Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dennybritz/cnn-text-classification-tf
Convolutional Neural Network for Text Classification in Tensorflow
https://github.com/dennybritz/cnn-text-classification-tf
Last synced: 25 days ago
JSON representation
Convolutional Neural Network for Text Classification in Tensorflow
- Host: GitHub
- URL: https://github.com/dennybritz/cnn-text-classification-tf
- Owner: dennybritz
- License: apache-2.0
- Created: 2015-11-24T15:43:25.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2024-04-15T19:15:44.000Z (7 months ago)
- Last Synced: 2024-09-30T12:20:48.342Z (about 1 month ago)
- Language: Python
- Size: 1.08 MB
- Stars: 5,638
- Watchers: 281
- Forks: 2,770
- Open Issues: 110
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-tensorflow - Sentence Classification with CNN - TensorFlow implementation of ["Convolutional Neural Networks for Sentence Classification"](http://arxiv.org/abs/1408.5882) with a [blog post](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/) (Models/Projects)
- TCPapers - dennybritz / cnn-text-classification-tf - Convolutional Neural Network for Text Classification in Tensorflow (Repository & Tool / Weakly-supervised & Semi-supervised Learning)
- awesome-tensorflow - Sentence Classification with CNN - TensorFlow implementation of ["Convolutional Neural Networks for Sentence Classification"](http://arxiv.org/abs/1408.5882) with a [blog post](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/) (Models/Projects)
- fucking-awesome-tensorflow - Sentence Classification with CNN - TensorFlow implementation of ["Convolutional Neural Networks for Sentence Classification"](http://arxiv.org/abs/1408.5882) with a [blog post](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/) (Models/Projects)
- Awesome-TensorFlow-Chinese - Sentence Classification with CNN - TensorFlow implementation of ["Convolutional Neural Networks for Sentence Classification"](http://arxiv.org/abs/1408.5882) with a [blog post](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/) (模型项目 / 微信群)
README
**[This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post.](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/)**
It is slightly simplified implementation of Kim's [Convolutional Neural Networks for Sentence Classification](http://arxiv.org/abs/1408.5882) paper in Tensorflow.
## Requirements
- Python 3
- Tensorflow > 0.12
- Numpy## Training
Print parameters:
```bash
./train.py --help
``````
optional arguments:
-h, --help show this help message and exit
--embedding_dim EMBEDDING_DIM
Dimensionality of character embedding (default: 128)
--filter_sizes FILTER_SIZES
Comma-separated filter sizes (default: '3,4,5')
--num_filters NUM_FILTERS
Number of filters per filter size (default: 128)
--l2_reg_lambda L2_REG_LAMBDA
L2 regularizaion lambda (default: 0.0)
--dropout_keep_prob DROPOUT_KEEP_PROB
Dropout keep probability (default: 0.5)
--batch_size BATCH_SIZE
Batch Size (default: 64)
--num_epochs NUM_EPOCHS
Number of training epochs (default: 100)
--evaluate_every EVALUATE_EVERY
Evaluate model on dev set after this many steps
(default: 100)
--checkpoint_every CHECKPOINT_EVERY
Save model after this many steps (default: 100)
--allow_soft_placement ALLOW_SOFT_PLACEMENT
Allow device soft device placement
--noallow_soft_placement
--log_device_placement LOG_DEVICE_PLACEMENT
Log placement of ops on devices
--nolog_device_placement```
Train:
```bash
./train.py
```## Evaluating
```bash
./eval.py --eval_train --checkpoint_dir="./runs/1459637919/checkpoints/"
```Replace the checkpoint dir with the output from the training. To use your own data, change the `eval.py` script to load your data.
## References
- [Convolutional Neural Networks for Sentence Classification](http://arxiv.org/abs/1408.5882)
- [A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification](http://arxiv.org/abs/1510.03820)