Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/junha1125/awesome-test-time-adaptation
awesome-test-time-adaptation
https://github.com/junha1125/awesome-test-time-adaptation
List: awesome-test-time-adaptation
Last synced: 16 days ago
JSON representation
awesome-test-time-adaptation
- Host: GitHub
- URL: https://github.com/junha1125/awesome-test-time-adaptation
- Owner: junha1125
- Created: 2022-06-14T11:22:41.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2022-06-14T12:29:45.000Z (over 2 years ago)
- Last Synced: 2024-04-10T15:05:45.322Z (9 months ago)
- Size: 5.86 KB
- Stars: 2
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-test-time-adaptation - Awesome-test-time-adaptation. (Other Lists / PowerShell Lists)
README
# Awesome Test-time Adaptation [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
## Contributing
Please help contribute this list by contacting [me](https://github.com/junha1125) or add `pull request`Markdown format:
```markdown
- Paper Name.
[[pdf]](link)
[[code]](link)
- Author 1, Author 2, and Author 3. *Conference Year*
```## Table of Contents
- [Requisite](#Requisite)
- [2021,2022](#2021,2022)## Requisite
1. Tent: Fully Test-time Adaptation by Entropy Minimization ([pdf](https://arxiv.org/abs/2006.10726))
- Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, Trevor Darrell, ICLR Spotlight, 2021
2. Test-Time Training with Self-Supervision for Generalization under Distribution Shifts ([pdf](https://arxiv.org/abs/1909.13231))
- Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei A. Efros, Moritz Hardt, ICML, 2020## 2021,2022
1. AUGCO Augmentation Consistency-guided Self-training ([pdf](https://arxiv.org/abs/2107.10140))
- Viraj Prabhu, Shivam Khare, Deeksha Kartik, Judy Hoffman, arXiv, 2021
2. Adaptive generalization for semantic segmentation ([pdf](https://openreview.net/forum?id=1O5UK-zoK8g))
- Sherwin Bahmani, Oliver Hahn, Eduard Sebastian Zamfir, Nikita Araslanov, Stefan Roth, ICLR submitted, 2022
3. Continual Test-Time Domain Adaptation ([pdf](https://arxiv.org/abs/2203.13591))
- Qin Wang, Olga Fink, Luc Van Gool, Dengxin Dai, CVPR, 2022
4. Contrastive Test-Time Adaptation ([pdf](https://arxiv.org/abs/2204.10377))
- Dian Chen, Dequan Wang, Trevor Darrell, Sayna Ebrahimi, CVPR, 2022
5. Covariance-aware Feature Alignment with Pre-computed Source Statistics for Test-time Adaptation ([pdf](https://arxiv.org/abs/2204.13263))
- Kazuki Adachi, Shin'ya Yamaguchi, Atsutoshi Kumagai, arXiv, 2022
6. MEMO Test Time Robustness via Adaptation and Augmentation / Test Time Robustification of Deep Models via Adaptation and Augmentation ([pdf](https://openreview.net/forum?id=J1uOGgf-bP))
- Marvin Mengxin Zhang, Sergey Levine, Chelsea Finn, ICLR submitted, 2022
7. MixNorm Test-time adaptation Through Online Normalization Estimation ([pdf](https://openreview.net/forum?id=EPIeOo3ql96))
- Xuefeng Hu, Mustafa Uzunbas, Bor-Chun Chen, Rui Wang, Ashish Shah, Ram Nevatia, Ser-Nam Lim, ICLR submitted, 2022
8. Multi-Modal Test-time adaptation for 3D Semantic Segmentation ([pdf](https://arxiv.org/abs/2204.12667))
- Inkyu Shin, Yi-Hsuan Tsai, Bingbing Zhuang, Samuel Schulter, Buyu Liu, Sparsh Garg, In So Kweon, Kuk-Jin Yoon, CVPR, 2022
9. Parameter-free Online Test-time Adaptation ([pdf](https://arxiv.org/abs/2201.05718))
- Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, Luca Bertinetto, CVPR oral, 2022
10. Single Image Test-time Adaptation ([pdf](https://arxiv.org/abs/2112.02355))
- Ansh Khurana, Sujoy Paul, Piyush Rai, Soma Biswas, Gaurav Aggarwal, arXiv, 2021
11. Test-time adaptation for Event-Based Object Recognition ([pdf](https://arxiv.org/abs/2203.12247))
- Junho Kim, Inwoo Hwang, Young Min Kim, CVPR, 2022
12. Sketch3T: Test-Time Training for Zero-Shot SBIR ([pdf](https://arxiv.org/pdf/2203.14691.pdf))
- Aneeshan Sain, Ayan Kumar Bhunia, Vaishnav Potlapalli, Pinaki Nath Chowdhury, CVPR, 2022
13. Test-time adaptation to Distribution Shift by Confidence Maximization and Input Transformation ([pdf](https://openreview.net/forum?id=GOfGGASIUkg))
- Chaithanya Kumar Mummadi, Robin Hutmacher, Kilian Rambach, Evgeny Levinkov, Thomas Brox, Jan Hendrik Metzen, NeurIPS submitted, 2021
14. Test-Time Classifier Adjustment Module for Domain Generalization ([pdf](https://proceedings.neurips.cc/paper/2021/hash/1415fe9fea0fa1e45dddcff5682239a0-Abstract.html))
- Yusuke Iwasawa, Yutaka Matsuo, NeurIPS, 2021
15. Test-time Batch Statistics Calibration for Covariate Shift ([pdf](https://arxiv.org/abs/2110.04065))
- Fuming You, Jingjing Li, Zhou Zhao, arXiv, 2021
16. When Does Self-Supervised Test-Time Training Fail or Thrive? ([pdf](https://proceedings.neurips.cc/paper/2021/file/b618c3210e934362ac261db280128c22-Paper.pdf))
- Yuejiang Liu, Parth Kothari, Bastien van Delft, NeurIPS, 2021
17. Adaptive Denoising via GainTuning ([pdf](https://arxiv.org/abs/2107.12815))
- Sreyas Mohan, Joshua L. Vincent, Ramon Manzorro, Peter A. Crozier, Eero P. Simoncelli, Carlos Fernandez-Granda, arXiv, 2021
18. Continual Active Adaptation to Evolving Distributional Shifts ([pdf](https://openaccess.thecvf.com/content/CVPR2022W/RoSe/papers/Machireddy_Continual_Active_Adaptation_to_Evolving_Distributional_Shifts_CVPRW_2022_paper.pdf))
- Amrutha Machireddy, Ranganath Krishnan, Nilesh Ahuja, Omesh Tickoo, CVPR, 2022
19. Continual BatchNorm Adaptation (CBNA) for Semantic Segmentation ([pdf](https://arxiv.org/abs/2203.01074))
- Marvin Klingner, Mouadh Ayache, Tim Fingscheidt, arXiv, 2022
20. DistillAdapt- Source-Free Active Visual Domain Adaptation ([pdf](https://arxiv.org/pdf/2205.12840.pdf))
- Divya Kothandaraman, Sumit Shekhar, Abhilasha Sancheti, Manoj Ghuhan, Tripti Shukla, Dinesh Manocha, arXiv, 2022
21. Efficient Test Time Adapter Ensembling for Low-resource Language Varieties ([pdf](https://aclanthology.org/2021.findings-emnlp.63.pdf))
- Xinyi Wang, Yulia Tsvetkov, Sebastian Ruder, Graham Neubig, EMNLP, 2021
22. Exploring Domain-Invariant Parameters for Source Free Domain Adaptation ([pdf](https://openaccess.thecvf.com/content/CVPR2022/papers/Wang_Exploring_Domain-Invariant_Parameters_for_Source_Free_Domain_Adaptation_CVPR_2022_paper.pdf))
- Fan Wang, Zhongyi Han, Yongshun Gong, CVPR, 2022
23. Fully Test-Time Adaptation for (medical) Image Segmentation ([pdf](https://miccai2021.org/openaccess/paperlinks/2021/09/01/204-Paper1319.html))
- Minhao Hu, Tao Song, Yujun Gu, Xiangde Luo, Jieneng Chen, Yinan Chen, Ya Zhang, Shaoting Zhang, MICCAI, 2021
24. Generalizable Model-agnostic Semantic Segmentation via Target-specific Normalization ([pdf](https://arxiv.org/abs/2003.12296))
- Jian Zhang, Lei Qi, Yinghuan Shi, Yang Gao, Pattern Recognition (PR), 2021
25. Improving Adversarial Defense with Self-supervised Test-time Fine-tuning ([pdf](https://openreview.net/forum?id=r8S93OsHWEf))
- Zhichao Huang, Chen Liu, Mathieu Salzmann, Sabine Süsstrunk, Tong Zhang, ICLR submitted, 2022
26. Leveraging Test-Time Consensus Prediction for Robustness against Unseen Noise ([pdf](https://openaccess.thecvf.com/content/WACV2022/papers/Sarkar_Leveraging_Test-Time_Consensus_Prediction_for_Robustness_Against_Unseen_Noise_WACV_2022_paper.pdf))
- Anindya Sarkar, Anirban Sarkar, Vineeth N Balasubramanian, WACV, 2022
27. Meta Test-Time Training for Self-Supervised Test-Time Adaption ([pdf](https://proceedings.mlr.press/v151/bartler22a.html))
- Alexander Bartler, Andre Bühler, Felix Wiewel, Mario Döbler, Bin Yang, PMLR, 2022
28. On the Road to Online Adaptation for Semantic Image Segmentation ([pdf](https://arxiv.org/abs/2203.16195))
- Riccardo Volpi, Pau de Jorge, Diane Larlus, Gabriela Csurka, CVPR, 2022
29. Revisiting Realistic Test-Time Training- Sequential Inference and Adaptation by Anchored Clustering ([pdf](https://arxiv.org/abs/2206.02721))
- Yongyi Su, Xun Xu, Kui Jia, arXiv, 2022
30. SHIFT- A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation ([pdf](https://www.vis.xyz/pub/shift/))
- Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc Van Gool, Bernt Schiele, Federico Tombari, Fisher Yu, CVPR, 2022
31. Self-supervised Test-time Adaptation on Video Data ([pdf](https://sslneurips21.github.io/files/CameraReady/SSL_TTA.pdf))
- Fatemeh Azimi, Sebastian Palacio, Federico Raue, Jörn Hees, Luca Bertinetto, Andreas Dengel, WACV, 2022
32. Test time Adaptation through Perturbation Robustness ([pdf](https://arxiv.org/abs/2110.10232))
- Prabhu Teja Sivaprasad, François Fleuret, NeurIPS Workshop, 2021
33. Test-Time Adaptation with Shape Moments for (medical) Image Segmentation ([pdf](https://arxiv.org/abs/2205.07983))
- Mathilde Bateson, Hervé Lombaert, Ismail Ben Ayed, MICCAI, 2022
34. Test-Time Adaption by Aligning Prototypes using Self-Supervision ([pdf](https://arxiv.org/abs/2205.08731?context=cs))
- Alexander Bartler, Florian Bender, Felix Wiewel, Bin Yang, IJCNN, 2022
35. Test-time Batch Normalization ([pdf](https://aps.arxiv.org/abs/2205.10210))
- Tao Yang, Shenglong Zhou, Yuwang Wang, Yan Lu, Nanning Zheng, arXiv, 2022
36. Towards Multi domain Single Image Dehazing via Test-time adaptation ([pdf](https://openaccess.thecvf.com/content/CVPR2022/papers/Liu_Towards_Multi-Domain_Single_Image_Dehazing_via_Test-Time_Training_CVPR_2022_paper.pdf))
- Huan Liu, Zijun Wu, Liangyan Li, Sadaf Salehkalaibar, Jun Chen1, Keyan Wang, CVPR, 2022
37. Towards Online Domain Adaptive Object Detection ([pdf](https://arxiv.org/pdf/2204.05289.pdf))
- Vibashan VS, Poojan Oza and Vishal M. Patel, arXiv, 2022
38. Uncertainty Reduction for Model Adaptation in Semantic Segmentation ([pdf](https://openaccess.thecvf.com/content/CVPR2021/papers/S_Uncertainty_Reduction_for_Model_Adaptation_in_Semantic_Segmentation_CVPR_2021_paper.pdf))
- Prabhu Teja S, Franc¸ois Fleuret, CVPR, 2022
39. Uncertainty-Guided Mixup for Semi-Supervised Domain Adaptation without Source Data ([pdf](https://arxiv.org/abs/2107.06707))
- Ning Ma, Jiajun Bu, Zhen Zhang, Sheng Zhou, arXiv, 2021
40. Unsupervised Adaptation of Semantic Segmentation Models without Source Data ([pdf](https://arxiv.org/abs/2112.02359))
- Sujoy Paul, Ansh Khurana, Gaurav Aggarwal, arXiv, 2021
41. Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing ([pdf](https://arxiv.org/abs/2204.07204))
- Mohammad Zalbagi Darestani, Jiayu Liu, Reinhard Heckel, arXiv, 2022