Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/declare-lab/instruct-eval
This repository contains code to quantitatively evaluate instruction-tuned models such as Alpaca and Flan-T5 on held-out tasks.
https://github.com/declare-lab/instruct-eval
instruct-tuning llm
Last synced: 4 days ago
JSON representation
This repository contains code to quantitatively evaluate instruction-tuned models such as Alpaca and Flan-T5 on held-out tasks.
- Host: GitHub
- URL: https://github.com/declare-lab/instruct-eval
- Owner: declare-lab
- License: apache-2.0
- Created: 2023-03-28T19:06:56.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2024-03-10T05:00:00.000Z (11 months ago)
- Last Synced: 2025-01-11T07:10:09.697Z (11 days ago)
- Topics: instruct-tuning, llm
- Language: Python
- Homepage: https://declare-lab.github.io/instruct-eval/
- Size: 3.55 MB
- Stars: 539
- Watchers: 13
- Forks: 43
- Open Issues: 24
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-llm - instruct-eval
- awesome-llm - instruct-eval
- StarryDivineSky - declare-lab/instruct-eval - T5和Alpaca等指令调整模型代表了一个令人兴奋的方向,以更低的成本接近ChatGPT等大型语言模型(LLM)的性能。但是,定性比较不同模型的性能具有挑战性。为了评估模型在各种看不见和具有挑战性的任务中的泛化程度,我们可以使用MMLU和BBH等学术基准。与评估工具和 HELM 等现有库相比,此存储库可以简单方便地评估多个模型。支持HuggingFace Transformers 的大多数模型。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
- awesome-llm-eval - [Source
- Awesome-LLM - instruct-eval - This repository contains code to quantitatively evaluate instruction-tuned models such as Alpaca and Flan-T5 on held-out tasks. (LLM Evaluation:)
README
## :camel: 🍮 📚 InstructEval: Towards Holistic Evaluation of Instruction-Tuned Large Language Models
[Paper](https://arxiv.org/abs/2306.04757) | [Model](https://huggingface.co/declare-lab/flan-alpaca-gpt4-xl) | [Leaderboard](https://declare-lab.github.io/instruct-eval/)
> 🔥 If you are interested in IQ testing LLMs, check out our new work: [AlgoPuzzleVQA](https://github.com/declare-lab/puzzle-reasoning)
> 📣 Introducing Resta: **Safety Re-alignment of Language Models**. [**Paper**](https://arxiv.org/abs/2402.11746) [**Github**](https://github.com/declare-lab/resta)
> 📣 **Red-Eval**, the benchmark for **Safety** Evaluation of LLMs has been added: [Red-Eval](https://github.com/declare-lab/instruct-eval/tree/main/red-eval)
> 📣 Introducing **Red-Eval** to evaluate the safety of the LLMs using several jailbreaking prompts. With **Red-Eval** one could jailbreak/red-team GPT-4 with a 65.1% attack success rate and ChatGPT could be jailbroken 73% of the time as measured on DangerousQA and HarmfulQA benchmarks. More details are here: [Code](https://github.com/declare-lab/red-instruct) and [Paper](https://arxiv.org/abs/2308.09662).
> 📣 We developed Flacuna by fine-tuning Vicuna-13B on the Flan collection. Flacuna is better than Vicuna at problem-solving. Access the model here [https://huggingface.co/declare-lab/flacuna-13b-v1.0](https://huggingface.co/declare-lab/flacuna-13b-v1.0).
> 📣 The [**InstructEval**](https://declare-lab.net/instruct-eval/) benchmark and leaderboard have been released.
> 📣 The paper reporting Instruction Tuned LLMs on the **InstructEval** benchmark suite has been released on Arxiv. Read it here: [https://arxiv.org/pdf/2306.04757.pdf](https://arxiv.org/pdf/2306.04757.pdf)
> 📣 We are releasing **IMPACT**, a dataset for evaluating the writing capability of LLMs in four aspects: Informative, Professional, Argumentative, and Creative. Download it from Huggingface: [https://huggingface.co/datasets/declare-lab/InstructEvalImpact](https://huggingface.co/datasets/declare-lab/InstructEvalImpact).
> 📣 **FLAN-T5** is also useful in text-to-audio generation. Find our work
at [https://github.com/declare-lab/tango](https://github.com/declare-lab/tango) if you are interested.This repository contains code to evaluate instruction-tuned models such as Alpaca and Flan-T5 on held-out
tasks.
We aim to facilitate simple and convenient benchmarking across multiple tasks and models.### Why?
Instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416)
and [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represent an exciting direction to approximate the
performance of large language models (LLMs) like ChatGPT at lower cost.
However, it is challenging to compare the performance of different models qualitatively.
To evaluate how well the models generalize across a wide range of unseen and challenging tasks, we can use academic
benchmarks such as [MMLU](https://arxiv.org/abs/2009.03300) and [BBH](https://arxiv.org/abs/2210.09261).
Compared to existing libraries such as [evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness)
and [HELM](https://github.com/stanford-crfm/helm), this repo enables simple and convenient evaluation for multiple
models.
Notably, we support most models from HuggingFace Transformers 🤗 (check [here](./docs/models.md) for a list of models we support):- [AutoModelForCausalLM](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForCausalLM) (
eg [GPT-2](https://huggingface.co/gpt2-xl), [GPT-J](https://huggingface.co/EleutherAI/gpt-j-6b)
, [OPT-IML](https://huggingface.co/facebook/opt-iml-max-1.3b), [BLOOMZ](https://huggingface.co/bigscience/bloomz-7b1))
- [AutoModelForSeq2SeqLM](https://huggingface.co/docs/transformers/model_doc/auto#transformers.AutoModelForSeq2SeqLM) (
eg [Flan-T5](https://huggingface.co/google/flan-t5-xl), [Flan-UL2](https://huggingface.co/google/flan-ul2)
, [TK-Instruct](https://huggingface.co/allenai/tk-instruct-3b-def))
- [LlamaForCausalLM](https://huggingface.co/docs/transformers/main/model_doc/llama#transformers.LlamaForCausalLM) (
eg [LLaMA](https://huggingface.co/decapoda-research/llama-7b-hf)
, [Alpaca](https://huggingface.co/chavinlo/alpaca-native), [Vicuna](https://huggingface.co/chavinlo/vicuna))
- [ChatGLM](https://huggingface.co/THUDM/chatglm-6b)### Results
For detailed results, please go to our [leaderboard](https://declare-lab.net/instruct-eval/)
| Model Name | Model Path | Paper | Size | MMLU | BBH | DROP | HumanEval |
|------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|------|------|------|-----------|
| | [GPT-4](https://openai.com/product/gpt-4) | [Link](https://arxiv.org/abs/2303.08774) | ? | 86.4 | | 80.9 | 67.0 |
| | [ChatGPT](https://openai.com/blog/chatgpt) | [Link](https://arxiv.org/abs/2303.08774) | ? | 70.0 | | 64.1 | 48.1 |
| seq_to_seq | [google/flan-t5-xxl](https://huggingface.co/google/flan-t5-xxl) | [Link](https://arxiv.org/abs/2210.11416) | 11B | 54.5 | 43.9 | | |
| seq_to_seq | [google/flan-t5-xl](https://huggingface.co/google/flan-t5-xl) | [Link](https://arxiv.org/abs/2210.11416) | 3B | 49.2 | 40.2 | 56.3 | |
| llama | [eachadea/vicuna-13b](https://huggingface.co/eachadea/vicuna-13b) | [Link](https://vicuna.lmsys.org/) | 13B | 49.7 | 37.1 | 32.9 | 15.2 |
| llama | [decapoda-research/llama-13b-hf](https://huggingface.co/decapoda-research/llama-13b-hf) | [Link](https://arxiv.org/abs/2302.13971) | 13B | 46.2 | 37.1 | 35.3 | 13.4 |
| seq_to_seq | [declare-lab/flan-alpaca-gpt4-xl](https://huggingface.co/declare-lab/flan-alpaca-gpt4-xl) | [Link](https://github.com/declare-lab/flan-alpaca) | 3B | 45.6 | 34.8 | | |
| llama | [TheBloke/koala-13B-HF](https://huggingface.co/TheBloke/koala-13B-HF) | [Link](https://bair.berkeley.edu/blog/2023/04/03/koala/) | 13B | 44.6 | 34.6 | 28.3 | 11.0 |
| llama | [chavinlo/alpaca-native](https://huggingface.co/chavinlo/alpaca-native) | [Link](https://crfm.stanford.edu/2023/03/13/alpaca.html) | 7B | 41.6 | 33.3 | 26.3 | 10.3 |
| llama | [TheBloke/wizardLM-7B-HF](https://huggingface.co/TheBloke/wizardLM-7B-HF) | [Link](https://arxiv.org/abs/2304.12244) | 7B | 36.4 | 32.9 | | 15.2 |
| chatglm | [THUDM/chatglm-6b](https://huggingface.co/THUDM/chatglm-6b) | [Link](https://arxiv.org/abs/2210.02414) | 6B | 36.1 | 31.3 | 44.2 | 3.1 |
| llama | [decapoda-research/llama-7b-hf](https://huggingface.co/decapoda-research/llama-7b-hf) | [Link](https://arxiv.org/abs/2302.13971) | 7B | 35.2 | 30.9 | 27.6 | 10.3 |
| llama | [wombat-7b-gpt4-delta](https://huggingface.co/GanjinZero/wombat-7b-gpt4-delta) | [Link](https://arxiv.org/abs/2304.05302) | 7B | 33.0 | 32.4 | | 7.9 |
| seq_to_seq | [bigscience/mt0-xl](https://huggingface.co/bigscience/mt0-xl) | [Link](https://arxiv.org/abs/2210.11416) | 3B | 30.4 | | | |
| causal | [facebook/opt-iml-max-1.3b](https://huggingface.co/facebook/opt-iml-max-1.3b) | [Link](https://arxiv.org/abs/2212.12017) | 1B | 27.5 | | | 1.8 |
| causal | [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5) | [Link](https://github.com/LAION-AI/Open-Assistant) | 12B | 27.0 | 30.0 | | 9.1 |
| causal | [stabilityai/stablelm-base-alpha-7b](https://huggingface.co/stabilityai/stablelm-base-alpha-7b) | [Link](https://github.com/Stability-AI/StableLM) | 7B | 26.2 | | | 1.8 |
| causal | [databricks/dolly-v2-12b](https://huggingface.co/databricks/dolly-v2-12b) | [Link](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm) | 12B | 25.7 | | | 7.9 |
| causal | [Salesforce/codegen-6B-mono](https://huggingface.co/Salesforce/codegen-6B-mono) | [Link](https://arxiv.org/abs/2203.13474) | 6B | | | | 27.4 |
| causal | [togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1](https://huggingface.co/togethercomputer/RedPajama-INCITE-Instruct-7B-v0.1) | [Link](https://github.com/togethercomputer/RedPajama-Data) | 7B | 38.1 | 31.3 | 24.7 | 5.5 |### Example Usage
Evaluate on [Massive Multitask Language Understanding](https://huggingface.co/datasets/lukaemon/mmlu) (MMLU) which
includes exam questions from 57 tasks such as mathematics, history, law, and medicine.
We use 5-shot direct prompting and measure the exact-match score.```
python main.py mmlu --model_name llama --model_path chavinlo/alpaca-native
# 0.4163936761145136python main.py mmlu --model_name seq_to_seq --model_path google/flan-t5-xl
# 0.49252243270189433
```Evaluate on [Big Bench Hard](https://huggingface.co/datasets/lukaemon/bbh) (BBH) which includes 23 challenging tasks for
which PaLM (540B) performs below an average human rater.
We use 3-shot direct prompting and measure the exact-match score.```
python main.py bbh --model_name llama --model_path TheBloke/koala-13B-HF --load_8bit
# 0.3468942926723247
```Evaluate on [DROP](https://huggingface.co/datasets/drop) which is a math question answering benchmark.
We use 3-shot direct prompting and measure the exact-match score.```
python main.py drop --model_name seq_to_seq --model_path google/flan-t5-xl
# 0.5632458233890215
```Evaluate on [HumanEval](https://huggingface.co/datasets/openai_humaneval) which includes 164 coding questions in python.
We use 0-shot direct prompting and measure the pass@1 score.```
python main.py humaneval --model_name llama --model_path eachadea/vicuna-13b --n_sample 1 --load_8bit
# {'pass@1': 0.1524390243902439}
```### Setup
Install dependencies and download data.
```
conda create -n instruct-eval python=3.8 -y
conda activate instruct-eval
pip install -r requirements.txt
mkdir -p data
wget https://people.eecs.berkeley.edu/~hendrycks/data.tar -O data/mmlu.tar
tar -xf data/mmlu.tar -C data && mv data/data data/mmlu
```