Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/esciencecenter-digital-skills/awesome
Awesome list for eScience Academy related materials
https://github.com/esciencecenter-digital-skills/awesome
List: awesome
Last synced: 16 days ago
JSON representation
Awesome list for eScience Academy related materials
- Host: GitHub
- URL: https://github.com/esciencecenter-digital-skills/awesome
- Owner: esciencecenter-digital-skills
- Created: 2020-09-16T10:25:10.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2020-10-05T09:52:44.000Z (about 4 years ago)
- Last Synced: 2024-04-23T11:15:01.335Z (8 months ago)
- Homepage:
- Size: 8.79 KB
- Stars: 0
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome - Awesome list for eScience Academy related materials. (Other Lists / PowerShell Lists)
README
# Awesome list of pedagogy and training related resources
## Generic materials
### Lessons
- [Data Carpentry Lessons](https://datacarpentry.org/lessons/). Some are worth being highlighted:
- [The Unix Shell](http://swcarpentry.github.io/shell-novice/).
- [Version control with git](http://swcarpentry.github.io/git-novice).
- Programming with Python. [1](http://swcarpentry.github.io/python-novice-inflammation) and [2](http://swcarpentry.github.io/python-novice-gapminder).
- Programming with R. [1](http://swcarpentry.github.io/r-novice-inflammation) and [2](http://swcarpentry.github.io/r-novice-gapminder).### Books
- [Effective computation in Physics](http://physics.codes/). Although the examples use physical problems and `Python` code, this book is probably the best introduction to scientific computing.### Scientific literature
- [Best Practices for Scientific Computing](https://doi.org/10.1371/journal.pbio.1001745).
- [Good enough practices in Scientific Computing](https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510).
- [Ten quick tips for teaching with participatory live coding](https://doi.org/10.1371/journal.pcbi.1008090).### Tools
- [Witeboard](https://witeboard.com/). A shareable whiteboard app.## git-specific materials
### Graphical User Interfaces
- [Official list](https://git-scm.com/downloads/guis). Some of our favourites are:
- [GitKraken](https://www.gitkraken.com/).
- [SourceTree](https://www.sourcetreeapp.com/).
- [GitHub Desktop](https://desktop.github.com/).
- [RStudio git client](https://rstudio.com/resources/webinars/managing-part-2-github-and-rstudio/).## R-specific materials
### Lessons
- [RStudio educational material](https://education.rstudio.com/).
- [Interactive tutorials with `learnr`](https://rstudio.github.io/learnr/).
- Carpentries courses on R:
- [Programming with R](http://swcarpentry.github.io/r-novice-inflammation).
- [Programming and plotting with R and Gapminder data](http://swcarpentry.github.io/r-novice-gapminder).### Books
- [R for Data Science](https://r4ds.had.co.nz/).
- [Advanced R](https://adv-r.hadley.nz/). Don't let the title scare you. This is probably the best written R book ever.
- [R Packages](https://r-pkgs.org/).
- [ggplot2: Elegant Graphics for Data Analysis](https://ggplot2-book.org/).### Scientific literature
- [Tidy data](https://vita.had.co.nz/papers/tidy-data.pdf). The basic 3 principles data frames are based on.### Other
- [RStudio cheatsheets](https://rstudio.com/resources/cheatsheets/). A collection of brilliant cheatsheets. The ones below are particularly relevant:
- [RStudio](https://raw.githubusercontent.com/rstudio/cheatsheets/master/rstudio-ide.pdf).
- [Data import](https://raw.githubusercontent.com/rstudio/cheatsheets/master/data-import.pdf).
- [dplyr](https://raw.githubusercontent.com/rstudio/cheatsheets/master/data-transformation.pdf).
- [ggplot2](https://rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf).
- [RMarkdown](https://raw.githubusercontent.com/rstudio/cheatsheets/master/rmarkdown-2.0.pdf).
- [Unit testing in R](https://testthat.r-lib.org/).