Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/guan-yuan/awesome-AutoML-and-Lightweight-Models
A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression, Quantization and Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering.
https://github.com/guan-yuan/awesome-AutoML-and-Lightweight-Models
List: awesome-AutoML-and-Lightweight-Models
architecture-search automated-feature-engineering automl awesome-list hyperparameter-optimization meta-learning model-acceleration model-compression nas neural-architecture-search pytorch quantization quantized-neural-network quantized-training tensorflow
Last synced: 3 months ago
JSON representation
A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression, Quantization and Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering.
- Host: GitHub
- URL: https://github.com/guan-yuan/awesome-AutoML-and-Lightweight-Models
- Owner: guan-yuan
- Created: 2018-12-28T03:08:56.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2021-06-19T07:06:34.000Z (over 3 years ago)
- Last Synced: 2024-05-19T00:01:00.109Z (8 months ago)
- Topics: architecture-search, automated-feature-engineering, automl, awesome-list, hyperparameter-optimization, meta-learning, model-acceleration, model-compression, nas, neural-architecture-search, pytorch, quantization, quantized-neural-network, quantized-training, tensorflow
- Homepage:
- Size: 150 KB
- Stars: 827
- Watchers: 55
- Forks: 160
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesomeai - AutoML-and-Lightweight-Models
- awesome-ai-awesomeness - AutoML-and-Lightweight-Models
- awesome-ai-awesomeness - AutoML-and-Lightweight-Models
- awesome-machine-learning-resources - **[List - yuan/awesome-AutoML-and-Lightweight-Models?style=social) (Table of Contents)
- ultimate-awesome - awesome-AutoML-and-Lightweight-Models - A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression, Quantization and Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering. (Other Lists / Monkey C Lists)
README
# awesome-AutoML-and-Lightweight-Models
A list of high-quality (newest) AutoML works and lightweight models including **1.) Neural Architecture Search**, **2.) Lightweight Structures**, **3.) Model Compression, Quantization and Acceleration**, **4.) Hyperparameter Optimization**, **5.) Automated Feature Engineering**.This repo is aimed to provide the info for AutoML research (especially for the lightweight models). Welcome to PR the works (papers, repositories) that are missed by the repo.
## 1.) Neural Architecture Search
### **[Papers]**
**Gradient:**
- [When NAS Meets Robustness: In Search of Robust Architectures against Adversarial Attacks](https://arxiv.org/abs/1911.10695) | [**CVPR 2020**]
+ [gmh14/RobNets](https://github.com/gmh14/RobNets) | [Pytorch]- [Searching for A Robust Neural Architecture in Four GPU Hours](https://xuanyidong.com/publication/cvpr-2019-gradient-based-diff-sampler/) | [**CVPR 2019**]
+ [D-X-Y/GDAS](https://github.com/D-X-Y/GDAS) | [Pytorch]- [ASAP: Architecture Search, Anneal and Prune](https://arxiv.org/abs/1904.04123) | [2019/04]
- [Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours](https://arxiv.org/abs/1904.02877#) | [2019/04]
+ [dstamoulis/single-path-nas](https://github.com/dstamoulis/single-path-nas) | [Tensorflow]- [Automatic Convolutional Neural Architecture Search for Image Classification Under Different Scenes](https://ieeexplore.ieee.org/document/8676019) | [**IEEE Access 2019**]
- [sharpDARTS: Faster and More Accurate Differentiable Architecture Search](https://arxiv.org/abs/1903.09900) | [2019/03]
- [Learning Implicitly Recurrent CNNs Through Parameter Sharing](https://arxiv.org/abs/1902.09701) | [**ICLR 2019**]
+ [lolemacs/soft-sharing](https://github.com/lolemacs/soft-sharing) | [Pytorch]- [Probabilistic Neural Architecture Search](https://arxiv.org/abs/1902.05116) | [2019/02]
- [Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation](https://arxiv.org/abs/1901.02985) | [2019/01]
- [SNAS: Stochastic Neural Architecture Search](https://arxiv.org/abs/1812.09926) | [**ICLR 2019**]
- [FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search](https://arxiv.org/abs/1812.03443) | [2018/12]
- [Neural Architecture Optimization](http://papers.nips.cc/paper/8007-neural-architecture-optimization) | [**NIPS 2018**]
+ [renqianluo/NAO](https://github.com/renqianluo/NAO) | [Tensorflow]- [DARTS: Differentiable Architecture Search](https://arxiv.org/abs/1806.09055) | [2018/06]
+ [quark0/darts](https://github.com/quark0/darts) | [Pytorch]
+ [khanrc/pt.darts](https://github.com/khanrc/pt.darts) | [Pytorch]
+ [dragen1860/DARTS-PyTorch](https://github.com/dragen1860/DARTS-PyTorch) | [Pytorch]**Reinforcement Learning:**
- [Template-Based Automatic Search of Compact Semantic Segmentation Architectures](https://arxiv.org/abs/1904.02365) | [2019/04]- [Understanding Neural Architecture Search Techniques](https://arxiv.org/abs/1904.00438) | [2019/03]
- [Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search](https://arxiv.org/abs/1901.07261) | [2019/01]
+ [falsr/FALSR](https://github.com/falsr/FALSR) | [Tensorflow]- [Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search](https://arxiv.org/abs/1901.01074) | [2019/01]
+ [moremnas/MoreMNAS](https://github.com/moremnas/MoreMNAS) | [Tensorflow]- [ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware](https://arxiv.org/abs/1812.00332) | [**ICLR 2019**]
+ [MIT-HAN-LAB/ProxylessNAS](https://github.com/MIT-HAN-LAB/ProxylessNAS) | [Pytorch, Tensorflow]- [Transfer Learning with Neural AutoML](http://papers.nips.cc/paper/8056-transfer-learning-with-neural-automl) | [**NIPS 2018**]
- [Learning Transferable Architectures for Scalable Image Recognition](https://arxiv.org/abs/1707.07012) | [2018/07]
+ [wandering007/nasnet-pytorch](https://github.com/wandering007/nasnet-pytorch) | [Pytorch]
+ [tensorflow/models/research/slim/nets/nasnet](https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet) | [Tensorflow]- [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626) | [2018/07]
+ [AnjieZheng/MnasNet-PyTorch](https://github.com/AnjieZheng/MnasNet-PyTorch) | [Pytorch]- [Practical Block-wise Neural Network Architecture Generation](https://arxiv.org/abs/1708.05552) | [**CVPR 2018**]
- [Efficient Neural Architecture Search via Parameter Sharing](https://arxiv.org/abs/1802.03268) | [**ICML 2018**]
+ [melodyguan/enas](https://github.com/melodyguan/enas) | [Tensorflow]
+ [carpedm20/ENAS-pytorch](https://github.com/carpedm20/ENAS-pytorch) | [Pytorch]
- [Efficient Architecture Search by Network Transformation](https://arxiv.org/abs/1707.04873) | [**AAAI 2018**]**Evolutionary Algorithm:**
- [Single Path One-Shot Neural Architecture Search with Uniform Sampling](https://arxiv.org/abs/1904.00420) | [2019/04]- [DetNAS: Neural Architecture Search on Object Detection](https://arxiv.org/abs/1903.10979) | [2019/03]
- [The Evolved Transformer](https://arxiv.org/abs/1901.11117) | [2019/01]
- [Designing neural networks through neuroevolution](https://www.nature.com/articles/s42256-018-0006-z) | [**Nature Machine Intelligence 2019**]
- [EAT-NAS: Elastic Architecture Transfer for Accelerating Large-scale Neural Architecture Search](https://arxiv.org/abs/1901.05884) | [2019/01]
- [Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution](https://arxiv.org/abs/1804.09081) | [**ICLR 2019**]
**SMBO:**
- [MFAS: Multimodal Fusion Architecture Search](https://arxiv.org/abs/1903.06496) | [**CVPR 2019**]- [DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures](https://arxiv.org/abs/1806.08198) | [**ECCV 2018**]
- [Progressive Neural Architecture Search](https://arxiv.org/abs/1712.00559) | [**ECCV 2018**]
+ [titu1994/progressive-neural-architecture-search](https://github.com/titu1994/progressive-neural-architecture-search) | [Keras, Tensorflow]
+ [chenxi116/PNASNet.pytorch](https://github.com/chenxi116/PNASNet.pytorch) | [Pytorch]**Random Search:**
- [Exploring Randomly Wired Neural Networks for Image Recognition](https://arxiv.org/abs/1904.01569) | [2019/04]- [Searching for Efficient Multi-Scale Architectures for Dense Image Prediction](http://papers.nips.cc/paper/8087-searching-for-efficient-multi-scale-architectures-for-dense-image-prediction) | [**NIPS 2018**]
**Hypernetwork:**
- [Graph HyperNetworks for Neural Architecture Search](https://arxiv.org/abs/1810.05749) | [**ICLR 2019**]**Bayesian Optimization:**
- [Inductive Transfer for Neural Architecture Optimization](https://arxiv.org/abs/1903.03536) | [2019/03]**Partial Order Pruning**
- [Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search](https://arxiv.org/abs/1903.03777) | [**CVPR 2019**]
+ [lixincn2015/Partial-Order-Pruning](https://github.com/lixincn2015/Partial-Order-Pruning) | [Caffe]**Knowledge Distillation**
- [Improving Neural Architecture Search Image Classifiers via Ensemble Learning](https://arxiv.org/abs/1903.06236) | [2019/03]### **[Projects]**
- [Microsoft/nni](https://github.com/Microsoft/nni) | [Python]
- [MindsDB](https://github.com/mindsdb/mindsdb) | [Python]## 2.) Lightweight Structures
### **[Papers]**
**Image Classification:**
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](http://proceedings.mlr.press/v97/tan19a.html) | [**ICML 2019**]
+ [tensorflow/tpu/models/official/efficientnet/](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) | [Tensorflow]
+ [lukemelas/EfficientNet-PyTorch](https://github.com/lukemelas/EfficientNet-PyTorch) | [Pytorch]- [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244) | [2019/05]
+ [kuan-wang/pytorch-mobilenet-v3](https://github.com/kuan-wang/pytorch-mobilenet-v3) | [Pytorch]
+ [leaderj1001/MobileNetV3-Pytorch](https://github.com/leaderj1001/MobileNetV3-Pytorch) | [Pytorch]**Semantic Segmentation:**
- [CGNet: A Light-weight Context Guided Network for Semantic Segmentation](https://arxiv.org/abs/1811.08201) | [2019/04]
+ [wutianyiRosun/CGNet](https://github.com/wutianyiRosun/CGNet) | [Pytorch]- [ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network](https://arxiv.org/abs/1811.11431) | [2018/11]
+ [sacmehta/ESPNetv2](https://github.com/sacmehta/ESPNetv2) | [Pytorch]
- [ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation](https://sacmehta.github.io/ESPNet/) | [**ECCV 2018**]
+ [sacmehta/ESPNet](https://github.com/sacmehta/ESPNet/) | [Pytorch]- [BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation](https://arxiv.org/abs/1808.00897) | [**ECCV 2018**]
+ [ooooverflow/BiSeNet](https://github.com/ooooverflow/BiSeNet) | [Pytorch]
+ [ycszen/TorchSeg](https://github.com/ycszen/TorchSeg) | [Pytorch]
- [ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation](http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17tits.pdf) | [**T-ITS 2017**]
+ [Eromera/erfnet_pytorch](https://github.com/Eromera/erfnet_pytorch) | [Pytorch]**Object Detection:**
- [ThunderNet: Towards Real-time Generic Object Detection](https://arxiv.org/abs/1903.11752) | [2019/03]- [Pooling Pyramid Network for Object Detection](https://arxiv.org/abs/1807.03284) | [2018/09]
+ [tensorflow/models](https://github.com/tensorflow/models/tree/master/research/object_detection/models) | [Tensorflow]- [Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages](https://arxiv.org/abs/1807.11013) | [**BMVC 2018**]
+ [lyxok1/Tiny-DSOD](https://github.com/lyxok1/Tiny-DSOD) | [Caffe]- [Pelee: A Real-Time Object Detection System on Mobile Devices](https://arxiv.org/abs/1804.06882) | [**NeurIPS 2018**]
+ [Robert-JunWang/Pelee](https://github.com/Robert-JunWang/Pelee) | [Caffe]
+ [Robert-JunWang/PeleeNet](https://github.com/Robert-JunWang/PeleeNet) | [Pytorch]- [Receptive Field Block Net for Accurate and Fast Object Detection](https://eccv2018.org/openaccess/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf) | [**ECCV 2018**]
+ [ruinmessi/RFBNet](https://github.com/ruinmessi/RFBNet) | [Pytorch]
+ [ShuangXieIrene/ssds.pytorch](https://github.com/ShuangXieIrene/ssds.pytorch) | [Pytorch]
+ [lzx1413/PytorchSSD](https://github.com/lzx1413/PytorchSSD) | [Pytorch]- [FSSD: Feature Fusion Single Shot Multibox Detector](https://arxiv.org/abs/1712.00960) | [2017/12]
+ [ShuangXieIrene/ssds.pytorch](https://github.com/ShuangXieIrene/ssds.pytorch) | [Pytorch]
+ [lzx1413/PytorchSSD](https://github.com/lzx1413/PytorchSSD) | [Pytorch]
+ [dlyldxwl/fssd.pytorch](https://github.com/dlyldxwl/fssd.pytorch) | [Pytorch]- [Feature Pyramid Networks for Object Detection](https://arxiv.org/abs/1612.03144) | [**CVPR 2017**]
+ [tensorflow/models](https://github.com/tensorflow/models/tree/master/research/object_detection/models) | [Tensorflow]## 3.) Model Compression & Acceleration
### **[Papers]**
**Pruning:**
- [The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks](https://arxiv.org/abs/1803.03635) | [**ICLR 2019**]
+ [google-research/lottery-ticket-hypothesis](https://github.com/google-research/lottery-ticket-hypothesis) | [Tensorflow]- [Rethinking the Value of Network Pruning](https://arxiv.org/abs/1810.05270) | [**ICLR 2019**]
- [Slimmable Neural Networks](https://openreview.net/pdf?id=H1gMCsAqY7) | [**ICLR 2019**]
+ [JiahuiYu/slimmable_networks](https://github.com/JiahuiYu/slimmable_networks) | [Pytorch]- [AMC: AutoML for Model Compression and Acceleration on Mobile Devices](https://arxiv.org/abs/1802.03494) | [**ECCV 2018**]
+ [AutoML for Model Compression (AMC): Trials and Tribulations](https://github.com/NervanaSystems/distiller/wiki/AutoML-for-Model-Compression-(AMC):-Trials-and-Tribulations) | [Pytorch]- [Learning Efficient Convolutional Networks through Network Slimming](https://arxiv.org/abs/1708.06519) | [**ICCV 2017**]
+ [foolwood/pytorch-slimming](https://github.com/foolwood/pytorch-slimming) | [Pytorch]- [Channel Pruning for Accelerating Very Deep Neural Networks](https://arxiv.org/abs/1707.06168) | [**ICCV 2017**]
+ [yihui-he/channel-pruning](https://github.com/yihui-he/channel-pruning) | [Caffe]- [Pruning Convolutional Neural Networks for Resource Efficient Inference](https://arxiv.org/abs/1611.06440) | [**ICLR 2017**]
+ [jacobgil/pytorch-pruning](https://github.com/jacobgil/pytorch-pruning) | [Pytorch]- [Pruning Filters for Efficient ConvNets](https://arxiv.org/abs/1608.08710) | [**ICLR 2017**]
**Quantization:**
- [Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets](https://arxiv.org/abs/1903.05662) | [**ICLR 2019**]- [Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference](http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html) | [**CVPR 2018**]
- [Quantizing deep convolutional networks for efficient inference: A whitepaper](https://arxiv.org/abs/1806.08342) | [2018/06]
- [PACT: Parameterized Clipping Activation for Quantized Neural Networks](https://arxiv.org/abs/1805.06085) | [2018/05]
- [Post-training 4-bit quantization of convolution networks for rapid-deployment](https://arxiv.org/abs/1810.05723) | [**ICML 2018**]
- [WRPN: Wide Reduced-Precision Networks](https://arxiv.org/abs/1709.01134) | [**ICLR 2018**]
- [Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights](https://arxiv.org/abs/1702.03044) | [**ICLR 2017**]
- [DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients](https://arxiv.org/abs/1606.06160) | [2016/06]
- [Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation](https://arxiv.org/abs/1308.3432) | [2013/08]
**Knowledge Distillation**
- [Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy](https://arxiv.org/abs/1711.05852) | [**ICLR 2018**]- [Model compression via distillation and quantization](https://arxiv.org/abs/1802.05668) | [**ICLR 2018**]
**Acceleration:**
- [Fast Algorithms for Convolutional Neural Networks](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lavin_Fast_Algorithms_for_CVPR_2016_paper.pdf) | [**CVPR 2016**]
+ [andravin/wincnn](https://github.com/andravin/wincnn) | [Python]### **[Projects]**
- [NervanaSystems/distiller](https://github.com/NervanaSystems/distiller/) | [Pytorch]
- [Tencent/PocketFlow](https://github.com/Tencent/PocketFlow) | [Tensorflow]
- [aaron-xichen/pytorch-playground](https://github.com/aaron-xichen/pytorch-playground) | [Pytorch]### **[Tutorials/Blogs]**
- [Introducing the CVPR 2018 On-Device Visual Intelligence Challenge](https://research.googleblog.com/search/label/On-device%20Learning)## 4.) Hyperparameter Optimization
### **[Papers]**
- [Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly](https://arxiv.org/abs/1903.06694) | [2019/03]
+ [dragonfly/dragonfly](https://github.com/dragonfly/dragonfly)- [Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features](https://papers.nips.cc/paper/8115-efficient-high-dimensional-bayesian-optimization-with-additivity-and-quadrature-fourier-features) | [**NeurIPS 2018**]
- [Google vizier: A service for black-box optimization](https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46180.pdf) | [**SIGKDD 2017**]
- [On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice](https://arxiv.org/abs/2007.15745) | [**Neurocomputing 2020**]
+ [LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms](https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms)### **[Projects]**
- [BoTorch](https://botorch.org/) | [PyTorch]
- [Ax (Adaptive Experimentation Platform)](https://ax.dev/) | [PyTorch]
- [Microsoft/nni](https://github.com/Microsoft/nni) | [Python]
- [dragonfly/dragonfly](https://github.com/dragonfly/dragonfly) | [Python]
- [LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms](https://github.com/LiYangHart/Hyperparameter-Optimization-of-Machine-Learning-Algorithms) | [Python]### **[Tutorials/Blogs]**
- [Hyperparameter tuning in Cloud Machine Learning Engine using Bayesian Optimization](https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization)- [Overview of Bayesian Optimization](https://soubhikbarari.github.io/blog/2016/09/14/overview-of-bayesian-optimization)
- [Bayesian optimization](http://krasserm.github.io/2018/03/21/bayesian-optimization/)
+ [krasserm/bayesian-machine-learning](https://github.com/krasserm/bayesian-machine-learning) | [Python]## 5.) Automated Feature Engineering
## Model Analyzer
- [Netscope CNN Analyzer](https://chakkritte.github.io/netscope/quickstart.html) | [Caffe]- [sksq96/pytorch-summary](https://github.com/sksq96/pytorch-summary) | [Pytorch]
- [Lyken17/pytorch-OpCounter](https://github.com/Lyken17/pytorch-OpCounter) | [Pytorch]
- [sovrasov/flops-counter.pytorch](https://github.com/sovrasov/flops-counter.pytorch) | [Pytorch]
## References
- [LITERATURE ON NEURAL ARCHITECTURE SEARCH](https://www.ml4aad.org/automl/literature-on-neural-architecture-search/)
- [handong1587/handong1587.github.io](https://github.com/handong1587/handong1587.github.io/tree/master/_posts/deep_learning)
- [hibayesian/awesome-automl-papers](https://github.com/hibayesian/awesome-automl-papers)
- [mrgloom/awesome-semantic-segmentation](https://github.com/mrgloom/awesome-semantic-segmentation)
- [amusi/awesome-object-detection](https://github.com/amusi/awesome-object-detection)