Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/eric-erki/awesome-self-supervised-learning
A curated list of awesome self-supervised methods
https://github.com/eric-erki/awesome-self-supervised-learning
List: awesome-self-supervised-learning
Last synced: 3 months ago
JSON representation
A curated list of awesome self-supervised methods
- Host: GitHub
- URL: https://github.com/eric-erki/awesome-self-supervised-learning
- Owner: eric-erki
- Created: 2020-02-02T11:55:23.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2020-02-02T11:55:51.000Z (almost 5 years ago)
- Last Synced: 2024-04-22T01:53:38.078Z (7 months ago)
- Size: 68.4 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-self-supervised-learning - A curated list of awesome self-supervised methods. (Other Lists / PowerShell Lists)
README
# Awesome Self-Supervised Learning[![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
A curated list of awesome Self-Supervised Learning resources. Inspired by [awesome-deep-vision](https://github.com/kjw0612/awesome-deep-vision), [awesome-adversarial-machine-learning](https://github.com/yenchenlin/awesome-adversarial-machine-learning), [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers), and [awesome-architecture-search](https://github.com/markdtw/awesome-architecture-search)
#### Why Self-Supervised?
Self-Supervised Learning has become an exciting direction in AI community.
- Jitendra Malik: "Supervision is the opium of the AI researcher"
- Alyosha Efros: "The AI revolution will not be supervised"
- Yann LeCun: "self-supervised learning is the cake, supervised learning is the icing on the cake, reinforcement learning is the cherry on the cake"## Contributing
Please help contribute this list by contacting [me](https://jason718.github.io/) or add [pull request](https://github.com/jason718/Awesome-Self-Supervised-Learning/pulls)
Markdown format:
```markdown
- Paper Name.
[[pdf]](link)
[[code]](link)
- Author 1, Author 2, and Author 3. *Conference Year*
```## Table of Contents
- [Computer Vision (CV)](#computer-vision)
- [Survey](#survey)
- [Image Representation Learning](#image-representation-learning)
- [Video Representation Learning](#video-representation-learning)
- [Geometry](#geometry)
- [Audio](#audio)
- [Others](#others)
- [Machine Learning](#machine-learning)
- [Reinforcement Learning](#reinforcement-learning)
- [Robotics](#robotics)
- [Natural Language Processing (NLP)](#nlp)
- [Talks](#talks)
- [Thesis](#thesis)## Computer Vision
### Survey
- Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey.
[[pdf]](https://arxiv.org/pdf/1902.06162.pdf)
- Longlong Jing and Yingli Tian.### Image Representation Learning
#### Benchmark code
FAIR Self-Supervision Benchmark [[repo]](https://github.com/facebookresearch/fair_self_supervision_benchmark): various benchmark (and legacy) tasks for evaluating quality of visual representations learned by various self-supervision approaches.#### 2015
- Unsupervised Visual Representation Learning by Context Prediction.
[[pdf]](https://arxiv.org/abs/1505.05192)
[[code]](http://graphics.cs.cmu.edu/projects/deepContext/)
- Doersch, Carl and Gupta, Abhinav and Efros, Alexei A. *ICCV 2015*- Unsupervised Learning of Visual Representations using Videos.
[[pdf]](http://www.cs.cmu.edu/~xiaolonw/papers/unsupervised_video.pdf)
[[code]](http://www.cs.cmu.edu/~xiaolonw/unsupervise.html)
- Wang, Xiaolong and Gupta, Abhinav. *ICCV 2015*- Learning to See by Moving.
[[pdf]](http://arxiv.org/abs/1505.01596)
[[code]](https://people.eecs.berkeley.edu/~pulkitag/lsm/lsm.html)
- Agrawal, Pulkit and Carreira, Joao and Malik, Jitendra. *ICCV 2015*- Learning image representations tied to ego-motion.
[[pdf]](http://vision.cs.utexas.edu/projects/egoequiv/ijcv_bestpaper_specialissue_egoequiv.pdf)
[[code]](http://vision.cs.utexas.edu/projects/egoequiv/)
- Jayaraman, Dinesh and Grauman, Kristen. *ICCV 2015*#### 2016
- Joint Unsupervised Learning of Deep Representations and Image Clusters.
[[pdf]](https://arxiv.org/pdf/1604.03628.pdf)
[[code-torch]](https://github.com/jwyang/JULE.torch)
[[code-caffe]](https://github.com/jwyang/JULE-Caffe)
- Jianwei Yang, Devi Parikh, Dhruv Batra. *CVPR 2016*
- Unsupervised Deep Embedding for Clustering Analysis.
[[pdf]](https://arxiv.org/pdf/1511.06335.pdf)
[[code]](https://github.com/piiswrong/dec)
- Junyuan Xie, Ross Girshick, and Ali Farhadi. *ICML 2016*
- Slow and steady feature analysis: higher order temporal coherence in video.
[[pdf]](http://vision.cs.utexas.edu/projects/slowsteady/cvpr16.pdf)
- Jayaraman, Dinesh and Grauman, Kristen. *CVPR 2016*- Context Encoders: Feature Learning by Inpainting.
[[pdf]](https://people.eecs.berkeley.edu/~pathak/papers/cvpr16.pdf)
[[code]](https://people.eecs.berkeley.edu/~pathak/context_encoder/)
- Pathak, Deepak and Krahenbuhl, Philipp and Donahue, Jeff and Darrell, Trevor and Efros, Alexei A. *CVPR 2016*- Colorful Image Colorization.
[[pdf]](https://arxiv.org/abs/1603.08511)
[[code]](http://richzhang.github.io/colorization/)
- Zhang, Richard and Isola, Phillip and Efros, Alexei A. *ECCV 2016*- Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles.
[[pdf]](http://arxiv.org/abs/1603.09246)
[[code]](http://www.cvg.unibe.ch/research/JigsawPuzzleSolver.html)
- Noroozi, Mehdi and Favaro, Paolo. *ECCV 2016*- Ambient Sound Provides Supervision for Visual Learning.
[[pdf]](http://arxiv.org/pdf/1608.07017)
[[code]](http://andrewowens.com/ambient/index.html)
- Owens, Andrew and Wu, Jiajun and McDermott, Josh and Freeman, William and Torralba, Antonio. *ECCV 2016*- Learning Representations for Automatic Colorization.
[[pdf]](http://arxiv.org/pdf/1603.06668.pdf)
[[code]](http://people.cs.uchicago.edu/~larsson/colorization/)
- Larsson, Gustav and Maire, Michael and Shakhnarovich, Gregory. *ECCV 2016*- Unsupervised Visual Representation Learning by Graph-based Consistent Constraints.
[\[pdf\]](http://faculty.ucmerced.edu/mhyang/papers/eccv16_feature_learning.pdf)
[\[code\]](https://github.com/dongli12/FeatureLearning)
- Li, Dong and Hung, Wei-Chih and Huang, Jia-Bin and Wang, Shengjin and Ahuja, Narendra and Yang, Ming-Hsuan. *ECCV 2016*#### 2017
- Adversarial Feature Learning.
[[pdf]](https://arxiv.org/pdf/1605.09782.pdf)
[[code]](https://github.com/jeffdonahue/bigan)
- Donahue, Jeff and Krahenbuhl, Philipp and Darrell, Trevor. *ICLR 2017*
- Self-supervised learning of visual features through embedding images into text topic spaces.
[[pdf]](https://arxiv.org/pdf/1705.08631.pdf)
[[code]](https://github.com/lluisgomez/TextTopicNet)
- L. Gomez* and Y. Patel* and M. Rusiñol and D. Karatzas and C.V. Jawahar. *CVPR 2017*
- Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction.
[[pdf]](https://arxiv.org/abs/1611.09842)
[[code]](https://github.com/richzhang/splitbrainauto)
- Zhang, Richard and Isola, Phillip and Efros, Alexei A. *CVPR 2017*- Learning Features by Watching Objects Move.
[[pdf]](https://people.eecs.berkeley.edu/~pathak/papers/cvpr17.pdf)
[[code]](https://people.eecs.berkeley.edu/~pathak/unsupervised_video/)
- Pathak, Deepak and Girshick, Ross and Dollar, Piotr and Darrell, Trevor and Hariharan, Bharath. *CVPR 2017*
- Colorization as a Proxy Task for Visual Understanding.
[[pdf]](http://arxiv.org/abs/1703.04044)
[[code]](http://people.cs.uchicago.edu/~larsson/color-proxy/)
- Larsson, Gustav and Maire, Michael and Shakhnarovich, Gregory. *CVPR 2017*- DeepPermNet: Visual Permutation Learning.
[\[pdf\]](https://arxiv.org/pdf/1704.02729.pdf)
[\[code\]](https://github.com/rfsantacruz/deep-perm-net)
- Cruz, Rodrigo Santa and Fernando, Basura and Cherian, Anoop and Gould, Stephen. *CVPR 2017*- Unsupervised Learning by Predicting Noise.
[[pdf]](https://arxiv.org/abs/1704.05310)
[[code]](https://github.com/facebookresearch/noise-as-targets)
- Bojanowski, Piotr and Joulin, Armand. *ICML 2017*- Multi-task Self-Supervised Visual Learning.
[[pdf]](https://arxiv.org/abs/1708.07860)
- Doersch, Carl and Zisserman, Andrew. *ICCV 2017*- Representation Learning by Learning to Count.
[[pdf]](https://arxiv.org/abs/1708.06734)
- Noroozi, Mehdi and Pirsiavash, Hamed and Favaro, Paolo. *ICCV 2017*- Transitive Invariance for Self-supervised Visual Representation Learning.
[[pdf]](https://arxiv.org/pdf/1708.02901.pdf)
- Wang, Xiaolong and He, Kaiming and Gupta, Abhinav. *ICCV 2017*- Look, Listen and Learn.
[[pdf]](https://arxiv.org/pdf/1705.08168.pdf)
- Relja, Arandjelovic and Zisserman, Andrew. *ICCV 2017*- Unsupervised Representation Learning by Sorting Sequences.
[[pdf]](https://arxiv.org/pdf/1708.01246.pdf)
[[code]](https://github.com/HsinYingLee/OPN)
- Hsin-Ying Lee, Jia-Bin Huang, Maneesh Kumar Singh, and Ming-Hsuan Yang. *ICCV 2017*#### 2018
- Unsupervised Feature Learning via Non-parameteric Instance Discrimination
[[pdf]](https://arxiv.org/pdf/1805.01978.pdf)
[[code]](https://github.com/zhirongw/lemniscate.pytorch)
- Zhirong Wu, Yuanjun Xiong and X Yu Stella and Dahua Lin. *CVPR 2018*- Learning Image Representations by Completing Damaged Jigsaw Puzzles.
[[pdf]](https://arxiv.org/pdf/1802.01880.pdf)
- Kim, Dahun and Cho, Donghyeon and Yoo, Donggeun and Kweon, In So. *WACV 2018*
- Unsupervised Representation Learning by Predicting Image Rotations.
[[pdf]](https://openreview.net/forum?id=S1v4N2l0-)
[[code]](https://github.com/gidariss/FeatureLearningRotNet)
- Spyros Gidaris and Praveer Singh and Nikos Komodakis. *ICLR 2018*
- Improvements to context based self-supervised learning.
[[pdf]](https://arxiv.org/abs/1711.06379)
- Terrell Mundhenk and Daniel Ho and Barry Chen. *CVPR 2018*
- Self-Supervised Feature Learning by Learning to Spot Artifacts.
[[pdf]](https://arxiv.org/pdf/1806.05024.pdf)
[[code]](https://github.com/sjenni/LearningToSpotArtifacts)
- Simon Jenni and Universität Bern and Paolo Favaro. *CVPR 2018*
- Boosting Self-Supervised Learning via Knowledge Transfer.
[[pdf]](https://www.csee.umbc.edu/~hpirsiav/papers/transfer_cvpr18.pdf)
- Mehdi Noroozi and Ananth Vinjimoor and Paolo Favaro and Hamed Pirsiavash. *CVPR 2018*
- Cross-domain Self-supervised Multi-task Feature Learning Using Synthetic Imagery.
[[pdf]](https://arxiv.org/abs/1711.09082)
[[code]](https://github.com/jason718/game-feature-learning)
- Zhongzheng Ren and Yong Jae Lee. *CVPR 2018*
- ShapeCodes: Self-Supervised Feature Learning by Lifting Views to Viewgrids.
[[pdf]](https://arxiv.org/pdf/1709.00505.pdf)
- Dinesh Jayaraman*, UC Berkeley; Ruohan Gao, University of Texas at Austin; Kristen Grauman. *ECCV 2018*- Deep Clustering for Unsupervised Learning of Visual Features
[[pdf]](https://research.fb.com/wp-content/uploads/2018/09/Deep-Clustering-for-Unsupervised-Learning-of-Visual-Features.pdf)
- Mathilde Caron, Piotr Bojanowski, Armand Joulin, Matthijs Douze. *ECCV 2018*- Cross Pixel Optical-Flow Similarity for Self-Supervised Learning.
[[pdf]](http://www.robots.ox.ac.uk/~vgg/publications/2018/Mahendran18/mahendran18.pdf)
- Aravindh Mahendran, James Thewlis, Andrea Vedaldi. *ACCV 2018*#### 2019
- Representation Learning with Contrastive Predictive Coding.
[[pdf]](https://arxiv.org/abs/1807.03748)
- Aaron van den Oord, Yazhe Li, Oriol Vinyals.- Self-Supervised Learning via Conditional Motion Propagation.
[[pdf]](http://www.robots.ox.ac.uk/~vgg/publications/2018/Mahendran18/mahendran18.pdf)
[[code]](https://github.com/XiaohangZhan/conditional-motion-propagation)
- Xiaohang Zhan, Xingang Pan, Ziwei Liu, Dahua Lin, and Chen Change Loy. *CVPR 2019*- Self-Supervised Representation Learning by Rotation Feature Decoupling.
[[pdf]](http://openaccess.thecvf.com/content_CVPR_2019/html/Feng_Self-Supervised_Representation_Learning_by_Rotation_Feature_Decoupling_CVPR_2019_paper.html)
[[code]](https://github.com/philiptheother/FeatureDecoupling)
- Zeyu Feng; Chang Xu; Dacheng Tao. *CVPR 2019*- Revisiting Self-Supervised Visual Representation Learning.
[[pdf]](https://arxiv.org/abs/1901.09005)
[[code]](https://github.com/google/revisiting-self-supervised)
- Alexander Kolesnikov; Xiaohua Zhai; Lucas Beye. CVPR 2019- AET vs. AED: Unsupervised Representation Learning by Auto-Encoding Transformations rather than Data.
[[pdf]](http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_AET_vs._AED_Unsupervised_Representation_Learning_by_Auto-Encoding_Transformations_Rather_CVPR_2019_paper.pdf)
[[code]](https://github.com/maple-research-lab/AET)
- Liheng Zhang, Guo-Jun Qi, Liqiang Wang, Jiebo Luo. *CVPR 2019*- Unsupervised Deep Learning by Neighbourhood Discovery.
[[pdf]](http://proceedings.mlr.press/v97/huang19b.html).
[[code]](https://github.com/Raymond-sci/AND).
- Jiabo Huang, Qi Dong, Shaogang Gong, Xiatian Zhu. *ICML 2019*
- Contrastive Multiview Coding.
[[pdf]](https://arxiv.org/abs/1906.05849)
[[code]](https://github.com/HobbitLong/CMC/)
- Yonglong Tian and Dilip Krishnan and Phillip Isola.- Large Scale Adversarial Representation Learning.
[[pdf]](https://arxiv.org/abs/1907.02544)
- Jeff Donahue, Karen Simonyan.- Learning Representations by Maximizing Mutual Information Across Views.
[[pdf]](https://arxiv.org/pdf/1906.00910)
- Philip Bachman, R Devon Hjelm, William Buchwalter- Selfie: Self-supervised Pretraining for Image Embedding.
[[pdf]](https://arxiv.org/abs/1906.02940)
- Trieu H. Trinh, Minh-Thang Luong, Quoc V. Le
- Data-Efficient Image Recognition with Contrastive Predictive Coding
[[pdf]](https://arxiv.org/abs/1905.09272)
- Olivier J. He ́naff, Ali Razavi, Carl Doersch, S. M. Ali Eslami, Aaron van den Oord- Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
[[pdf]](https://arxiv.org/pdf/1906.12340)
[[code]](https://github.com/hendrycks/ss-ood)
- Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, Dawn Song. *NeurIPS 2019*- Momentum Contrast for Unsupervised Visual Representation Learning
[[pdf]](https://arxiv.org/pdf/1911.05722.pdf)
- Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, Ross Girshick. *FAIR*### Video Representation Learning
- Unsupervised Learning of Video Representations using LSTMs.
[[pdf]](https://arxiv.org/pdf/1502.04681.pdf)
[[code]](https://github.com/emansim/unsupervised-videos)
- Srivastava, Nitish and Mansimov, Elman and Salakhudinov, Ruslan. *ICML 2015*- Shuffle and Learn: Unsupervised Learning using Temporal Order Verification.
[[pdf]](http://arxiv.org/abs/1603.08561)
[[code]](https://github.com/imisra/shuffle-tuple)
- Ishan Misra, C. Lawrence Zitnick and Martial Hebert. *ECCV 2016*
- LSTM Self-Supervision for Detailed Behavior Analysis
[[pdf]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Brattoli_LSTM_Self-Supervision_for_CVPR_2017_paper.pdf)
- Biagio Brattoli*, Uta Büchler*, Anna-Sophia Wahl, Martin E. Schwab, and Björn Ommer. *CVPR 2017*
- Self-Supervised Video Representation Learning With Odd-One-Out Networks.
[[pdf]](https://arxiv.org/abs/1611.06646)
- Basura Fernando and Hakan Bilen and Efstratios Gavves and Stephen Gould. *CVPR 2017*- Unsupervised Learning of Long-Term Motion Dynamics for Videos.
[[pdf]](https://arxiv.org/pdf/1701.01821.pdf)
- Luo, Zelun and Peng, Boya and Huang, De-An and Alahi, Alexandre and Fei-Fei, Li. *CVPR 2017*- Geometry Guided Convolutional Neural Networks for Self-Supervised Video Representation Learning.
[[pdf]](http://ai.ucsd.edu/~haosu/papers/cvpr18_geometry_predictive_learning.pdf)
- Chuang Gan and Boqing Gong and Kun Liu and Hao Su and Leonidas J. Guibas. *CVPR 2018*
- Improving Spatiotemporal Self-Supervision by Deep Reinforcement Learning.
[[pdf]](https://arxiv.org/abs/1807.11293)
- Biagio Brattoli*, Uta Büchler*, and Björn Ommer. *ECCV 2018*- Self-supervised learning of a facial attribute embedding from video.
[[pdf]](http://www.robots.ox.ac.uk/~vgg/publications/2018/Wiles18a/wiles18a.pdf)
- Wiles, O.*, Koepke, A.S.*, Zisserman, A. *BMVC 2018*- Self-Supervised Video Representation Learning with Space-Time Cubic Puzzles.
[[pdf]](https://arxiv.org/pdf/1811.09795.pdf)
- Kim, Dahun and Cho, Donghyeon and Yoo, Donggeun and Kweon, In So. *AAAI 2019*- Self-Supervised Spatio-Temporal Representation Learning for Videos by Predicting Motion and Appearance Statistics.
[[pdf]](https://arxiv.org/abs/1904.03597)
- Jiangliu Wang; Jianbo Jiao; Linchao Bao; Shengfeng He; Yunhui Liu; Wei Liu. CVPR 2019- DynamoNet: Dynamic Action and Motion Network.
[[pdf]](https://arxiv.org/pdf/1904.11407.pdf)
- Ali Diba; Vivek Sharma, Luc Van Gool, Rainer Stiefelhagen. *ICCV 2019*- Learning Correspondence from the Cycle-consistency of Time.
[[pdf]](https://arxiv.org/abs/1903.07593)
[[code]](https://github.com/xiaolonw/TimeCycle)
- Xiaolong Wang*, Allan Jabri* and Alexei A. Efros. *CVPR 2019*- Joint-task Self-supervised Learning for Temporal Correspondence.
[[pdf]](https://arxiv.org/abs/1909.11895)
[[code]](https://github.com/Liusifei/UVC)
- Xueting Li*, Sifei Liu*, Shalini De Mello, Xiaolong Wang, Jan Kautz, and Ming-Hsuan Yang. *NIPS 2019*### Geometry
- Self-supervised Learning of Motion Capture.
[[pdf]](https://arxiv.org/pdf/1712.01337.pdf)
[[code]](https://github.com/htung0101/3d_smpl)
[[web]](https://sites.google.com/view/selfsupervisedlearningofmotion/)
- Tung, Hsiao-Yu and Tung, Hsiao-Wei and Yumer, Ersin and Fragkiadaki, Katerina. *NIPS 2017*- Unsupervised Learning of Depth and Ego-Motion from Video.
[[pdf]](https://arxiv.org/pdf/1704.07813.pdf)
[[code]](https://github.com/tinghuiz/SfMLearner)
[[web]](https://people.eecs.berkeley.edu/~tinghuiz/projects/SfMLearner/)
- Zhou, Tinghui and Brown, Matthew and Snavely, Noah and Lowe, David G. *CVPR 2017*
- Active Stereo Net: End-to-End Self-Supervised Learning for Active Stereo Systems.
[[project]](http://asn.cs.princeton.edu/)
- Yinda Zhang*, Sean Fanello, Sameh Khamis, Christoph Rhemann, Julien Valentin, Adarsh Kowdle, Vladimir Tankovich, Shahram Izadi, Thomas Funkhouser. *ECCV 2018*- Self-Supervised Relative Depth Learning for Urban Scene Understanding.
[[pdf]](https://people.cs.umass.edu/~hzjiang/files/ssr_depth.pdf)
[[project]](https://people.cs.umass.edu/~hzjiang/projects/ssr_depth/)
- Huaizu Jiang*, Erik Learned-Miller, Gustav Larsson, Michael Maire, Greg Shakhnarovich. *ECCV 2018*- Geometry-Aware Learning of Maps for Camera Localization.
[[pdf]](https://arxiv.org/abs/1712.03342)
[[code]](https://github.com/NVlabs/geomapnet)
- Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays, and Jan Kautz. CVPR 2018- Self-supervised Learning of Geometrically Stable Features Through Probabilistic Introspection.
[[pdf]](https://arxiv.org/abs/1804.01552)
[[web]](http://www.robots.ox.ac.uk/~vgg/research/probabilistic_introspection/)
- David Novotny, Samuel Albanie, Diane Larlus, Andrea Vedaldi. CVPR 2018- Self-Supervised Learning of 3D Human Pose Using Multi-View Geometry.
[[pdf]](https://arxiv.org/abs/1903.02330)
- Muhammed Kocabas; Salih Karagoz; Emre Akbas. CVPR 2019- SelFlow: Self-Supervised Learning of Optical Flow.
[[pdf]](https://arxiv.org/abs/1904.03597)
- Jiangliu Wang; Jianbo Jiao; Linchao Bao; Shengfeng He; Yunhui Liu; Wei Liu. CVPR 2019- Unsupervised Learning of Landmarks by Descriptor Vector Exchange.
[[pdf]](https://arxiv.org/abs/1908.06427)
[[code]](https://github.com/jamt9000/DVE)
[[web]](http://www.robots.ox.ac.uk/~vgg/research/DVE/)
- James Thewlis, Samuel Albanie, Hakan Bilen, Andrea Vedaldi. ICCV 2019
### Audio
- Audio-Visual Scene Analysis with Self-Supervised Multisensory Features.
[[pdf]](https://arxiv.org/pdf/1804.03641.pdf)
[[code]](https://github.com/andrewowens/multisensory)
- Andrew Owens, Alexei A. Efros. *ECCV 2018*
- Objects that Sound.
[[pdf]](https://arxiv.org/pdf/1712.06651.pdf)
- R. Arandjelović, A. Zisserman. *ECCV 2018*
- Learning to Separate Object Sounds by Watching Unlabeled Video.
[[pdf]](https://arxiv.org/abs/1804.01665)
[[project]](http://vision.cs.utexas.edu/projects/separating_object_sounds/)
- Ruohan Gao, Rogerio Feris, Kristen Grauman. *ECCV 2018*
- The Sound of Pixels.
[[pdf]]( https://arxiv.org/pdf/1907.11879.pdf )
[[project]](https://github.com/hangzhaomit/Sound-of-Pixels)
- Zhao, Hang and Gan, Chuang and Rouditchenko, Andrew and Vondrick, Carl and McDermott, Josh and Torralba, Antonio. *ECCV 2018*- Learnable PINs: Cross-Modal Embeddings for Person Identity.
[[pdf]](https://arxiv.org/abs/1805.00833)
[[web]](http://www.robots.ox.ac.uk/~vgg/research/LearnablePins/)
- Arsha Nagrani, Samuel Albanie, Andrew Zisserman. ECCV 2018- Cooperative Learning of Audio and Video Models from Self-Supervised Synchronization.
[[pdf]](http://papers.nips.cc/paper/8002-cooperative-learning-of-audio-and-video-models-from-self-supervised-synchronization.pdf)
- Bruno Korbar,Dartmouth College, Du Tran, Lorenzo Torresani. *NIPS 2018*
- Self-Supervised Generation of Spatial Audio for 360° Video.
[[pdf]](http://papers.nips.cc/paper/7319-self-supervised-generation-of-spatial-audio-for-360-video.pdf)
- Pedro Morgado, Nuno Nvasconcelos, Timothy Langlois, Oliver Wang. *NIPS 2018*
- TriCycle: Audio Representation Learning from Sensor Network Data Using Self-Supervision
[[pdf]](http://www.justinsalamon.com/uploads/4/3/9/4/4394963/cartwright_tricycle_waspaa2019.pdf)
- Mark Cartwright, Jason Cramer, Justin Salamon, Juan Pablo Bello. *WASPAA 2019*### Others
- Self-learning Scene-specific Pedestrian Detectors using a Progressive Latent Model.
[[pdf]](https://arxiv.org/abs/1611.07544)
- Qixiang Ye, Tianliang Zhang, Qiang Qiu, Baochang Zhang, Jie Chen, Guillermo Sapiro. *CVPR 2017*
- Free Supervision from Video Games.
[[pdf]](http://www.philkr.net/papers/2018-06-01-cvpr/2018-06-01-cvpr.pdf)
[[project+code]](http://www.philkr.net/fsv/)
- Philipp Krähenbühl. *CVPR 2018*
- Fighting Fake News: Image Splice Detection via Learned Self-Consistency
[[pdf]](https://arxiv.org/pdf/1805.04096.pdf)
[[code]](https://github.com/minyoungg/selfconsistency)
- Minyoung Huh*, Andrew Liu*, Andrew Owens, Alexei A. Efros. *ECCV 2018*
- Self-supervised Tracking by Colorization (Tracking Emerges by Colorizing Videos).
[[pdf]](https://www.cs.columbia.edu/~vondrick//videocolor.pdf)
- Carl Vondrick*, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, Kevin Murphy. *ECCV 2018*
- High-Fidelity Image Generation With Fewer Labels.
[[pdf]](https://arxiv.org/pdf/1903.02271.pdf)
- Mario Lucic*, Michael Tschannen*, Marvin Ritter*, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly.
- Self-supervised Fitting of Articulated Meshes to Point Clouds.
- Chun-Liang Li, Tomas Simon, Jason Saragih, Barnabás Póczos and Yaser Sheikh. *CVPR 2019*
- SCOPS: Self-Supervised Co-Part Segmentation.
- Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo Molchanov, Ming-Hsuan Yang, and Jan Kautz. *CVPR 2019*
- Self-Supervised GANs via Auxiliary Rotation Loss.
- Ting Chen; Xiaohua Zhai; Marvin Ritter; Mario Lucic; Neil Houlsby. *CVPR 2019*
- Self-Supervised Adaptation of High-Fidelity Face Models for Monocular Performance Tracking.
- Jae Shin Yoon; Takaaki Shiratori; Shoou-I Yu; Hyun Soo Park. *CVPR 2019*
- Multi-Task Self-Supervised Object Detection via Recycling of Bounding Box Annotations.
- Wonhee Lee; Joonil Na; Gunhee Kim. *CVPR 2019*
- Self-Supervised Convolutional Subspace Clustering Network.
- Junjian Zhang; Chun-Guang Li; Chong You; Xianbiao Qi; Honggang Zhang; Jun Guo; Zhouchen Lin. *CVPR 2019*
- Reinforced Cross-Modal Matching and Self-Supervised Imitation Learning for Vision-Language Navigation.
- Xin Wang; Qiuyuan Huang; Asli Celikyilmaz; Jianfeng Gao; Dinghan Shen; Yuan-Fang Wang; William Yang Wang; Lei Zhang. *CVPR 2019*
- Unsupervised 3D Pose Estimation With Geometric Self-Supervision.
- Ching-Hang Chen; Ambrish Tyagi; Amit Agrawal; Dylan Drover; Rohith MV; Stefan Stojanov; James M. Rehg. *CVPR 2019*
- Learning to Generate Grounded Image Captions without Localization Supervision. [[pdf]](https://arxiv.org/pdf/1906.00283.pdf)
- Chih-Yao Ma; Yannis Kalantidis; Ghassan AlRegib; Peter Vajda; Marcus Rohrbach; Zsolt Kira.
- VideoBERT: A Joint Model for Video and Language Representation Learning [[pdf]](https://arxiv.org/pdf/1904.01766.pdf)
- Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, Cordelia Schmid. *ICCV 2019*
- S4L: Self-Supervised Semi-Supervised Learning
[[pdf]](https://arxiv.org/pdf/1905.03670.pdf)
- Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, Lucas Beyer
- Countering Noisy Labels By Learning From Auxiliary Clean Labels [[pdf]]( https://arxiv.org/pdf/1905.13305.pdf )
- Tsung Wei Tsai, Chongxuan Li, Jun Zhu## Machine Learning
- Self-taught Learning: Transfer Learning from Unlabeled Data.
[[pdf]](https://ai.stanford.edu/~hllee/icml07-selftaughtlearning.pdf)
- Raina, Rajat and Battle, Alexis and Lee, Honglak and Packer,
Benjamin and Ng, Andrew Y. *ICML 2007*- Representation Learning: A Review and New Perspectives.
[[pdf]](https://arxiv.org/pdf/1206.5538.pdf)
- Bengio, Yoshua and Courville, Aaron and Vincent, Pascal. *TPAMI 2013*.### Reinforcement Learning
- Curiosity-driven Exploration by Self-supervised Prediction.
[[pdf]](http://pathak22.github.io/noreward-rl/resources/icml17.pdf)
[[code]](https://pathak22.github.io/noreward-rl/index.html#sourceCode)
- Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. *ICML 2017*- Large-Scale Study of Curiosity-Driven Learning.
[[pdf]](https://pathak22.github.io/large-scale-curiosity/resources/largeScaleCuriosity2018.pdf)
- Yuri Burda*, Harri Edwards*, Deepak Pathak*, Amos Storkey, Trevor Darrell and Alexei A. Efros- Playing hard exploration games by watching YouTube.
[[pdf]](https://papers.nips.cc/paper/7557-playing-hard-exploration-games-by-watching-youtube.pdf)
- Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, Nando de Freitas. *NIPS 2018*
- Unsupervised State Representation Learning in Atari.
[[pdf]](https://arxiv.org/pdf/1906.08226.pdf)
[[code]](https://github.com/mila-iqia/atari-representation-learning)
- Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm. *NeurIPS 2019*## Robotics
### 2006
- Improving Robot Navigation Through Self-Supervised Online Learning
[[pdf]](http://www.roboticsproceedings.org/rss02/p04.pdf)
- Boris Sofman, Ellie Lin, J. Andrew Bagnell, Nicolas Vandapel, and Anthony Stentz
- Reverse Optical Flow for Self-Supervised Adaptive Autonomous Robot Navigation
[[pdf]](https://www.cs.ait.ac.th/~mdailey/cvreadings/Lookingbill-ReverseOptical.pdf)
- A. Lookingbill, D. Lieb, J. Rogers and J. Curry### 2009
- Learning Long-Range Vision for Autonomous Off-Road Driving
[[pdf]](http://yann.lecun.com/exdb/publis/pdf/hadsell-jfr-09.pdf)
- Raia Hadsell, Pierre Sermanet, Jan Ben, Ayse Erkan, Marco Scoffier, Koray Kavukcuoglu, Urs Muller, Yann LeCun### 2012
- Self-supervised terrain classification for planetary surface exploration rovers
[[pdf]](https://pdfs.semanticscholar.org/66b7/eef326d1db1fa2b19d5dc6b84d3d2a95b76c.pdf)
- Christopher A. Brooks, Karl Iagnemma
### 2014
- Terrain Traversability Analysis Using Multi-Sensor Data Correlation by a Mobile Robot
[[pdf]](http://sensor.eng.shizuoka.ac.jp/pdf/2014/SII.pdf)
- Mohammed Abdessamad Bekhti, Yuichi Kobayashi and Kazuki Matsumura
### 2015
- Online self-supervised learning for dynamic object segmentation
[[pdf]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.875.5829&rep=rep1&type=pdf)
- Vitor Guizilini and Fabio Ramos, The International Journal of Robotics Research- Self-Supervised Online Learning of Basic Object Push Affordances
[[pdf]](http://abr.ijs.si/pdf/1429861734-RidgeIJARS2015.pdf)
- Barry Ridge, Ales Leonardis, Ales Ude, Miha Denisa, and Danijel Skocaj
- Self-supervised learning of grasp dependent tool affordances on the iCub Humanoid robot
[[pdf]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139640)
- Tanis Mar, Vadim Tikhanoff, Giorgio Metta, and Lorenzo Natale### 2016
- Persistent self-supervised learning principle: from stereo to monocular vision for obstacle avoidance
[[pdf]](https://arxiv.org/pdf/1603.08047.pdf)
- Kevin van Hecke, Guido de Croon, Laurens van der Maaten, Daniel Hennes, and Dario Izzo- The Curious Robot: Learning Visual Representations via Physical Interactions.
[[pdf]](https://arxiv.org/pdf/1604.01360v2)
- Lerrel Pinto and Dhiraj Gandhi and Yuanfeng Han and Yong-Lae Park and Abhinav Gupta. *ECCV 2016*- Learning to Poke by Poking: Experiential Learning of Intuitive Physics.
[\[pdf\]](https://arxiv.org/abs/1606.07419)
- Agrawal, Pulkit and Nair, Ashvin V and Abbeel, Pieter and Malik, Jitendra and Levine, Sergey. *NIPS 2016*- Supersizing Self-supervision: Learning to Grasp from 50K Tries and
700 Robot Hours. [\[pdf\]](https://arxiv.org/pdf/1509.06825.pdf)
- Pinto, Lerrel and Gupta, Abhinav. *ICRA 2016*
### 2017
- Supervision via Competition: Robot Adversaries for Learning Tasks.
[[pdf]](https://arxiv.org/pdf/1610.01685.pdf)
- Pinto, Lerrel and Davidson, James and Gupta, Abhinav. *ICRA 2017*- Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge.
[[pdf]](https://arxiv.org/pdf/1803.09956.pdf)
[[Project]](http://apc.cs.princeton.edu/)
- Andy Zeng, Kuan-Ting Yu, Shuran Song, Daniel Suo, Ed Walker Jr., Alberto Rodriguez, Jianxiong Xiao. *ICRA 2017*- Combining Self-Supervised Learning and Imitation for Vision-Based Rope Manipulation.
[[pdf]](https://arxiv.org/abs/1703.02018)
[[Project]](https://ropemanipulation.github.io/)
- Ashvin Nair*, Dian Chen*, Pulkit Agrawal*, Phillip Isola, Pieter Abbeel, Jitendra Malik, Sergey Levine. *ICRA 2017*- Learning to Fly by Crashing
[[pdf]](https://arxiv.org/abs/1704.05588)
- Dhiraj Gandhi, Lerrel Pinto, Abhinav Gupta *IROS 2017*
- Self-supervised learning as an enabling technology for future space exploration robots: ISS experiments on monocular distance learning
[[pdf]](http://www.esa.int/gsp/ACT/doc/AI/pub/ACT-RPR-AI-2017-ACTA-SSL.pdf)
- K. van Hecke, G. C. de Croon, D. Hennes, T. P. Setterfield, A. Saenz- Otero, and D. Izzo- Unsupervised Perceptual Rewards for Imitation Learning.
[[pdf]](https://arxiv.org/abs/1612.06699)
[[project]](https://sermanet.github.io/rewards/)
- Sermanet, Pierre and Xu, Kelvin and Levine, Sergey. *RSS 2017*- Self-Supervised Visual Planning with Temporal Skip Connections.
[[pdf]](http://arxiv.org/pdf/1710.05268)
- Frederik Ebert, Chelsea Finn, Alex X. Lee, Sergey Levine. *CoRL2017*### 2018
- CASSL: Curriculum Accelerated Self-Supervised Learning.
[[pdf]](https://arxiv.org/pdf/1708.01354.pdf)
- Adithyavairavan Murali, Lerrel Pinto, Dhiraj Gandhi, Abhinav Gupta. *ICRA 2018*- Time-Contrastive Networks: Self-Supervised Learning from Video.
[[pdf]](https://arxiv.org/pdf/1609.09475.pdf)
[[Project]](https://sermanet.github.io/imitate/)
- Pierre Sermanet and Corey Lynch and Yevgen Chebotar and Jasmine Hsu and Eric Jang and Stefan Schaal and Sergey Levine. *ICRA 2018*- Self-Supervised Deep Reinforcement Learning with Generalized Computation Graphs for Robot Navigation.
[[pdf]](http://arxiv.org/pdf/1709.10489)
- Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, Sergey Levine. *ICRA 2018*- Learning Actionable Representations from Visual Observations.
[[pdf]](https://arxiv.org/pdf/1609.09475.pdf)
[[Project]](https://sermanet.github.io/imitate/)
- Dwibedi, Debidatta and Tompson, Jonathan and Lynch, Corey and Sermanet, Pierre. *IROS 2018*
- Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning.
[[pdf]](https://arxiv.org/abs/1808.00928)
[[Project]](https://sites.google.com/view/actionablerepresentations/)
- Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, Thomas Funkhouser. *IROS 2018*
- Visual Reinforcement Learning with Imagined Goals.
[[pdf]](https://arxiv.org/abs/1807.04742)
[[Project]](https://sites.google.com/site/visualrlwithimaginedgoals/)
- Ashvin Nair*, Vitchyr Pong*, Murtaza Dalal, Shikhar Bahl, Steven Lin, Sergey Levine.*NeurIPS 2018*- Grasp2Vec: Learning Object Representations from Self-Supervised Grasping.
[[pdf]](https://arxiv.org/pdf/1811.06964.pdf)
[[Project]](https://sites.google.com/site/grasp2vec/home)
- Eric Jang*, Coline Devin*, Vincent Vanhoucke, Sergey Levine. *CoRL 2018*- Robustness via Retrying: Closed-Loop Robotic Manipulation with Self-Supervised Learning.
[[pdf]](https://arxiv.org/pdf/1810.03043.pdf)
[[Project]](https://sites.google.com/view/robustness-via-retrying)
- Frederik Ebert, Sudeep Dasari, Alex X. Lee, Sergey Levine, Chelsea Finn. *CoRL 2018*### 2019
- Learning Long-Range Perception Using Self-Supervision from Short-Range Sensors and Odometry.
[[pdf]](https://arxiv.org/abs/1809.07207)
- Mirko Nava, Jerome Guzzi, R. Omar Chavez-Garcia, Luca M. Gambardella, Alessandro Giusti. *Robotics and Automation Letters*- Learning Latent Plans from Play.
[[pdf]](https://arxiv.org/pdf/1903.01973.pdf)
[[Project]](https://learning-from-play.github.io/)
- COREY LYNCH, MOHI KHANSARI, TED XIAO, VIKASH KUMAR, JONATHAN TOMPSON, SERGEY LEVINE, PIERRE SERMANET## NLP
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
[[pdf]](https://arxiv.org/abs/1810.04805)
[[link]](https://github.com/google-research/bert)
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. *NAACL 2019 Best Long Paper*- Self-Supervised Dialogue Learning
[[pdf]](https://arxiv.org/pdf/1907.00448.pdf)
- Jiawei Wu, Xin Wang, William Yang Wang. *ACL 2019*- Self-Supervised Learning for Contextualized Extractive Summarization
[[pdf]](https://arxiv.org/pdf/1906.04466.pdf)
- Hong Wang, Xin Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, William Yang Wang. *ACL 2019*
## Talks
- The power of Self-Learning Systems. Demis Hassabis (DeepMind).
[[link]](https://youtu.be/wxis9FrCHbw)
- Supersizing Self-Supervision: Learning Perception and Action without Human Supervision. Abhinav Gupta (CMU).
[[link]](https://simons.berkeley.edu/talks/abhinav-gupta-2017-3-28)
- Self-supervision, Meta-supervision, Curiosity: Making Computers Study Harder. Alyosha Efros (UCB)
[[link]](https://business.facebook.com/academics/videos/1632981350086599)
- Unsupervised Visual Learning Tutorial. *CVPR 2018*
[[part 1]](https://www.youtube.com/watch?v=gSqmUOAMwcc)
[[part 2]](https://www.youtube.com/watch?v=BijK_US6A0w)
- Self-Supervised Learning. Andrew Zisserman (Oxford & Deepmind).
[[pdf]](https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf)
- Graph Embeddings, Content Understanding, & Self-Supervised Learning. Yann LeCun. (NYU & FAIR)
[[pdf]](https://drive.google.com/file/d/12pDCno02FJPDEBk4iGuuaj8b2rr48Hh0/view)
[[video]](https://www.youtube.com/watch?v=UGPT64wo7lU)
- Self-supervised learning: could machines learn like humans? Yann LeCun @EPFL.
[[video]](https://www.youtube.com/watch?v=7I0Qt7GALVk)
- Week 9 (b): CS294-158 Deep Unsupervised Learning(Spring 2019). Alyosha Efros @UC Berkeley.
[[video]](https://www.youtube.com/watch?v=PX11C5Vfo9U)## Thesis
- Supervision Beyond Manual Annotations for Learning Visual Representations. Carl Doersch. [[pdf]](http://www.carldoersch.com/docs/thesis.pdf).
- Image Synthesis for Self-Supervised Visual Representation Learning. Richard Zhang. [[pdf]](https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-36.pdf).
- Visual Learning beyond Direct Supervision. Tinghui Zhou. [[pdf]](https://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-128.pdf).
- Visual Learning with Minimal Human Supervision. Ishan Misra. [[pdf]](https://www.ri.cmu.edu/publications/visual-learning-with-minimal-human-supervision/).## Blog
- Self-Supervised Representation Learning. Lilian Weng. [[link]](https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html).## License
To the extent possible under law, [Zhongzheng Ren](https://jason718.github.io/) has waived all copyright and related or neighboring rights to this work.