Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hahnec/stofnet
StofNet: Super-resolution Time of Flight Network (ICASSP 2024)
https://github.com/hahnec/stofnet
acoustic audio deep-learning icassp icassp2024 learning localization multilateration neural non-destructive-testing round-trip super-resolution time-of-arrival time-of-flight tof trilateration ultrasound
Last synced: 4 days ago
JSON representation
StofNet: Super-resolution Time of Flight Network (ICASSP 2024)
- Host: GitHub
- URL: https://github.com/hahnec/stofnet
- Owner: hahnec
- Created: 2023-06-17T16:50:48.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-02-22T13:35:52.000Z (9 months ago)
- Last Synced: 2024-02-22T14:42:16.951Z (9 months ago)
- Topics: acoustic, audio, deep-learning, icassp, icassp2024, learning, localization, multilateration, neural, non-destructive-testing, round-trip, super-resolution, time-of-arrival, time-of-flight, tof, trilateration, ultrasound
- Language: Python
- Homepage:
- Size: 19.3 MB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# StofNet - Super-resolution time of flight Network
[![arXiv paper link](https://img.shields.io/badge/paper-arXiv:2308.12009-red)](https://arxiv.org/pdf/2308.12009.pdf)
## Installation
`$ python3 -m venv venv`
`$ source venv/bin/activate`
`$ python3 -m pip install -r requirements.txt`
`$ unzip datasets/stof_chirp101_dataset.zip -d datasets/`
## Training
`$ python3 main.py evaluate=False logging=train model=stofnet data_dir=./datasets/stof_chirp101_dataset th=Null rf_scale_factor=10`
## Inference
`$ python3 main.py evaluate=True batch_size=1 etol=1 model=stofnet model_file=different-armadillo data_dir=./datasets/stof_chirp101_dataset logging=Null rf_scale_factor=10 th=Null`
**Note**: More information on commands and settings are found in [config.yaml](config.yaml) or [bash_scripts](bash_scripts).
## Results
If you use this project for your work, please cite the original [paper](https://arxiv.org/pdf/2308.12009.pdf):
```
@inproceedings{stofnet,
title={StofNet: Super-resolution Time of Flight Network},
author={Christopher Hahne and Michel Hayoz and Raphael Sznitman},
booktitle={Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
year={2024},
}
```