Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/guan-yuan/awesome-Multi-Document-Summarization
A curated list of Multi-Document Summarization papers, articles, tutorials, slides , datasets, and projects
https://github.com/guan-yuan/awesome-Multi-Document-Summarization
List: awesome-Multi-Document-Summarization
deep-learning multi-document-summarization pytorch summarisation tensorflow
Last synced: 16 days ago
JSON representation
A curated list of Multi-Document Summarization papers, articles, tutorials, slides , datasets, and projects
- Host: GitHub
- URL: https://github.com/guan-yuan/awesome-Multi-Document-Summarization
- Owner: guan-yuan
- Created: 2019-10-03T07:12:40.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2022-09-06T06:05:28.000Z (over 2 years ago)
- Last Synced: 2024-05-21T16:05:54.048Z (7 months ago)
- Topics: deep-learning, multi-document-summarization, pytorch, summarisation, tensorflow
- Homepage:
- Size: 57.6 KB
- Stars: 43
- Watchers: 2
- Forks: 3
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-Multi-Document-Summarization - A curated list of Multi-Document Summarization papers, articles, tutorials, slides , datasets, and projects. (Other Lists / Monkey C Lists)
README
# awesome-Multi-Document-Summarization
A curated list of Multi-Document Summarization papers, articles, tutorials, slides , datasets, and projects.## Papers
### Multi-Document-Summarization
#### Supervised
- [Learning to Create Sentence Semantic Relation Graphs for Multi-Document Summarization](https://www.aclweb.org/anthology/D19-5404/) | [**EMNLP 2019**]- [Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model](https://arxiv.org/abs/1906.01749) | [**ACL 2019**]
+ [Alex-Fabbri/Multi-News](https://github.com/Alex-Fabbri/Multi-News) | [**pytorch**]- [Hierarchical Transformers for Multi-Document Summarization](https://arxiv.org/abs/1905.13164) | [**ACL 2019**]
+ [nlpyang/hiersumm](https://github.com/nlpyang/hiersumm) | [**pytorch**]- [Improving the Similarity Measure of Determinantal Point Processes for Extractive Multi-Document Summarization](https://arxiv.org/abs/1906.00072) | [**ACL 2019**]
+ [ucfnlp/summarization-dpp-capsnet](https://github.com/ucfnlp/summarization-dpp-capsnet) | [**keras**]- [Fast Concept Mention Grouping for Concept Map-based Multi-Document Summarization](https://www.aclweb.org/anthology/N19-1074/) | [**NAACL 2019**]
+ [UKPLab/naacl2019-cmaps-lshcw](https://github.com/UKPLab/naacl2019-cmaps-lshcw) | [**java**]#### Unsupervised
- [Unsupervised Aspect-Based Multi-Document Abstractive Summarization](https://www.aclweb.org/anthology/D19-5405/) | [**EMNLP 2019**]- [MeanSum: A Neural Model for Unsupervised Multi-document Abstractive Summarization](https://arxiv.org/abs/1810.05739) | [**ICML 2019**]
+ [sosuperic/MeanSum](https://github.com/sosuperic/MeanSum) [**pytorch**]- [Abstractive Unsupervised Multi-Document Summarization using Paraphrastic Sentence Fusion](https://www.aclweb.org/anthology/C18-1102/) | [**COLING 2018**]
- [Unsupervised Semantic Abstractive Summarization](https://aclweb.org/anthology/P18-3011/) | [**ACL 2018**]
- [Salience Estimation via Variational Auto-Encoders for Multi-Document Summarization](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14613) | [**AAAI 2017**]
- [An Unsupervised Multi-Document Summarization Framework Based on Neural Document Model](https://www.aclweb.org/anthology/C16-1143/) | [**COLING 2016**]
#### Datasets
- [Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model](https://arxiv.org/abs/1906.01749) | [**ACL 2019**]
+ [Alex-Fabbri/Multi-News](https://github.com/Alex-Fabbri/Multi-News) | [**pytorch**]---
### Single-Document-Summarization (as references)
#### Supervised
- [An Entity-Driven Framework for Abstractive Summarization](https://www.aclweb.org/anthology/D19-1323/) | [**EMNLP 2019**]- [Unified Language Model Pre-training for Natural Language Understanding and Generation](https://arxiv.org/abs/1905.03197) | [**NeurIPS 2019**]
+ [microsoft/unilm](https://github.com/microsoft/unilm)- [On Extractive and Abstractive Neural Document Summarization with Transformer Language Models](https://arxiv.org/abs/1909.03186) | [2019/09]
- [Fine-tune BERT for Extractive Summarization](https://arxiv.org/abs/1903.10318) | [2019/09]
+ [nlpyang/BertSum](https://github.com/nlpyang/BertSum)- [Guiding Extractive Summarization with Question-Answering Rewards](https://arxiv.org/abs/1904.02321) | [**NAACL 2019**]
- [Abstractive Text Summarization by Incorporating Reader Comments](https://arxiv.org/abs/1812.05407) | [**AAAI 2019**]
- [Structured Neural Summarization](https://arxiv.org/abs/1811.01824) | [**ICLR 2019**]
- [A Unified Model for Extractive and Abstractive Summarization using Inconsistency Loss](https://arxiv.org/abs/1805.06266) | [**ACL 2018**]
- [Autoencoder as Assistant Supervisor: Improving Text Representation for Chinese Social Media Text Summarization](https://www.aclweb.org/anthology/P18-2115/) | [**ACL 2018**]
+ [lancopku/superAE](https://github.com/lancopku/superAE)- [Generating Topic-Oriented Summaries Using Neural Attention](https://www.aclweb.org/anthology/N18-1153/) | [**NAACL 2018**]
- [Abstractive Document Summarization with a Graph-Based Attentional Neural Model](https://www.aclweb.org/anthology/P17-1108/) | [**ACL 2017**]
#### Unsupervised
- [SummAE: Zero-Shot Abstractive Text Summarization using Length-Agnostic Auto-Encoders](https://arxiv.org/abs/1910.00998) | [2019/10]- [BottleSum: Unsupervised and Self-supervised Sentence Summarization using the Information Bottleneck Principle](https://arxiv.org/abs/1909.07405) | [**EMNLP 2019**]
- [Sentence Centrality Revisited for Unsupervised Summarization](https://arxiv.org/abs/1906.03508) | [**ACL 2019**]
+ [mswellhao/PacSum](https://github.com/mswellhao/PacSum)- [Simple Unsupervised Summarization by Contextual Matching](https://arxiv.org/abs/1907.13337) | [**ACL 2019**]
- [SEQˆ3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression](https://www.aclweb.org/anthology/N19-1071/) | [**NAACL 2019**]
- [Learning to Encode Text as Human-Readable Summaries using Generative Adversarial Networks](https://arxiv.org/abs/1810.02851) | [**EMNLP 2018**]
- [Unsupervised Text Summarization using Sentence Embeddings](https://medium.com/jatana/unsupervised-text-summarization-using-sentence-embeddings-adb15ce83db1) | [2018/08]
+ [jatana-research/email-summarization](https://github.com/jatana-research/email-summarization)- [isnowfy/snownlp](https://github.com/isnowfy/snownlp)
#### Datasets
#### Chinese Datasets
- [LCSTS: A Large Scale Chinese Short Text Summarization Dataset](https://www.aclweb.org/anthology/D15-1229/)- [NLPCC 2017 Shared Task](http://tcci.ccf.org.cn/conference/2017/taskdata.php)
+ [yangzhiye/NLPCC2017-task3](https://github.com/yangzhiye/NLPCC2017-task3)- [Overview of the NLPCC 2018 Shared Task: Single Document Summarization](http://tcci.ccf.org.cn/conference/2018/papers/EV48.pdf)
- [Overview of the NLPCC 2017 Shared Task: Single Document Summarization](http://59.108.48.5/lcwm/wanxj/files/NLPCC2017-Overview.pdf)
---
## Sentence Embeddings
- [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)
[**EMNLP 2019**]
+ [UKPLab/sentence-transformers](https://github.com/UKPLab/sentence-transformers)- [Semantic Similarity in Sentences and BERT](https://medium.com/analytics-vidhya/semantic-similarity-in-sentences-and-bert-e8d34f5a4677) | [**2019/09**]
---
## Metrics
+ [pltrdy/rouge](https://github.com/pltrdy/rouge)
- [Neural Text Summarization: A Critical Evaluation](https://arxiv.org/abs/1908.08960) | [**EMNLP 2019**]
- [Answers Unite! Unsupervised Metrics for Reinforced Summarization Models](https://arxiv.org/abs/1909.01610) | [**EMNLP 2019**]---
## References
- [mathsyouth/awesome-text-summarization](https://github.com/mathsyouth/awesome-text-summarization)
- [luopeixiang/awesome-text-summarization](https://github.com/luopeixiang/awesome-text-summarization)
- [ChineseNLP](https://chinesenlp.xyz/zh/docs/text_summarization.html)