Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/facebookresearch/dinov2

PyTorch code and models for the DINOv2 self-supervised learning method.
https://github.com/facebookresearch/dinov2

Last synced: about 1 month ago
JSON representation

PyTorch code and models for the DINOv2 self-supervised learning method.

Awesome Lists containing this project

README

        

:new: [2023-10-26] *Added DINOv2 backbones with registers, following [Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588).*

# DINOv2: Learning Robust Visual Features without Supervision

**[Meta AI Research, FAIR](https://ai.facebook.com/research/)**

Maxime Oquab,
Timothée Darcet,
Théo Moutakanni,
Huy V. Vo,
Marc Szafraniec,
Vasil Khalidov,
Patrick Labatut,
Armand Joulin,
Piotr Bojanowski

[[`Paper #1`](https://arxiv.org/abs/2304.07193)] [`Paper #2`](https://arxiv.org/abs/2309.16588)] [[`Blog`](https://ai.facebook.com/blog/dino-v2-computer-vision-self-supervised-learning/)] [[`Demo`](https://dinov2.metademolab.com)] [[`BibTeX`](#citing-dinov2)]

PyTorch implementation and pretrained models for DINOv2. For details, see the papers: **[DINOv2: Learning Robust Visual Features without Supervision](https://arxiv.org/abs/2304.07193)** and **[Vision Transformers Need Registers](https://arxiv.org/abs/2309.16588)**.

DINOv2 models produce high-performance visual features that can be directly employed with classifiers as simple as linear layers on a variety of computer vision tasks; these visual features are robust and perform well across domains without any requirement for fine-tuning. The models were pretrained on a dataset of 142 M images without using any labels or annotations.

https://github.com/facebookresearch/dinov2/assets/60359573/f168823e-7922-415a-b429-578badf5c356


Visualization of the three first principal components of the patch features of all frames, mapped to RGB values.

## Pretrained models



model
# of
params
with
registers
ImageNet
k-NN
ImageNet
linear
download




ViT-S/14 distilled
21 M
:x:
79.0%
81.1%
backbone only


ViT-S/14 distilled
21 M
:white_check_mark:
79.1%
80.9%
backbone only


ViT-B/14 distilled
86 M
:x:
82.1%
84.5%
backbone only


ViT-B/14 distilled
86 M
:white_check_mark:
82.0%
84.6%
backbone only


ViT-L/14 distilled
300 M
:x:
83.5%
86.3%
backbone only


ViT-L/14 distilled
300 M
:white_check_mark:
83.8%
86.7%
backbone only


ViT-g/14
1,100 M
:x:
83.5%
86.5%
backbone only


ViT-g/14
1,100 M
:white_check_mark:
83.7%
87.1%
backbone only

### Pretrained backbones (via PyTorch Hub)

Please follow the instructions [here](https://pytorch.org/get-started/locally/) to install PyTorch (the only required dependency for loading the model). Installing PyTorch with CUDA support is strongly recommended.

A corresponding [model card](MODEL_CARD.md) is included in the repository.

```python
import torch

# DINOv2
dinov2_vits14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
dinov2_vitb14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14')
dinov2_vitl14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')
dinov2_vitg14 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14')

# DINOv2 with registers
dinov2_vits14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg')
dinov2_vitb14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_reg')
dinov2_vitl14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14_reg')
dinov2_vitg14_reg = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_reg')
```

### Pretrained heads - Image classification



backbone
with
registers
download


ImageNet




ViT-S/14 distilled
:x:

linear head (1 layer,
4 layers)



ViT-S/14 distilled
:white_check_mark:

linear head (1 layer,
4 layers)



ViT-B/14 distilled
:x:

linear head (1 layer,
4 layers)


ViT-B/14 distilled
:white_check_mark:

linear head (1 layer,
4 layers)


ViT-L/14 distilled
:x:

linear head (1 layer,
4 layers)


ViT-L/14 distilled
:white_check_mark:

linear head (1 layer,
4 layers)


ViT-g/14
:x:

linear head (1 layer,
4 layers)


ViT-g/14
:white_check_mark:

linear head (1 layer,
4 layers)

The (full) classifier models can be loaded via PyTorch Hub:

```python
import torch

# DINOv2
dinov2_vits14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_lc')
dinov2_vitb14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_lc')
dinov2_vitl14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14_lc')
dinov2_vitg14_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_lc')

# DINOv2 with registers
dinov2_vits14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14_reg_lc')
dinov2_vitb14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitb14_reg_lc')
dinov2_vitl14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14_reg_lc')
dinov2_vitg14_reg_lc = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_reg_lc')
```

### Pretrained heads - Depth estimation



backbone
download head


NYUd
KITTI




ViT-S/14 distilled

linear (1 layer,
4 layers),
DPT


linear (1 layer,
4 layers),
DPT



ViT-B/14 distilled

linear (1 layer,
4 layers),
DPT


linear (1 layer,
4 layers),
DPT



ViT-L/14 distilled

linear (1 layer,
4 layers),
DPT


linear (1 layer,
4 layers),
DPT



ViT-g/14

linear (1 layer,
4 layers),
DPT


linear (1 layer,
4 layers),
DPT


### Pretrained heads - Semantic segmentation



backbone
download model
download head


ADE20K
ADE20K
VOC2012




ViT-S/14 distilled


linear,
multi-scale


linear,
multi-scale



ViT-B/14 distilled


linear,
multi-scale


linear,
multi-scale



ViT-L/14 distilled


linear,
multi-scale


linear,
multi-scale



ViT-g/14

Mask2Former


linear,
multi-scale


linear,
multi-scale


## Installation

The training and evaluation code requires PyTorch 2.0 and [xFormers](https://github.com/facebookresearch/xformers) 0.0.18 as well as a number of other 3rd party packages. Note that the code has only been tested with the specified versions and also expects a Linux environment. To setup all the required dependencies for training and evaluation, please follow the instructions below:

*[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html)* **(Recommended)** - Clone the repository and then create and activate a `dinov2` conda environment using the provided environment definition:

```shell
conda env create -f conda.yaml
conda activate dinov2
```

*[pip](https://pip.pypa.io/en/stable/getting-started/)* - Clone the repository and then use the provided `requirements.txt` to install the dependencies:

```shell
pip install -r requirements.txt
```

For dense tasks (depth estimation and semantic segmentation), there are additional dependencies (specific versions of `mmcv` and `mmsegmentation`) which are captured in the `extras` dependency specifications:

*[conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html)* **(Recommended)**:

```shell
conda env create -f conda-extras.yaml
conda activate dinov2-extras
```

*[pip](https://pip.pypa.io/en/stable/getting-started/)*:

```shell
pip install -r requirements.txt -r requirements-extras.txt
```

## Data preparation

### ImageNet-1k

The root directory of the dataset should hold the following contents:

- `/test/ILSVRC2012_test_00000001.JPEG`
- `/test/[..]`
- `/test/ILSVRC2012_test_00100000.JPEG`
- `/train/n01440764/n01440764_10026.JPEG`
- `/train/[...]`
- `/train/n15075141/n15075141_9993.JPEG`
- `/val/n01440764/ILSVRC2012_val_00000293.JPEG`
- `/val/[...]`
- `/val/n15075141/ILSVRC2012_val_00049174.JPEG`
- `/labels.txt`

The provided dataset implementation expects a few additional metadata files to be present under the extra directory:

- `/class-ids-TRAIN.npy`
- `/class-ids-VAL.npy`
- `/class-names-TRAIN.npy`
- `/class-names-VAL.npy`
- `/entries-TEST.npy`
- `/entries-TRAIN.npy`
- `/entries-VAL.npy`

These metadata files can be generated (once) with the following lines of Python code:

```python
from dinov2.data.datasets import ImageNet

for split in ImageNet.Split:
dataset = ImageNet(split=split, root="", extra="")
dataset.dump_extra()
```

Note that the root and extra directories do not have to be distinct directories.

### ImageNet-22k

Please adapt the [dataset class](dinov2/data/datasets/image_net_22k.py) to match your local setup.


:warning: To execute the commands provided in the next sections for training and evaluation, the `dinov2` package should be included in the Python module search path, i.e. simply prefix the command to run with `PYTHONPATH=.`.

## Training

### Fast setup: training DINOv2 ViT-L/16 on ImageNet-1k

Run DINOv2 training on 4 A100-80GB nodes (32 GPUs) in a SLURM cluster environment with submitit:

```shell
python dinov2/run/train/train.py \
--nodes 4 \
--config-file dinov2/configs/train/vitl16_short.yaml \
--output-dir \
train.dataset_path=ImageNet:split=TRAIN:root=:extra=
```

Training time is approximately 1 day and the resulting checkpoint should reach 81.6% on k-NN eval and 82.9% on linear eval.

The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.

### Long setup: training DINOv2 ViT-L/14 on ImageNet-22k

Run DINOv2 training on 12 A100-80GB nodes (96 GPUs) in a SLURM cluster environment with submitit:

```shell
python dinov2/run/train/train.py \
--nodes 12 \
--config-file dinov2/configs/train/vitl14.yaml \
--output-dir \
train.dataset_path=ImageNet22k:root=:extra=
```

Training time is approximately 3.3 days and the resulting checkpoint should reach 82.0% on k-NN eval and 84.5% on linear eval.

The training code saves the weights of the teacher in the `eval` folder every 12500 iterations for evaluation.

## Evaluation

The training code regularly saves the teacher weights. In order to evaluate the model, run the following evaluation on a single node:

### k-NN classification on ImageNet-1k

```shell
python dinov2/run/eval/knn.py \
--config-file /config.yaml \
--pretrained-weights /eval/training_24999/teacher_checkpoint.pth \
--output-dir /eval/training_24999/knn \
--train-dataset ImageNet:split=TRAIN:root=:extra= \
--val-dataset ImageNet:split=VAL:root=:extra=
```

### Logistic regression classification on ImageNet-1k

```shell
python dinov2/run/eval/log_regression.py \
--config-file /config.yaml \
--pretrained-weights /eval/training_24999/teacher_checkpoint.pth \
--output-dir /eval/training_24999/logreg \
--train-dataset ImageNet:split=TRAIN:root=:extra= \
--val-dataset ImageNet:split=VAL:root=:extra=
```

### Linear classification with data augmentation on ImageNet-1k

```shell
python dinov2/run/eval/linear.py \
--config-file /config.yaml \
--pretrained-weights /eval/training_24999/teacher_checkpoint.pth \
--output-dir /eval/training_24999/linear \
--train-dataset ImageNet:split=TRAIN:root=:extra= \
--val-dataset ImageNet:split=VAL:root=:extra=
```

We release the weights from evaluating the different models:


model
with
registers
ImageNet
top-1
linear evaluation


ViT-S/14 distilled
:x:
81.1%
linear head weights


ViT-S/14 distilled
:white_check_mark:
80.8%
linear head weights


ViT-B/14 distilled
:x:
84.5%
linear head weights


ViT-B/14 distilled
:white_check_mark:
84.4%
linear head weights


ViT-L/14 distilled
:x:
86.3%
linear head weights


ViT-L/14 distilled
:white_check_mark:
86.5%
linear head weights


ViT-g/14
:x:
86.5%
linear head weights


ViT-g/14
:white_check_mark:
87.0%
linear head weights

The performance of the provided pretrained model weights can be evaluated as follows on ImageNet-1k:

```shell
python dinov2/run/eval/linear.py \
--config-file dinov2/configs/eval/vitg14_pretrain.yaml \
--pretrained-weights https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_pretrain.pth \
--train-dataset ImageNet:split=TRAIN:root=:extra= \
--val-dataset ImageNet:split=VAL:root=:extra=
```

## Notebooks

A few notebooks are provided to help the community leverage the models and code:



  • Depth estimation - How to load and use the depth heads in combination with a matching backbone via mmcv


  • Semantic segmentation - How to load and use the segmentation heads in combination with a matching backbone via mmcv, and also how to load and use the Mask2Former-based segmentation model trained on ADE20K

## License

DINOv2 code and model weights are released under the Apache License 2.0. See [LICENSE](LICENSE) for additional details.

## Contributing

See [contributing](CONTRIBUTING.md) and the [code of conduct](CODE_OF_CONDUCT.md).

## Citing DINOv2

If you find this repository useful, please consider giving a star :star: and citation :t-rex::

```
@misc{oquab2023dinov2,
title={DINOv2: Learning Robust Visual Features without Supervision},
author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy V. and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr},
journal={arXiv:2304.07193},
year={2023}
}
```

```
@misc{darcet2023vitneedreg,
title={Vision Transformers Need Registers},
author={Darcet, Timothée and Oquab, Maxime and Mairal, Julien and Bojanowski, Piotr},
journal={arXiv:2309.16588},
year={2023}
}
```