retrieval. ECCV, 2022. [[paper]](https://arxiv.org/abs/2112.01832) [[code]](https://github.com/ruc-aimc-lab/laff)
- `[Liu et al. ECCV22]` TS2-Net: Token Shift and Selection Transformer for Text-Video Retrieval. ECCV, 2022. [[paper]]( https://arxiv.org/abs/2207.07852) [[code]](https://github.com/yuqi657/ts2_net)
- `[Dong et al. TCSVT22]` Reading-strategy Inspired Visual Representation Learning for Text-to-Video Retrieval. TCSVT, 2022. [[paper]]( https://arxiv.org/abs/2201.09168) [[code]](https://github.com/LiJiaBei-7/rivrl)
- `[Li et al. CVPR22]` Align and Prompt: Video-and-Language Pre-training with Entity Prompts, CVPR, 2022. [[paper]](https://arxiv.org/pdf/2112.09583.pdf) [[code]](https://github.com/salesforce/ALPRO)
- `[Shvetsova et al. CVPR22]`Everything at Once -- Multi-modal Fusion Transformer for Video Retrieval. CVPR, 2022. [[paper]]( https://arxiv.org/abs/2112.04446) [[code]](https://github.com/ninatu/everything_at_once)
- `[Ge et al. CVPR22]`Bridging Video-text Retrieval with Multiple Choice Questions. CVPR, 2022. [[paper]](https://openaccess.thecvf.com/content/CVPR2022/papers/Ge_Bridging_Video-Text_Retrieval_With_Multiple_Choice_Questions_CVPR_2022_paper.pdf) [[code]](https://github.com/TencentARC/MCQ)
- `[Han et al. CVPR22]`Temporal Alignment Networks for Long-term Video. CVPR.2022. [[paper]]( https://www.robots.ox.ac.uk/~vgg/publications/2022/Han22a/han22a.pdf) [[code]](https://github.com/TengdaHan/TemporalAlignNet)
- `[Gorti et al. CVPR22]` X-Pool: Cross-Modal Language-Video Attention for Text-Video Retrieval. CVPR, 2022. [[paper]](https://arxiv.org/pdf/2203.15086.pdf) [[code]](https://github.com/layer6ai-labs/xpool)
- `[Lu et al. NIPS22]` LGDN: Language-Guided Denoising Network for Video-Language Modeling. NIPS, 2022. [[paper]](https://arxiv.org/abs/2209.11388)
- `[Liu et al. SIGIR22]` Animating Images to Transfer CLIP for Video-Text Retrieval. SIGIR, 2022. [[paper]](https://dl.acm.org/doi/abs/10.1145/3477495.3531776?casa_token=-9VDlX-Xbb0AAAAA:ime9df6nyBsml_E-5oBuwEriZEo0-iNtXfC-dwX7NedlWKvYGdtp31rk08-XEtmgQlzX7-0Qyz8g)
- `[Zhao et al. SIGIR22]` CenterCLIP: Token Clustering for Efficient Text-Video Retrieval. SIGIR, 2022. [[paper]](https://arxiv.org/abs/2205.00823)
- `[Liu et al. ACL22]` Cross-Modal Discrete Representation Learning. ACL, 2022. [[paper]]( https://aclanthology.org/2022.acl-long.215/)
- `[Gabeur et al. WACV22]` Masking Modalities for Cross-modal Video Retrieval. WACV, 2022. [[paper]]( https://openaccess.thecvf.com/content/WACV2022/papers/Gabeur_Masking_Modalities_for_Cross-Modal_Video_Retrieval_WACV_2022_paper.pdf)
- `[Cao et al. AAAI22]` Visual Consensus Modeling for Video-Text Retrieval. AAAI, 2022. [[paper]]( https://www.aaai.org/AAAI22Papers/AAAI-12427.CaoS.pdf) [[code]](https://github.com/sqiangcao99/VCM)
- `[Cheng et al. AAAI22]` Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss. AAAI, 2022. [[paper]](https://arxiv.org/pdf/2109.04290.pdf)[[code]](https://github.com/starmemda/CAMoE)
- `[Wang et al. TMM22]` Many Hands Make Light Work: Transferring Knowledge from Auxiliary Tasks for Video-Text Retrieval. IEEE Transactions on Multimedia, 2022. [[paper]](https://ieeexplore.ieee.org/abstract/document/9707645/metrics#metrics)
- `[Park et al. NAACL22]` Exposing the Limits of Video-Text Models through Contrast Sets. NAACL, 2022. [[paper]](https://aclanthology.org/2022.naacl-main.261/) [[code]](https://github.com/jamespark3922/video-lang-contrast-set)
- `[Song et al. TOMM22]` Adversarial Multi-Grained Embedding Network for Cross-Modal Text-Video Retrieval. TOMM, 2022. [[paper]]( https://dl.acm.org/doi/10.1145/3483381)
- `[Bai et al. ARXIV22]` LaT: Latent Translation with Cycle-Consistency for Video-Text Retrieval. arXiv:2207.04858, 2022. [[paper]](https://arxiv.org/pdf/2207.04858.pdf)
- `[Bain et al. ARXIV22]` A CLIP-Hitchhiker's Guide to Long Video Retrieval. arXiv:2205.08508, 2022. [[paper]](https://arxiv.org/abs/2205.08508)
- `[Gao et al. ARXIV22]` CLIP2TV: Align, Match and Distill for Video-Text Retrieval. arXiv:2111.05610, 2022. [[paper]](https://arxiv.org/abs/2111.05610)
- `[Jiang et al. ARXIV22]` Tencent Text-Video Retrieval: Hierarchical Cross-Modal Interactions with Multi-Level Representations. arXiv:2204.03382, 2022. [[paper]](https://arxiv.org/abs/2204.03382)### 2021
* `[Dong et al. TPAMI21]` Dual Encoding for Video Retrieval by Text. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. [[paper]](https://arxiv.org/abs/2009.05381) [[code]](https://github.com/danieljf24/hybrid_space)
* `[Wei et al. TPAMI21]` Universal Weighting Metric Learning for Cross-Modal Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021. [[paper]](https://ieeexplore.ieee.org/abstract/document/9454290)
* `[Lei et al. CVPR21]` Less is More: CLIPBERT for Video-and-Language Learning via Sparse Sampling. CVPR, 2021. [[paper]](https://arxiv.org/abs/2102.06183) [[code]](https://github.com/jayleicn/ClipBERT)
* `[Wray et al. CVPR21]` On Semantic Similarity in Video Retrieval. CVPR, 2021. [[paper]](https://arxiv.org/abs/2103.10095) [[code]](https://github.com/mwray/Semantic-Video-Retrieval)
* `[Chen et al. CVPR21]` Learning the Best Pooling Strategy for Visual Semantic Embedding. CVPR, 2021. [[paper]](https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_Learning_the_Best_Pooling_Strategy_for_Visual_Semantic_Embedding_CVPR_2021_paper.pdf)[[code]](https://github.com/woodfrog/vse_infty)
* `[Wang et al. CVPR21]` T2VLAD: Global-Local Sequence Alignment for Text-Video Retrieval. CVPR, 2021. [[paper]](https://arxiv.org/abs/2104.10054)
* `[Miech et al. CVPR21]` Thinking Fast and Slow: Efficient Text-to-Visual Retrieval with Transformers. CVPR, 2021. [[paper]](https://arxiv.org/pdf/2103.16553.pdf)
* `[Liu et al. CVPR21]` Adaptive Cross-Modal Prototypes for Cross-Domain Visual-Language Retrieval. CVPR, 2021. [[paper]](https://openaccess.thecvf.com/content/CVPR2021/papers/Liu_Adaptive_Cross-Modal_Prototypes_for_Cross-Domain_Visual-Language_Retrieval_CVPR_2021_paper.pdf)
* `[Chen et al. ICCV21]` Multimodal Clustering Networks for Self-Supervised Learning from Unlabeled Videos. ICCV, 2021. [[paper]](https://arxiv.org/abs/2104.12671)
* `[Ioana et al. ICCV21]` TEACHTEXT: CrossModal Generalized Distillation for Text-Video Retrieval. ICCV, 2021. [[paper]](https://arxiv.org/abs/2104.08271)[[code]](https://github.com/albanie/collaborative-experts)
* `[Yang et al. ICCV21]` TACo: Token-aware Cascade Contrastive Learning for Video-Text Alignment. ICCV, 2021. [[paper]](https://openaccess.thecvf.com/content/ICCV2021/papers/Yang_TACo_Token-Aware_Cascade_Contrastive_Learning_for_Video-Text_Alignment_ICCV_2021_paper.pdf)
* `[Bian et al. ICCV21]` Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval. ICCV, 2021. [[paper]](https://arxiv.org/pdf/2104.00650.pdf)[[code]](https://github.com/m-bain/frozen-in-time)
* `[Wen et al. ICCV21]` COOKIE: Contrastive Cross-Modal Knowledge Sharing Pre-Training for Vision-Language Representation. ICCV, 2021. [[paper]](https://openaccess.thecvf.com/content/ICCV2021/papers/Wen_COOKIE_Contrastive_Cross-Modal_Knowledge_Sharing_Pre-Training_for_Vision-Language_Representation_ICCV_2021_paper.pdf)[[code]](https://github.com/kywen1119/COOKIE)
* `[Luo et al. ACMMM21]` CoCo-BERT: Improving Video-Language Pre-training with Contrastive Cross-modal Matching and Denoising. ACM Multimedia, 2021. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3474085.3475703?casa_token=Mb_-EFrUkz0AAAAA:ww5LIXsZSbpaShmeT1UY10cZr4FBRIqmCwpN8jpPNERX71QV0dN3vq9fg8BZf1rY7OIJgA_7AMns1XE)
* `[Wu et al. ACMMM21]` HANet: Hierarchical Alignment Networks for Video-Text Retrieval. ACM Multimedia, 2021. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3474085.3475515)[[code]](https://github.com/Roc-Ng/HANet)
* `[Liu et al. ACMMM21]` Progressive Semantic Matching for Video-Text Retrieval. ACM Multimedia, 2021. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3474085.3475621)
* `[Han et al. ACMMM21]` Fine-grained Cross-modal Alignment Network for Text-Video Retrieval. ACM Multimedia, 2021. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3474085.3475241)
* `[Wei et al. ACMMM21]` Meta Self-Paced Learning for Cross-Modal Matching. ACM Multimedia, 2021. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3474085.3475451)
* `[Patrick et al. ICLR21]` Support-set Bottlenecks for Video-text Representation Learning. ICLR, 2021. [[paper]](https://arxiv.org/abs/2010.02824)
* `[Qi et al. TIP21]` Semantics-Aware Spatial-Temporal Binaries for Cross-Modal Video Retrieval. IEEE Transactions on Image Processing, 2021. [[paper]](https://ieeexplore.ieee.org/abstract/document/9351755)
* `[Song et al. TMM21]` Spatial-temporal Graphs for Cross-modal Text2Video Retrieval. IEEE Transactions on Multimedia, 2021. [[paper]](https://ieeexplore.ieee.org/abstract/document/9463746/)
* `[Dong et al. NEUCOM21]` Multi-level Alignment Network for Domain Adaptive Cross-modal Retrieval. Neurocomputing, 2021. [[paper]](http://danieljf24.github.io/pubs/papers/2021neurocom.pdf) [[code]](https://github.com/Recmoon/MAN)
* `[Jin et al. SIGIR21]` Hierarchical Cross-Modal Graph Consistency Learning for Video-Text Retrieval. SIGIR, 2020. [[paper]](https://dl.acm.org/doi/abs/10.1145/3404835.3462974)
* `[He et al. SIGIR21]`Improving Video Retrieval by Adaptive Margin. SIGIR, 2021. [[paper]](https://dl.acm.org/doi/abs/10.1145/3404835.3462927)
* `[Wang et al. IJCAI21]` Dig into Multi-modal Cues for Video Retrieval with Hierarchical Alignment. IJCAI, 2021. [[paper]](https://www.ijcai.org/proceedings/2021/0154.pdf)
* `[Chen et al. AAAI21]` Mind-the-Gap! Unsupervised Domain Adaptation for Text-Video Retrieval. AAAI, 2021. [[paper]](https://ojs.aaai.org/index.php/AAAI/article/view/16192)
* `[Hao et al. ICME21]`What Matters: Attentive and Relational Feature Aggregation Network for Video-Text Retrieval. ICME, 2021. [[paper]](https://ieeexplore.ieee.org/abstract/document/9428325)
* `[Wu et al. ICME21]`Multi-Dimensional Attentive Hierarchical Graph Pooling Network for Video-Text Retrieval. ICME, 2021. [[paper]](https://ieeexplore.ieee.org/abstract/document/9428153)
* `[Song et al. ICIP21]` Semantic-Preserving Metric Learning for Video-Text Retrieval. IEEE International Conference on Image Processing, 2021. [[paper]](https://ieeexplore.ieee.org/abstract/document/9506697)
* `[Hao et al. ICMR21]` Multi-Feature Graph Attention Network for Cross-Modal Video-Text Retrieval. ICMR, 2021. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3460426.3463608)
* `[Liu et al. ARXIV21]` HiT: Hierarchical Transformer with Momentum Contrast for Video-Text Retrieval. arXiv:2103.15049, 2021. [[paper]](https://arxiv.org/pdf/2103.15049.pdf)
* `[Akbari et al. ARXIV21]` VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text. arXiv:2104.11178 , 2021. [[paper]](https://arxiv.org/pdf/2104.11178.pdf) [[code]](https://github.com/tensorflow/models)
* `[Fang et al. ARXIV21]` CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. arXiv:2106.11097, 2021. [[paper]](https://arxiv.org/pdf/2106.11097.pdf) [[code]](https://github.com/CryhanFang/CLIP2Video)
* `[Luo et al. ARXIV21]` CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. arXiv:2104.08860, 2021. [[paper]](https://arxiv.org/pdf/2104.08860.pdf)[[code]](https://github.com/ArrowLuo/CLIP4Clip)
* `[Li et al. ARXIV21]` Align and Prompt: Video-and-Language Pre-training with Entity Prompts. arXiv:2112.09583, 2021. [[paper]](https://arxiv.org/pdf/2112.09583.pdf)[[code]](https://github.com/salesforce/ALPRO)### 2020
* `[Yang et al. SIGIR20]` Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval. SIGIR, 2020. [[paper]](https://dl.acm.org/doi/pdf/10.1145/3397271.3401151)
* `[Ging et al. NeurIPS20]` COOT: Cooperative Hierarchical Transformer for Video-Text Representation Learning. NeurIPS, 2020. [[paper]](https://proceedings.neurips.cc/paper/2020/file/ff0abbcc0227c9124a804b084d161a2d-Paper.pdf) [[code]](https://github.com/gingsi/coot-videotext)
* `[Gabeur et al. ECCV20]` Multi-modal Transformer for Video Retrieval. ECCV, 2020. [[paper]](https://arxiv.org/abs/2007.10639) [[code]](https://github.com/gabeur/mmt) [[homepage]](http://thoth.inrialpes.fr/research/MMT/)
* `[Li et al. TMM20]` SEA: Sentence Encoder Assembly for Video Retrieval by Textual Queries. IEEE Transactions on Multimedia, 2020. [[paper]](https://arxiv.org/abs/2011.12091)
* `[Wang et al. TMM20]` Learning Coarse-to-Fine Graph Neural Networks for Video-Text Retrieval. IEEE Transactions on Multimedia, 2020. [[paper]](https://ieeexplore.ieee.org/abstract/document/9147074)
* `[Chen et al. TMM20]` Interclass-Relativity-Adaptive Metric Learning for Cross-Modal Matching and Beyond. IEEE Transactions on Multimedia, 2020. [[paper]](https://ieeexplore.ieee.org/abstract/document/9178501)
* `[Wu et al. ACMMM20]` Interpretable Embedding for Ad-Hoc Video Search. ACM Multimedia, 2020. [[paper]](http://vireo.cs.cityu.edu.hk/papers/MM2020_dual_task_video_retrieval.pdf)
* `[Feng et al. IJCAI20]` Exploiting Visual Semantic Reasoning for Video-Text Retrieval. IJCAI, 2020. [[paper]](https://arxiv.org/abs/2006.08889)
* `[Wei et al. CVPR20]` Universal Weighting Metric Learning for Cross-Modal Retrieval. CVPR, 2020. [[paper]](https://openaccess.thecvf.com/content_CVPR_2020/papers/Wei_Universal_Weighting_Metric_Learning_for_Cross-Modal_Matching_CVPR_2020_paper.pdf)
* `[Doughty et al. CVPR20]` Action Modifiers: Learning from Adverbs in Instructional Videos. CVPR, 2020. [[paper]](https://openaccess.thecvf.com/content_CVPR_2020/papers/Doughty_Action_Modifiers_Learning_From_Adverbs_in_Instructional_Videos_CVPR_2020_paper.pdf)
* `[Chen et al. CVPR20]` Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning. CVPR, 2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_Fine-Grained_Video-Text_Retrieval_With_Hierarchical_Graph_Reasoning_CVPR_2020_paper.pdf)
* `[Zhu et al. CVPR20]` ActBERT: Learning Global-Local Video-Text Representations. CVPR, 2020. [[paper]](http://openaccess.thecvf.com/content_CVPR_2020/papers/Zhu_ActBERT_Learning_Global-Local_Video-Text_Representations_CVPR_2020_paper.pdf)
* `[Miech et al. CVPR20]` End-to-End Learning of Visual Representations From Uncurated Instructional Videos. CVPR, 2020. [[paper]](https://openaccess.thecvf.com/content_CVPR_2020/papers/Miech_End-to-End_Learning_of_Visual_Representations_From_Uncurated_Instructional_Videos_CVPR_2020_paper.pdf) [[code]](https://github.com/antoine77340/MIL-NCE_HowTo100M) [[homepage]](https://www.di.ens.fr/willow/research/mil-nce/)
* `[Zhao et al. ICME20]` Stacked Convolutional Deep Encoding Network For Video-Text Retrieval. ICME, 2020. [[paper]](https://arxiv.org/pdf/2004.04959.pdf)
* `[Luo et al. ARXIV20]` UniVL: A Unified Video and Language Pre-Training Model for Multimodal Understanding and Generation. arXiv:2002.06353, 2020. [[paper]](https://arxiv.org/abs/2002.06353v3)### 2019
* `[Dong et al. CVPR19]` Dual Encoding for Zero-Example Video Retrieval. CVPR, 2019. [[paper]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Dual_Encoding_for_Zero-Example_Video_Retrieval_CVPR_2019_paper.pdf) [[code]](https://github.com/danieljf24/dual_encoding)
* `[Song et al. CVPR19]` Polysemous visual-semantic embedding for cross-modal retrieval. CVPR, 2019. [[paper]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Song_Polysemous_Visual-Semantic_Embedding_for_Cross-Modal_Retrieval_CVPR_2019_paper.pdf)
* `[Wray et al. ICCV19]` Fine-Grained Action Retrieval Through Multiple Parts-of-Speech Embeddings. ICCV, 2019. [[paper]](http://openaccess.thecvf.com/content_ICCV_2019/papers/Wray_Fine-Grained_Action_Retrieval_Through_Multiple_Parts-of-Speech_Embeddings_ICCV_2019_paper.pdf)
* `[Xiong et al. ICCV19]` A Graph-Based Framework to Bridge Movies and Synopses. ICCV, 2019. [[paper]](http://openaccess.thecvf.com/content_ICCV_2019/papers/Xiong_A_Graph-Based_Framework_to_Bridge_Movies_and_Synopses_ICCV_2019_paper.pdf)
* `[Li et al. ACMMM19]` W2VV++ Fully Deep Learning for Ad-hoc Video Search. ACM Multimedia, 2019. [[paper]](http://lixirong.net/pub/mm2019-w2vvpp.pdf) [[code]](https://github.com/li-xirong/w2vvpp)
* `[Liu et al. BMVC19]` Use What You Have: Video Retrieval Using Representations From Collaborative Experts. MBVC, 2019. [[paper]](https://arxiv.org/abs/1907.13487) [[code]](https://github.com/albanie/collaborative-experts)
* `[Choi et al. BigMM19]` From Intra-Modal to Inter-Modal Space: Multi-Task Learning of Shared Representations for Cross-Modal Retrieval. International Conference on Multimedia Big Data, 2019. [[paper]](https://repository.ubn.ru.nl/bitstream/handle/2066/209215/209215.pdf?sequence=1)### 2018
* `[Dong et al. TMM18]` Predicting visual features from text for image and video caption retrieval. IEEE Transactions on Multimedia, 2018. [[paper]](https://arxiv.org/pdf/1709.01362) [[code]](https://github.com/danieljf24/w2vv)
* `[Zhang et al. ECCV18]` Cross-Modal and Hierarchical Modeling of Video and Text. ECCV, 2018. [[paper]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Bowen_Zhang_Cross-Modal_and_Hierarchical_ECCV_2018_paper.pdf) [[code]](https://github.com/zbwglory/CMHSE)
* `[Yu et al. ECCV18]` A Joint Sequence Fusion Model for Video Question Answering and Retrieval. ECCV, 2018. [[paper]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Youngjae_Yu_A_Joint_Sequence_ECCV_2018_paper.pdf)
* `[Shao et al. ECCV18]` Find and focus: Retrieve and localize video events with natural language queries. ECCV, 2018. [[paper]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Dian_SHAO_Find_and_Focus_ECCV_2018_paper.pdf)
* `[Mithun et al. ICMR18]` Learning Joint Embedding with Multimodal Cues for Cross-Modal Video-Text Retrieval. ICMR, 2018. [[paper]](https://dl.acm.org/citation.cfm?id=3206064) [[code]](https://github.com/niluthpol/multimodal_vtt)
* `[Miech et al. arXiv18]` Learning a Text-Video Embedding from Incomplete and Heterogeneous Data. arXiv preprint arXiv:1804.02516, 2018. [[paper]](https://arxiv.org/abs/1809.06181) [[code]](https://github.com/antoine77340/Mixture-of-Embedding-Experts)### Before
* `[Yu et al. CVPR17]` End-to-end concept word detection for video captioning, retrieval, and question answering. CVPR, 2017. [[paper]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Yu_End-To-End_Concept_Word_CVPR_2017_paper.pdf) [[code]](https://gitlab.com/fodrh1201/CT-SAN/tree/master)
* `[OtaniEmail et al. ECCVW2016]` Learning joint representations of videos and sentences with web image search. ECCV Workshop, 2016. [[paper]](https://arxiv.org/pdf/1608.02367)
* `[Xu et al. AAAI15]` Jointly modeling deep video and compositional text to bridge vision and language in a unified framework. AAAI, 2015. [[paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9734/9563)### Ad-hoc Video Search
* For the papers targeting at ad-hoc video search in the context of [TRECVID](https://trecvid.nist.gov/), please refer to [here](https://github.com/li-xirong/video-retrieval).### Other Related
* `[Rouditchenko et al. INTERSPEECH21]` AVLnet: Learning Audio-Visual Language Representations from Instructional Videos. Interspeech, 2021. [[paper]](https://arxiv.org/abs/2006.09199) [[code]](https://github.com/roudimit/AVLnet)
* `[Li et al. arXiv20]` Learning Spatiotemporal Features via Video and Text Pair Discrimination. arXiv preprint arXiv:2001.05691, 2020. [[paper]](https://arxiv.org/abs/2001.05691)## Datasets
* `[MSVD]` David et al. Collecting Highly Parallel Data for Paraphrase Evaluation. ACL, 2011. [[paper]](https://www.aclweb.org/anthology/P11-1020) [[dataset]](http://www.cs.utexas.edu/users/ml/clamp/videoDescription/)
* `[MSRVTT]` Xu et al. MSR-VTT: A Large Video Description Dataset for Bridging Video and Language. CVPR, 2016. [[paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/cvpr16.msr-vtt.tmei_-1.pdf) [[dataset]](http://ms-multimedia-challenge.com/2017/dataset)
* `[TGIF]` Li et al. TGIF: A new dataset and benchmark on animated GIF description. CVPR, 2016. [[paper]](https://hal.archives-ouvertes.fr/hal-01854776/document) [[homepage]](http://raingo.github.io/TGIF-Release/)
* `[AVS]` Awad et al. Trecvid 2016: Evaluating video search, video event detection, localization, and hyperlinking. TRECVID Workshop, 2016. [[paper]](https://hal.archives-ouvertes.fr/hal-01854776/document) [[dataset]](https://github.com/li-xirong/avs)
* `[LSMDC]` Rohrbach et al. Movie description. IJCV, 2017. [[paper]](https://link.springer.com/article/10.1007/s11263-016-0987-1) [[dataset]](https://sites.google.com/site/describingmovies/download)
* `[ActivityNet Captions]` Krishna et al. Dense-captioning events in videos. ICCV, 2017. [[paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Krishna_Dense-Captioning_Events_in_ICCV_2017_paper.pdf) [[dataset]](https://cs.stanford.edu/people/ranjaykrishna/densevid/)
* `[DiDeMo]` Hendricks et al. Localizing Moments in Video with Natural Language. ICCV, 2017. [[paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Hendricks_Localizing_Moments_in_ICCV_2017_paper.pdf) [[code]](https://github.com/LisaAnne/LocalizingMoments)
* `[HowTo100M]` Miech et al. HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips. ICCV, 2019. [[paper]](https://arxiv.org/pdf/1906.03327.pdf) [[homepage]](https://www.di.ens.fr/willow/research/howto100m/)
* `[VATEX]` Wang et al. VATEX: A Large-Scale, High-Quality Multilingual Dataset for Video-and-Language Research. ICCV, 2019. [[paper]](https://arxiv.org/abs/1904.03493) [[homepage]](http://vatex.org/main/index.html)## Licenses
[![CC0](http://i.creativecommons.org/p/zero/1.0/88x31.png)](http://creativecommons.org/publicdomain/zero/1.0/)
To the extent possible under law, [danieljf24](https://github.com/danieljf24) all copyright and related or neighboring rights to this repository.