Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/gliese581gg/YOLO_tensorflow
tensorflow implementation of 'YOLO : Real-Time Object Detection'
https://github.com/gliese581gg/YOLO_tensorflow
Last synced: 11 days ago
JSON representation
tensorflow implementation of 'YOLO : Real-Time Object Detection'
- Host: GitHub
- URL: https://github.com/gliese581gg/YOLO_tensorflow
- Owner: gliese581gg
- License: other
- Created: 2016-02-15T04:50:51.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-01-05T07:57:00.000Z (almost 6 years ago)
- Last Synced: 2024-10-14T10:21:49.589Z (26 days ago)
- Language: Python
- Size: 8.1 MB
- Stars: 1,722
- Watchers: 94
- Forks: 656
- Open Issues: 37
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-tensorflow - YOLO TensorFlow - Implementation of 'YOLO : Real-Time Object Detection' (Powered by TensorFlow)
- Awesome-TensorFlow-Chinese - YOLO TensorFlow - Implementation of 'YOLO : Real-Time Object Detection' (基于 TensorFlow 的产品 / 微信群)
- awesome-tensorflow - YOLO TensorFlow - Implementation of 'YOLO : Real-Time Object Detection' (Powered by TensorFlow)
- awesome-yolo-object-detection - gliese581gg/YOLO_tensorflow - Time Object Detection'. (Other Versions of YOLO)
- awesome-yolo-object-detection - gliese581gg/YOLO_tensorflow - Time Object Detection'. (Other Versions of YOLO)
- fucking-awesome-tensorflow - YOLO TensorFlow - Implementation of 'YOLO : Real-Time Object Detection' (Powered by TensorFlow)
README
# YOLO_tensorflow
(Version 0.3, Last updated :2017.02.21)
### 1.Introduction
This is tensorflow implementation of the YOLO:Real-Time Object Detection
It can only do predictions using pretrained YOLO_small & YOLO_tiny network for now.
(+ YOLO_face detector from https://github.com/quanhua92/darknet )
I extracted weight values from darknet's (.weight) files.
My code does not support training. Use darknet for training.
Original code(C implementation) & paper : http://pjreddie.com/darknet/yolo/
### 2.Install
(1) Download code(2) Download YOLO weight file from
YOLO_small : https://drive.google.com/file/d/0B2JbaJSrWLpza08yS2FSUnV2dlE/view?usp=sharing
YOLO_tiny : https://drive.google.com/file/d/0B2JbaJSrWLpza0FtQlc3ejhMTTA/view?usp=sharing
YOLO_face : https://drive.google.com/file/d/0B2JbaJSrWLpzMzR5eURGN2dMTk0/view?usp=sharing
(3) Put the 'YOLO_(version).ckpt' in the 'weight' folder of downloaded code
### 3.Usage
(1) direct usage with default settings (display on console, show output image, no output file writing)
python YOLO_(small or tiny)_tf.py -fromfile (input image filename)
(2) direct usage with custom settings
python YOLO_(small or tiny)_tf.py argvs
where argvs are
-fromfile (input image filename) : input image file
-disp_console (0 or 1) : whether display results on terminal or not
-imshow (0 or 1) : whether display result image or not
-tofile_img (output image filename) : output image file
-tofile_txt (output txt filename) : output text file (contains class, x, y, w, h, probability)(3) import on other scripts
import YOLO_(small or tiny)_tf
yolo = YOLO_(small or tiny)_tf.YOLO_TF()yolo.disp_console = (True or False, default = True)
yolo.imshow = (True or False, default = True)
yolo.tofile_img = (output image filename)
yolo.tofile_txt = (output txt filename)
yolo.filewrite_img = (True or False, default = False)
yolo.filewrite_txt = (True of False, default = False)yolo.detect_from_file(filename)
yolo.detect_from_cvmat(cvmat)### 4.Requirements
- Tensorflow
- Opencv2### 5.Copyright
According to the LICENSE file of the original code,
- Me and original author hold no liability for any damages
- Do not use this on commercial!### 6.Changelog
2016/02/15 : First upload!2016/02/16 : Added YOLO_tiny, Fixed bug that ignores one of the boxes in grid when both boxes detected valid objects
2016/08/26 : Uploaded weight file converter! (darknet weight -> tensorflow ckpt)
2017/02/21 : Added YOLO_face (Thanks https://github.com/quanhua92/darknet)