Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/datascience-python/awesome-datascience-python
Awesome list Data Science and Python. :snake:
https://github.com/datascience-python/awesome-datascience-python
List: awesome-datascience-python
artificial-intelligence awesome-list books data-science machine-learning podcast python statistics youtube-channel
Last synced: 2 months ago
JSON representation
Awesome list Data Science and Python. :snake:
- Host: GitHub
- URL: https://github.com/datascience-python/awesome-datascience-python
- Owner: datascience-python
- License: unlicense
- Created: 2017-03-10T14:31:13.000Z (almost 8 years ago)
- Default Branch: master
- Last Pushed: 2017-08-10T21:08:15.000Z (over 7 years ago)
- Last Synced: 2024-05-23T07:19:37.072Z (7 months ago)
- Topics: artificial-intelligence, awesome-list, books, data-science, machine-learning, podcast, python, statistics, youtube-channel
- Homepage: https://datascience-python.github.io/
- Size: 11.7 KB
- Stars: 64
- Watchers: 16
- Forks: 9
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-datascience-python - Awesome list Data Science and Python. :snake:. (Other Lists / Monkey C Lists)
README
# Awesome Data Science and Python :snake:
[![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome)
Passos iniciais:
* [Telegram - Data Science & Python](https://t.me/datasciencepython)
* [Como Fazer Perguntas Inteligentes](http://wiki.python.org.br/ComoFazerPerguntasInteligentes)
* [Python - Por onde começar?](http://aprenda-python.blogspot.com.br/p/por-onde-comecar.html)
> [por Vinicius Assef](https://twitter.com/viniciusban)
* [Pro Git](https://git-scm.com/book/pt-br/v2) [(CC)](https://creativecommons.org/)
> The entire Pro Git book, written by Scott Chacon and Ben Straub and published by Apress
* [Open Source Guides](https://opensource.guide/)
> Open source software is made by people just like you. Learn how to launch and grow your project.---
## Table of Contents
* [Articles](#articles)
* [Awesome Lists](#awesome-lists)
* [Books](#books)
* [Courses](#courses)
* [Podcasts](#podcasts)
* [Youtube channels](#youtubechannels)
* [Videos](#videos)---
## Articles
| Number | Name | Author |
| :---: | :--- | :---: |## Awesome Lists
- Python
- [by @kirang89](https://github.com/kirang89/pycrumbs)
- [by @svaksha](https://github.com/svaksha/pythonidae)
- [by @vinta](https://github.com/vinta/awesome-python)
- [Asyncio](https://github.com/timofurrer/awesome-asyncio) - Asynchronous I/O in Python 3.
- Big Data
- [by @onurakpolat](https://github.com/onurakpolat/awesome-bigdata)
- [by @zenkay](https://github.com/zenkay/bigdata-ecosystem)
- [Hadoop](https://github.com/youngwookim/awesome-hadoop)
- [Public Datasets](https://github.com/caesar0301/awesome-public-datasets)
- Deep Learning
- [by @ChristosChristofidis](https://github.com/ChristosChristofidis/awesome-deep-learning)
- [by @endymecy](https://github.com/endymecy/awesome-deeplearning-resources)
- [Data Engineering](https://github.com/igorbarinov/awesome-data-engineering)
- [Streaming](https://github.com/manuzhang/awesome-streaming)## Books
| Number | Name | Author |
| :---: | :--- | :---: |
| 01 | [Use a Cabeça! Programação](http://www.altabooks.com.br/use-a-cabeca-programacao.html)| `Paul Barry` |
| 02 | [Introdução à Programação com Python - 2ª Edição](https://www.amazon.com.br/gp/product/8575224085/ref=as_li_qf_sp_asin_il_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=8575224085&linkCode=as2&tag=livropython-20)| `Nilo Ney Coutinho Menezes` |
| 03 | [Automate the Boring Stuff with Python](https://automatetheboringstuff.com/) [CC](https://creativecommons.org/)| `Al Sweigart` |
| 04 | [Practical Data Science in Python](http://radimrehurek.com/data_science_python/)| `Radim Řehůřek` |
| 05 | [Learn Data Science](http://learnds.com/)| `Nitin Borwankar`|## Courses
| Number | Name | Platform | Author |
| :---: | :--- | :---: | :---: |
| 01 | [Machine Learning - Stanford University](https://www.coursera.org/learn/machine-learning)|[Coursera](https://www.coursera.org/)| `Andrew Ng` |
| 02 | [Data Science Math Skills](https://www.coursera.org/learn/datasciencemathskills)|[Coursera](https://www.coursera.org/)| `Daniel Egger, Paul Bendich` |
| 03 | [Python for Data Science and Machine Learning Bootcamp](https://www.udemy.com/python-for-data-science-and-machine-learning-bootcamp/)|[Udemy](https://www.udemy.com/)| `Jose Portilla` |
| 04 | [Machine Learning A-Z™: Hands-On Python & R In Data Science](https://www.udemy.com/machinelearning)|[Udemy](https://www.udemy.com/)| `Kirill Eremenko` |
| 05 | [Data Science and Machine Learning with Python - Hands On!](https://www.udemy.com/data-science-and-machine-learning-with-python-hands-on/)|[Udemy](https://www.udemy.com/)| `Sundog Education by Frank Kane, Frank Kane` |
| 06 | [Introduction to Data Science in Python](https://www.coursera.org/learn/python-data-analysis)|[Coursera](https://www.coursera.org/)| `Christopher Brooks` |
| 07 | [Applied Machine Learning in Python](https://www.coursera.org/learn/python-machine-learning)|[Coursera](https://www.coursera.org/)| `Kevyn Collins-Thompson` |
| 08 | [Applied Plotting, Charting & Data Representation in Python](https://www.coursera.org/learn/python-plotting)|[Coursera](https://www.coursera.org/)| `Christopher Brooks` |
| 09 | [Applied Text Mining in Python](https://www.coursera.org/learn/python-text-mining)|[Coursera](https://www.coursera.org/)| `V. G. Vinod Vydiswaran` |
| 10 | [Applied Social Network Analysis in Python](https://www.coursera.org/learn/python-social-network-analysis)|[Coursera](https://www.coursera.org/)| `Daniel Romero` |
| 11 | [Machine Learning Foundations: A Case Study Approach](https://www.coursera.org/learn/ml-foundations)|[Coursera](https://www.coursera.org/)| `Carlos Guestrin, Emily Fox` |
| 12 | [Machine Learning: Regression](https://www.coursera.org/learn/ml-foundations)|[Coursera](https://www.coursera.org/)| `Carlos Guestrin, Emily Fox` |
| 13 | [Machine Learning: Classification](https://www.coursera.org/learn/ml-classification)|[Coursera](https://www.coursera.org/)| `Carlos Guestrin, Emily Fox` |
| 14 | [Machine Learning: Clustering & Retrieval](https://www.coursera.org/learn/ml-clustering-and-retrieval)|[Coursera](https://www.coursera.org/)| `Carlos Guestrin, Emily Fox` |
| 15 | [Neural Networks and Deep Learning](https://www.coursera.org/learn/neural-networks-deep-learning)|[Coursera](https://www.coursera.org/)| `Andrew Ng` |
| 16 | [Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization]()(Próxima sessão: Aug 15 — Sep 11.)|[Coursera](https://www.coursera.org/)| `Andrew Ng` |
| 17 |[Structuring Machine Learning Projects]()(Próxima sessão: Aug 15 — Sep 4.)|[Coursera](https://www.coursera.org/)| `Andrew Ng` |
| 18 | [Convolutional Neural Networks]()(Em Breve)|[Coursera](https://www.coursera.org/)| `Andrew Ng` |
| 19 | [Sequence Models]()(Em Breve)|[Coursera](https://www.coursera.org/)| `Andrew Ng` |## Podcasts
| Number | Name | Platform | Author |
| :---: | :--- | :---: | :---: |
|01|[DatabaseCast 2: Mineração de dados](http://databasecast.com.br/wp/databasecast-2-mineracao-de-dados/)| [DatabaseCast](http://databasecast.com.br/wp/sample-page/) | `Mauro Pichiliani, Wagner Crivelini, Ary Bressane` |
|02|[DatabaseCast 53: Cientista de dados](http://databasecast.com.br/wp/databasecast-53-cientista-de-dados/)| [DatabaseCast](http://databasecast.com.br/wp/sample-page/) | `Mauro Pichiliani, Wagner Crivelini, Marcelo Glauco` |
|03|[DatabaseCast 67: Data science na prática](http://databasecast.com.br/wp/databasecast-67-data-science-na-pratica/)| [DatabaseCast](http://databasecast.com.br/wp/sample-page/) | `Mauro Pichiliani, Wagner Crivelini, Diego Nogare, Tantravahi Aditya` |
|04|[DatabaseCast 72: Ecossistema Hadoop](http://databasecast.com.br/wp/databasecast-72-ecossistema-hadoop/)| [DatabaseCast](http://databasecast.com.br/wp/sample-page/) | `Mauro Pichiliani, Wagner Crivelini, Felipe Gasparini` |
|05|[DatabaseCast 74: Estatísticas](http://databasecast.com.br/wp/databasecast-74-estatisticas/)| [DatabaseCast](http://databasecast.com.br/wp/sample-page/) | `Mauro Pichiliani, Wagner Crivelini, Ricardo Rezende, Fabiano Amorim` |
|06|[Dev na estrada #56 - Data Science](http://devnaestrada.com.br/2016/06/03/data-science.html)| [DNE](http://devnaestrada.com.br/) |`Fellipe Azambuja, Igor Leroy, Ramon Sanches, Raony Guimaraes` |
|07|[Dragões de Garagem #43 Estatística](http://dragoesdegaragem.com/podcast/dragoes-de-garagem-43-estatistica/)| [Dragões de Garagem](http://dragoesdegaragem.com/sobre/) | `Luciano Queiroz, Lucas Camargos, Bruno Spacek, Rafael Calsaverini` |
|08|[Dragões de Garagem #92 Inteligência artificial](http://dragoesdegaragem.com/podcast/dragoes-de-garagem-92-inteligencia-artificial/)| [Dragões de Garagem](http://dragoesdegaragem.com/sobre/) | `Lucas Camargos, Victor Caparica, Camila Laranjeira, Kherian Gracher, Antonio Nazaré, Igor Bastos` |
|09|[Nerd Tech #5 - Machine Learning](https://jovemnerd.com.br/nerdcast/nerdtech/machine-learning/)| [NerdTech](https://jovemnerd.com.br/playlist/nerdtech/) | `Caio Gomes, Guilherme Silveira, Paulo Silveira` |
|10|[PODEntender #019 Sobre Deep Learning](http://dragoesdegaragem.com/podentender/019-sobre-deep-learning)| [PODEntender](http://dragoesdegaragem.com/podentender) | `Antonio Marinho(Tonho), Carol Lacerda, Fábio Neves(Dalton), Dave Canton` |Youtube channels
| Number | Name | Author |
| :---: | :--- | :---: |
|01|[Peixe Babel](https://www.youtube.com/user/CanalPeixeBabel)| `Camila Laranjeira` |
|02|[Deep Learning TV](https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ)| `Jagannath Rajagopal` |
|03|[Nat and Friends](https://www.youtube.com/NatAndFriends)| `Natalie Hammel` |
|04|[Sirajology](https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A)| `Siraj Raval` |## Videos
| Number | Name | Author |
| :---: | :--- | :---: |
|01|[Getting Started with Machine Learning and Python](https://youtu.be/rCsbaHhvxfI)| `Bruno Godoi Eilliar` |## License
[![CC0](http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)](https://creativecommons.org/publicdomain/zero/1.0/)