Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/ilaria-manco/multimodal-ml-music

List of academic resources on Multimodal ML for Music
https://github.com/ilaria-manco/multimodal-ml-music

List: multimodal-ml-music

academic-publications awesome-list multimodal-data multimodal-deep-learning multimodal-learning music-ai music-information-retrieval music-research resources

Last synced: 3 months ago
JSON representation

List of academic resources on Multimodal ML for Music

Awesome Lists containing this project

README

        

# Multimodal Machine Learning for Music (MML4Music) [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
This repo contains a curated list of academic papers, datasets and other resources on multimodal machine learning (MML) research applied to music.
By [Ilaria Manco](http://ilariamanco.com/) ([email protected]), [Centre for Digital Music](http://c4dm.eecs.qmul.ac.uk/), [QMUL](https://www.qmul.ac.uk/).

This is not meant to be an exhaustive list, as MML for music is a varied and growing field, tackling a wide variety of tasks, from music information retrieval to generation,
through many different methods. Since this research area is also not yet well established, conventions and definitions aren't set in stone and this list aims to provide a point of reference
for its ongoing development.

## Table of Contents

* [Academic Papers](#papers)
* [Survey Papers](#survey-papers)
* [Journal and Conference Papers](#journal-and-conference-papers)
* [Datasets](#datasets)
* [Workshops, Tutorials & Talks](#workshops-tutorials-&-talks)
* [Other Projects](#other-projects)
* [Statistics & Visualisations](#statistics-&-visualisations)
* [How to Contribute](#how-to-contribute)
* [Other Resources](#other-resources)

## Papers

### Survey Papers
* [Multimodal music information processing and retrieval: Survey and future challenges](https://arxiv.org/pdf/1902.05347.pdf) (F. Simonetta et al., 2019)
* [Cross-Modal Music Retrieval and Applications: An Overview of Key Methodologies](https://arxiv.org/pdf/1902.04397.pdf) (M. Muller et al., 2019)

### Journal and Conference Papers
Summary of papers on multimodal machine learning for music, including the review papers highlighted [above](#survey-papers).

#### Audio-Text
| Year | Paper Title | Code |
|------|-------------------------------|------|
| 2022 | [Interpreting Song Lyrics with an Audio-Informed Pre-trained Language Model](https://arxiv.org/abs/2208.11671) |
| 2022 | [Conversational Music Retrieval with Synthetic Data](https://research.google/pubs/pub51943/) |
| 2022 | [Contrastive audio-language learning for music](https://arxiv.org/abs/2208.12208) | [GitHub](https://github.com/ilaria-manco/muscall)
| 2022 | [Learning music audio representations via weak language supervision](https://arxiv.org/abs/2112.04214) | [GitHub](https://github.com/ilaria-manco/mulap)
| 2022 | [Mulan: A joint embedding of music audio and natural language](https://arxiv.org/abs/2208.12415) |
| 2022 | [RECAP: Retrieval Augmented Music Captioner](https://arxiv.org/abs/2212.10901v1) |
| 2022 | [Data-Efficient Playlist Captioning With Musical and Linguistic Knowledge](https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.784) | [GitHub](https://github.com/deezer/playntell)
| 2022 | [Clap: Learning audio concepts from natural language supervision](https://arxiv.org/abs/2206.04769) | [GitHub](https://github.com/microsoft/CLAP)
| 2022 | [Toward Universal Text-to-Music Retrieval](https://arxiv.org/abs/2211.14558) | [GitHub](https://github.com/SeungHeonDoh/music-text-representation)
| 2021 | [MusCaps: Generating Captions for Music Audio](https://arxiv.org/abs/2104.11984) | [GitHub](https://github.com/ilaria-manco/muscaps)
| 2021 | [Music Playlist Title Generation: A Machine-Translation Approach](https://arxiv.org/abs/2110.07354) | [GitHub](https://github.com/SeungHeonDoh/ply_title_gen)
| 2020 | [MusicBERT - learning multi-modal representations for music and text](https://www.aclweb.org/anthology/2020.nlp4musa-1.13) |
| 2020 | [Music autotagging as captioning](https://www.aclweb.org/anthology/2020.nlp4musa-1.14) |
| 2019 | [Deep cross-modal correlation learning for audio and lyrics in music retrieval](https://arxiv.org/pdf/1711.08976.pdf) |
| 2018 | [Music mood detection based on audio and lyrics with deep neural net](https://arxiv.org/pdf/1809.07276.pdf) |
| 2016 | [Exploring customer reviews for music genre classification and evolutionary studies](https://repositori.upf.edu/bitstream/handle/10230/33063/Oramas_ISMIR2016_expl.pdf?sequence=1&isAllowed=y) |
| 2016 | [Towards Music Captioning: Generating Music Playlist Descriptions](https://arxiv.org/pdf/1608.04868.pdf) |
| 2008 | [Multimodal Music Mood Classification using Audio and Lyrics](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.426&rep=rep1&type=pdf) |

#### Audio-Image
| Year | Paper Title | Code |
|------|-------------------------------|------|
| 2020 | [Tr$\backslash$" aumerai: Dreaming music with stylegan](https://arxiv.org/abs/2102.04680) | [GitHub](https://github.com/jdasam/traeumerAI)
| 2019 | [Learning Affective Correspondence between Music and Image](https://arxiv.org/pdf/1904.00150.pdf) |
| 2018 | [The Sound of Pixels](https://arxiv.org/pdf/1804.03160.pdf) | [GitHub](https://github.com/hangzhaomit/Sound-of-Pixels)
| 2018 | [Image generation associated with music data](https://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w49/Qiu_Image_Generation_Associated_CVPR_2018_paper.pdf) |

#### Audio-Video
| Year | Paper Title | Code |
|------|-------------------------------|------|
| 2022 | [It's Time for Artistic Correspondence in Music and Video](https://arxiv.org/abs/2206.07148) |
| 2019 | [Audio-visual embedding for cross-modal music video retrieval through supervised deep CCA](https://arxiv.org/pdf/1908.03744.pdf) |
| 2019 | [Query by Video: Cross-Modal Music Retrieval](www.gracenote.com) |
| 2018 | [Cbvmr: content-based video-music retrieval using soft intra-modal structure constraint](https://dl.acm.org/doi/abs/10.1145/3206025.3206046) | [GitHub](https://github.com/csehong/VM-NET)

#### Audio-User
| Year | Paper Title | Code |
|------|-------------------------------|------|
| 2020 | [Learning Contextual Tag Embeddings for Cross-Modal Alignment of Audio and Tags](https://arxiv.org/pdf/2010.14171.pdf) | [GitHub](https://github.com/xavierfav/ae-w2v-attention)
| 2017 | [A deep multimodal approach for cold-start music recommendation](https://dl.acm.org/doi/pdf/10.1145/3125486.3125492) | [GitHub](https://github.com/sergiooramas/tartarus)

#### Other
| Year | Paper Title | Code |
|------|-------------------------------|------|
| 2021 | [Multimodal metric learning for tag-based music retrieval](https://arxiv.org/pdf/2010.16030.pdf) | [GitHub](https://github.com/minzwon/tag-based-music-retrieval)
| 2021 | [Enriched music representations with multiple cross-modal contrastive learning](https://arxiv.org/abs/2104.00437) | [GitHub](https://github.com/andrebola/contrastive-mir-learning)
| 2020 | [Large-Scale Weakly-Supervised Content Embeddings for Music Recommendation and Tagging](https://ieeexplore.ieee.org/abstract/document/9053240) |
| 2020 | [Music gesture for visual sound separation](https://openaccess.thecvf.com/content_CVPR_2020/papers/Gan_Music_Gesture_for_Visual_Sound_Separation_CVPR_2020_paper.pdf) |
| 2020 | [Foley music: Learning to generate music from videos](https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123560732.pdf) |
| 2020 | [Musical word embedding: Bridging the gap between listening contexts and music](https://arxiv.org/abs/2008.01190) |
| 2019 | [Query-by-Blending: a Music Exploration System Blending Latent Vector Representations of Lyric Word, Song Audio, and Artist](https://archives.ismir.net/ismir2019/paper/000015.pdf) |
| 2019 | [Multimodal music information processing and retrieval: Survey and future challenges](https://arxiv.org/pdf/1902.05347.pdf) |
| 2019 | [Cross-Modal Music Retrieval and Applications: An Overview of Key Methodologies](https://arxiv.org/pdf/1902.04397.pdf) |
| 2019 | [Creating a Multitrack Classical Music Performance Dataset for Multimodal Music Analysis: Challenges, Insights, and Applications](https://arxiv.org/pdf/1612.08727.pdf) |
| 2018 | [Multimodal Deep Learning for Music Genre Classification](https://transactions.ismir.net/articles/10.5334/tismir.10/) | [GitHub](https://github.com/fvancesco/music_resnet_classification)
| 2018 | [JTAV: Jointly Learning Social Media Content Representation by Fusing Textual, Acoustic, and Visual Features](http://arxiv.org/abs/1806.01483) | [GitHub](https://github.com/mengshor/JTAV)
| 2017 | [Learning neural audio embeddings for grounding semantics in auditory perception](https://www.jair.org/index.php/jair/article/view/11101/26292) |
| 2017 | [Music emotion recognition via end-To-end multimodal neural networks](http://ceur-ws.org/Vol-1905/recsys2017_poster18.pdf) |
| 2013 | [Cross-modal Sound Mapping Using Deep Learning](https://www.ohadf.com/papers/FriedFiebrink_NIME2013.pdf) |
| 2013 | [Music emotion recognition: From content- to context-based models](https://qmro.qmul.ac.uk/xmlui/bitstream/handle/123456789/31911/Fazekas%20Music%20Emotion%20Recognition%202012%20Accepted.pdf;jsessionid=76AE783B989ED4CDBFB8B9C5CE013CE4?sequence=1) |
| 2011 | [Musiclef: A benchmark activity in multimodal music information retrieval](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.449.4173&rep=rep1&type=pdf) |
| 2011 | [The need for music information retrieval with user-centered and multimodal strategies](https://dl.acm.org/doi/pdf/10.1145/2072529.2072531) |
| 2009 | [Combining audio content and social context for semantic music discovery](https://www.cs.swarthmore.edu/~turnbull/Papers/Turnbull_CombineMusicTags_SIGIR09.pdf) |

## Datasets

|Dataset | Description | Modalities | Size |
|-------- | ------------| ---------- | ---- |
|[MARD]() | Multimodal album reviews dataset | Text, Metadata, Audio descriptors | 65,566 albums and 263,525 reviews |
|[URMP](http://www2.ece.rochester.edu/projects/air/projects/URMP.html) | Multi-instrument musical pieces of recorded performances | MIDI, Audio, Video | 44 pieces (12.5GB) |
|[IMAC](https://gaurav22verma.github.io/IMAC_Dataset.html) | Affective correspondences between images and music | Images, Audio | 85,000 images and 3,812 songs |
|[EmoMV](https://github.com/ivyha010/EmoMV) | Affective Music-Video Correspondence | Audio, Video | 5986 pairs |

## Workshops, Tutorials & Talks

* [First Workshop on NLP for Music and Audio](https://sites.google.com/view/nlp4musa)

## Other Projects

* Song Describer: a Platform for Collecting Textual Descriptions of Music Recordings - [[link](song-describer.streamlit.app)] | [[paper](https://ismir2022program.ismir.net/lbd_405.html)] | [[code](https://github.com/ilaria-manco/song-describer)]

## Statistics & Visualisations

- 47 papers referenced. See the details in [multimodal_ml_music.bib](multimodal_ml_music.bib).
Number of articles per year:
![Number of articles per year](fig/articles_per_year.png)
- If you are applying multimodal ML to music, there are [150 other researchers](authors.md) in your field.
- 13 tasks investigated. See the list of [tasks](tasks.md).
Tasks pie chart:
![Tasks pie chart](fig/pie_chart_task.png)
- Only 16 articles (34%) provide their source code.
by [Yann Bayle](http://yannbayle.fr/english/index.php) has a very useful list of [resources on reproducibility for MIR and ML](https://github.com/ybayle/awesome-deep-learning-music/blob/master/reproducibility.md).

## How To Contribute

Contributions are welcome!
Please refer to the [contributing.md](contributing.md) file.

## License

You are free to copy, modify, and distribute ***Multimodal Machine Learning for Music (MML4Music)*** with attribution under the terms of the MIT license. See the [LICENSE](LICENSE) file for details.
This project is heavily based on [Deep Learning for Music](https://github.com/ybayle/awesome-deep-learning-music) by [Yann Bayle](http://yannbayle.fr/english/index.php) and uses other projects. You may refer to them for appropriate license information:

- [Readme checklist](https://github.com/ddbeck/readme-checklist)
- [Pylint](https://www.pylint.org/)
- [Numpy](http://www.numpy.org/)
- [Matplotlib](https://matplotlib.org/)
- [Bibtexparser](https://github.com/sciunto-org/python-bibtexparser)

If you use the information contained in this repository, please let us know!