Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/jinhai-cloud/awesome-database-learning
A curated reading list about database systems
https://github.com/jinhai-cloud/awesome-database-learning
List: awesome-database-learning
awesome database
Last synced: 3 months ago
JSON representation
A curated reading list about database systems
- Host: GitHub
- URL: https://github.com/jinhai-cloud/awesome-database-learning
- Owner: jinhai-cloud
- Created: 2022-05-27T19:54:21.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2023-04-20T12:29:05.000Z (over 1 year ago)
- Last Synced: 2024-08-08T04:02:47.117Z (3 months ago)
- Topics: awesome, database
- Homepage:
- Size: 25.4 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-database-learning - A curated reading list about database systems. (Other Lists / PowerShell Lists)
README
# Awesome Database Learning
A curated reading list about database systems, inspired by:
- [pingcap / awesome-database-learning](https://github.com/pingcap/awesome-database-learning)
- [编程小梦 / 数据库学习资料](https://blog.bcmeng.com/post/database-learning.html)
- [CMU Database Courses](https://db.cs.cmu.edu/courses/)## Query Optimizer
Blogs:
- [数据库查询优化器初探](https://mp.weixin.qq.com/s/VEK3V7zEULBPhAsKv1JENQ)### Planner
Blogs:
- [SQL 查询优化原理与 Volcano Optimizer 介绍](https://zhuanlan.zhihu.com/p/48735419)Papers:
- [The Volcano Optimizer Generator: Extensibility and Efficient Search](https://15721.courses.cs.cmu.edu/spring2020/papers/19-optimizer1/graefe-icde1993.pdf)
- [The Cascades Framework for Query Optimization](https://15721.courses.cs.cmu.edu/spring2020/papers/19-optimizer1/graefe-ieee1995.pdf)
- [Efficiency in the Columbia Database Query Optimizer](https://15721.courses.cs.cmu.edu/spring2020/papers/20-optimizer2/xu-columbia-thesis1998.pdf)
- [Orca: A Modular Query Optimizer Architecture for Big Data](https://15721.courses.cs.cmu.edu/spring2020/papers/19-optimizer1/p337-soliman.pdf)### Subquery
Blogs:
- [SQL 子查询的优化](https://zhuanlan.zhihu.com/p/60380557)
- [Calcite 子查询处理 - RemoveSubQuery](https://zhuanlan.zhihu.com/p/62338250)
- [Calcite 子查询处理 - Decorrelate](https://zhuanlan.zhihu.com/p/66227661)### Window
Blogs:
- [SQL 窗口函数的优化和执行](https://zhuanlan.zhihu.com/p/80051518)Papers:
- [Efficient Processing of Window Functions in Analytical SQL Queries](http://www.vldb.org/pvldb/vol8/p1058-leis.pdf)
- [Optimization of Analytic Window Functions](http://vldb.org/pvldb/vol5/p1244_yucao_vldb2012.pdf)### Common Table Expressions
Papers:
- [Optimization of Common Table Expressions in MPP Database Systems](http://www.vldb.org/pvldb/vol8/p1704-elhelw.pdf)## Query Execution
Blogs:
- [SQL 查询的分布式执行与调度](https://zhuanlan.zhihu.com/p/100949808)### Vectorization vs Compilization
Blogs:
- [表达式编译](https://zhuanlan.zhihu.com/p/51221350)
- [查询编译](https://zhuanlan.zhihu.com/p/58249033)Papers:
- [Vectorization vs Compilation in Query Execution](https://15721.courses.cs.cmu.edu/spring2020/papers/16-vectorization2/p5-sompolski.pdf)
- [MonetDB/X100: Hyper-Pipelining Query Execution](https://www.cidrdb.org/cidr2005/papers/P19.pdf)
- [Efficiently Compiling Efficient Query Plans for Modern Hardware](https://www.vldb.org/pvldb/vol4/p539-neumann.pdf)
- [Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask](http://www.vldb.org/pvldb/vol11/p2209-kersten.pdf)### Join
Blogs:
- [Join 查询优化](https://zhuanlan.zhihu.com/p/580164199)
- [Join Reorder 源码解析](https://zhuanlan.zhihu.com/p/579978445)Papers:
- [Performance and Scalability of Broadcast in Spark](https://www.mosharaf.com/wp-content/uploads/mosharaf-spark-bc-report-spring10.pdf)
- [Adaptive Optimization of Very Large Join Queries](https://db.in.tum.de/~radke/papers/hugejoins.pdf)
- [SAHA: A String Adaptive Hash Table for Analytical Databases](https://www.mdpi.com/2076-3417/10/6/1915/htm)Courses:
- [Join查询优化&HashJoin算子优化](https://www.bilibili.com/video/BV1bi4y1r7Td/)
- [How does Hash Join work in PostgreSQL and its derivates](https://www.postgresql.eu/events/pgconfeu2019/sessions/session/2669/slides/226/2019_HashJoin_In_PostgreSQL_Milan.pdf)