Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/gully/awesome-astrodata

Awesome list for astronomy data and resources for self-learning
https://github.com/gully/awesome-astrodata

List: awesome-astrodata

Last synced: 3 months ago
JSON representation

Awesome list for astronomy data and resources for self-learning

Awesome Lists containing this project

README

        

# awesome astrodata
A curated list of data and tools for machine learning in astronomy

# Books
- [Statistics, Data Mining, and Machine Learning in Astronomy](http://press.princeton.edu/titles/10159.html) Ivezic, Connolly, Vanderplas, Gray
- [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/itila/) David Mackay
- [Probabilistic Graphical Models](https://mitpress.mit.edu/books/probabilistic-graphical-models) Daphne Koller & Nir Friedman
- [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/) Rasmussen and Williams
- [A textbook Hogg will never write](https://github.com/davidwhogg/DataAnalysisRecipes)

# Talk slides
- [Data Analysis with MCMC](https://speakerdeck.com/dfm/data-analysis-with-mcmc) Dan Foreman-Mackey
- [An Astronomer's Introduction to Gaussian Processes](https://speakerdeck.com/dfm/an-astronomers-introduction-to-gaussian-processes-v2) Dan Foreman-Mackey
- [Tools for Probabilistic Data Analysis in Python](https://speakerdeck.com/dfm/pyastro16) Dan Foreman-Mackey
- [Statistics for Hackers](https://speakerdeck.com/jakevdp/statistics-for-hackers) Jake Vanderplas

# Jupyter Notebooks
- [Supervised Machine Learning in Astronomy](https://github.com/AstroHackWeek/AstroHackWeek2014/tree/master/day4) Josh Bloom
- [Python Data Science Handbook](https://github.com/jakevdp/PythonDataScienceHandbook) Jake VanderPlas
- [Whirlwind Tour of Python](https://github.com/jakevdp/WhirlwindTourOfPython) Jake VanderPlas
- [Bayesian Astronomy](https://github.com/jakevdp/BayesianAstronomy) Jake VanderPlas
- [Scikit-Learn Tutorial](https://github.com/jakevdp/sklearn_tutorial) Jake VanderPlas
- [Python for Data Analysis](https://github.com/wesm/pydata-book) Wes McKinney
- [Astro Hack Week 2014](https://github.com/AstroHackWeek/AstroHackWeek2014) Seattle
- [Astro Hack Week 2015](https://github.com/AstroHackWeek/AstroHackWeek2015) NYC
- [Astro Hack Week 2016](https://github.com/AstroHackWeek/AstroHackWeek2016) San Francisco

# Videos

- [A quick tour of machine learning and statistical tools](https://www.youtube.com/watch?v=aA3qdegi8Vw) David Hogg
- [Dimensionality reduction](https://www.youtube.com/watch?v=CvBCmWc8iBE) David Hogg
- [Model selection and cross validation](https://www.youtube.com/watch?v=uaztY3Lbr4A) David Hogg
- [Model comparison](https://www.youtube.com/watch?v=sm-yFQcaD4Q) Hogg, Marshal, Brewer
- [Gaussian Mixture Models](https://www.youtube.com/watch?v=W0XECm4-3LI) Jake Vanderplas

# Examples of Probabilistic Graphical Models in Astronomy
- [Celeste: Variational inference for a generative model of
astronomical images](http://www.stat.berkeley.edu/~jeff/publications/regier2015celeste.pdf) Regier et al.
- [Constructing a Flexible Likelihood Function for Spectroscopic Inference](http://adsabs.harvard.edu/abs/2015ApJ...812..128C) Czekala et al.

# Lecture notes
- [Data analysis recipes: Fitting a model to data](https://arxiv.org/abs/1008.4686) Hogg, Bovy, Lang

# Workshops
- [AstroHackWeek](http://astrohackweek.org/)
- [.Astronomy](http://dotastronomy.com/)
- [AAS Hack Day](http://www.astrobetter.com/wiki/AASHackDay)

# Institutes
- [NYU Center for Data Science](http://cds.nyu.edu/)
- [UC Berkeley Institute for Data Science](https://bids.berkeley.edu/)
- [UW eScience Institute](http://escience.washington.edu/)