Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/junxia97/awesome-pretrain-on-molecules

[IJCAI 2023 survey track]A curated list of resources for chemical pre-trained models
https://github.com/junxia97/awesome-pretrain-on-molecules

List: awesome-pretrain-on-molecules

awesome chemical-language-models computational-chemistry drug-discovery drug-discovery-and-development finetuning gnns graph-representation-learning molecular-representation-learning molecule self-supervised-learning survey transfer-learning

Last synced: 3 months ago
JSON representation

[IJCAI 2023 survey track]A curated list of resources for chemical pre-trained models

Awesome Lists containing this project

README

        

# A Systematic Survey of Chemical Pre-trained Models [IJCAI 2023]
[![Awesome](https://awesome.re/badge.svg)](https://awesome.re) ![GitHub stars](https://img.shields.io/github/stars/junxia97/awesome-pretrain-on-graphs?color=yellow) ![GitHub forks](https://img.shields.io/github/forks/junxia97/awesome-pretrain-on-graphs?color=green&label=Fork)

This is a repository to help all readers who are interested in pre-training on molecules.
If you find there are other resources with this topic missing, feel free to let us know via github issues, pull requests or my email: [email protected]. We will update this repository and paper on a regular basis to maintain up-to-date.
> **Last update date: 2023-6-17**

## Contents
- [Papers List](#papers)
+ [Pretraining Strategies](#prestrategies)
+ [Knowledge-Enriched Pretraining Strategies](#know)
+ [Hard Negative Mining Strategies](#hard)
+ [Tuning Strategies](#tunestrategies)
+ [Applications](#Applications)
+ [Others](#others)
- [Open-Sourced Molecular Pretrained Models](#MPMs)
- [Pretraining Datasets](#Datasets)
- [Citation](#cite)
- [Acknowledgement](#Acknow)


## Papers List

### Pretraining Strategies
1. [ArXiv 2023] **Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective**[[Paper]](https://arxiv.org/abs/2306.06615)
1. [ECML-PKDD 2023]**CoSP: Co-supervised pretraining of pocket and ligand**[[paper]](https://arxiv.org/abs/2206.12241#:~:text=We%20propose%20a%20co%2Dsupervised,position%20and%20orientation%20are%20considered.)
1. [ChemRXiv]**Learning chemical intuition from humans in the loop**[[paper]](https://chemrxiv.org/engage/chemrxiv/article-details/63f89282897b18336f0c5a55)
1. [Nature Machine Intelligence]**Knowledge graph-enhanced molecular contrastive learning with functional prompt**[[paper]](https://www.nature.com/articles/s42256-023-00654-0)
1. [IJCAI 2023]**A Systematic Survey of Chemical Pre-trained Models**[[paper]](https://arxiv.org/abs/2210.16484)[[code]](https://github.com/junxia97/awesome-pretrain-on-molecules)
1. [ICML 2023]**A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining**[[paper]]()[[code]](https://github.com/chao1224/MoleculeSDE)
1. [Arxiv 2023]**SELFormer: Molecular Representation Learning via SELFIES Language Models**[[paper]](https://arxiv.org/abs/2304.04662)
1. [Nature Machine Intelligence]**Regression Transformer enables concurrent sequence regression and generation for molecular language modelling**[[paper]](https://www.nature.com/articles/s42256-023-00639-z)
1. [Digital Discovery]**Chemical representation learning for toxicity prediction**[[paper]](https://pubs.rsc.org/en/content/articlelanding/2023/dd/d2dd00099g)
1. [ArXiv 2023]**Denoise Pre-training on Non-equilibrium Molecules for Accurate and Transferable Neural Potentials**[[paper]](https://arxiv.org/abs/2303.02216)
1. [JPCM]**Extracting Predictive Representations from Hundreds of Millions of Molecules**[[paper]](https://pubs.acs.org/doi/10.1021/acs.jpclett.1c03058)
1. [ArXiv 2023]**MOLECULAR PROPERTY PREDICTION BY SEMANTIC-INVARIANT CONTRASTIVE LEARNING**[[paper]](https://arxiv.org/pdf/2303.06902.pdf)
1. [ArXiv 2023]**Enhancing Activity Prediction Models in Drug Discovery with the Ability to Understand Human Language**[[Paper]](https://arxiv.org/abs/2303.03363)
1. [ArXiv 2023]**Multi-modal Molecule Structure-text Model for Text-based Retrieval and Editing**[[paper]](https://arxiv.org/pdf/2212.10789.pdf)
1. [ChemRXiv]**Is GPT-3 all you need for low-data discovery in chemistry?**[[paper]](https://chemrxiv.org/engage/chemrxiv/article-details/63eb5a669da0bc6b33e97a35)[[Code]](https://github.com/kjappelbaum/gptchem)
1. [ICLR 2023]**Mole-BERT: Rethinking Pre-training Graph Neural Networks for Molecules**[[paper]](https://openreview.net/forum?id=jevY-DtiZTR)[[code]](https://github.com/junxia97/Mole-BERT)
1. [ICLR 2023]**Molecular Geometry Pretraining with SE(3)-Invariant Denoising Distance Matching**[[paper]](https://openreview.net/forum?id=CjTHVo1dvR)[[code]](https://github.com/chao1224/GeoSSL)
1. [ICLR 2023]**Pre-training via Denoising for Molecular Property Prediction**[[paper]](https://openreview.net/forum?id=tYIMtogyee)[[code]](https://github.com/shehzaidi/pre-training-via-denoising)
1. [ICLR 2023]**Retrieval-based Controllable Molecule Generation**[[paper]](https://openreview.net/forum?id=vDFA1tpuLvk)
1. [Research 2022]**Pushing the Boundaries of Molecular Property Prediction for Drug Discovery with Multitask Learning BERT Enhanced by SMILES Enumeration**[[paper]](https://spj.science.org/doi/10.34133/research.0004)
1. [Briefings in Bioinformatics]**MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction**[[paper]](https://doi.org/10.1093/bib/bbab152)[[code]](https://github.com/zhang-xuan1314/Molecular-graph-BERT)
1. [ArXiv 2023]**Drug Synergistic Combinations Predictions via Large-Scale Pre-Training and Graph Structure Learning**[[paper]](https://arxiv.org/abs/2301.05931)
1. [JMGM 2023]**MolRoPE-BERT: An enhanced molecular representation with Rotary Position Embedding for molecular property prediction**[[Paper]](https://www.sciencedirect.com/science/article/abs/pii/S1093326322002236)[[Code]]()
2. [Nature Machine Intelligence 2022]**Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework.**[[Paper]](https://www.nature.com/articles/s42256-022-00557-6)[[Code]](https://github.com/HongxinXiang/ImageMol)
3. [AAAI 2023]**Energy-motivated equivariant pretraining for 3d molecular graphs**[[Paper]](https://arxiv.org/abs/2207.08824)[[Code]](https://github.com/jiaor17/3D-EMGP)
4. [ArXiv 2023]**Molecular Language Model as Multi-task Generator**[[Paper]](https://arxiv.org/abs/2301.11259)[[Code]](https://github.com/zjunlp/MolGen)
5. [Openreview 2022]**MolBART: Generative Masked Language Models for Molecular Representations**[[Paper]](https://openreview.net/forum?id=-4HJSA3Y2vg)[[Code]](https://github.com/MolecularAI/MolBART#2)
6. [KDD 2022]**KPGT:knowledge-guided pre-training of graph transformer for molecular property prediction.**[[Paper]](https://arxiv.org/abs/2206.03364)[[Code]](https://github.com/lihan97/KPGT)
7. [EMNLP 2022]**Translation between Molecules and Natural Language**[[Paper]](https://arxiv.org/abs/2204.11817)[[Code]](https://github.com/blender-nlp/MolT5)
8. [JCIM]**MolGPT: Molecular Generation Using a Transformer-Decoder Model**[[Paper]](https://arxiv.org/abs/2204.11817)
9. [Bioinformatics]**MICER: a pre-trained encoder–decoder architecture for molecular image captioning**[[Paper]](https://academic.oup.com/bioinformatics/article-abstract/38/19/4562/6656348?redirectedFrom=fulltext&login=false)
10. [ECCV 2022] **Generative Subgraph Contrast for Self-Supervised Graph Representation Learning**[[Paper]](https://arxiv.org/abs/2207.11996)
11. [ArXiv] **Analyzing Data-Centric Properties for Contrastive Learning on Graphs**[[Paper]](https://arxiv.org/abs/2208.02810)
12. [ArXiv] **Generative Subgraph Contrast for Self-Supervised Graph Representation Learning**[[Paper]](https://arxiv.org/abs/2207.11996)
13. [Bioinformatics]**Multidrug Representation Learning Based on Pretraining Model and Molecular Graph for Drug Interaction and Combination Prediction**[[Paper]](https://pubmed.ncbi.nlm.nih.gov/35904544/)
14. [BioArXiv]**PanGu Drug Model: Learn a Molecule Like a Human**[[paper]](https://www.biorxiv.org/content/10.1101/2022.03.31.485886v1.full)
15. [ChemRxiv]**Uni-Mol: A Universal 3D Molecular Representation Learning Framework**[[paper]](https://chemrxiv.org/engage/chemrxiv/article-details/628e5b4d5d948517f5ce6d72)
16. [ICML 2022]**ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning**[[paper]](https://arxiv.org/abs/2110.02027)[[code]](https://github.com/junxia97/ProGCL)
17. [ICML 2022]**Let Invariant Rationale Discovery Inspire Graph Contrastive Learning**[[paper]](https://arxiv.org/abs/2206.07869)
18. [Ai4Science@ICML 2022]**Pre-training Graph Neural Networks for Molecular Representations: Retrospect and Prospect**[[paper]](https://openreview.net/forum?id=dhXLkrY2Nj3&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DICML.cc%2F2022%2FWorkshop%2FAI4Science%2FAuthors%23your-submissions))
19. [TNNLS 2022]**CLEAR: Cluster-Enhanced Contrast for Self-Supervised Graph Representation Learning**[[paper]](https://ieeexplore.ieee.org/abstract/document/9791433)
20. [Information Science]**A new self-supervised task on graphs: Geodesic distance prediction**[[paper]](https://www.sciencedirect.com/science/article/abs/pii/S0020025522006375)
21. [ArXiv 2022]**Hard Negative Sampling Strategies for Contrastive Representation Learning**[[paper]](https://arxiv.org/abs/2206.01197)
22. [ArXiv 2022]**Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination**[[paper]](https://arxiv.org/abs/2206.01535)
23. [ArXiv 2022]**KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular Property Prediction**[[paper]](https://arxiv.org/abs/2206.03364)
24. [ArXiv 2022]**COSTA: Covariance-Preserving Feature Augmentation for Graph Contrastive Learning**[[paper]](https://arxiv.org/abs/2206.04726)
25. [ArXiv 2022]**Evaluating Self-Supervised Learning for Molecular Graph Embeddings**[[paper]](https://arxiv.org/abs/2206.08005)
26. [ArXiv 2022]**I'm Me, We're Us, and I'm Us: Tri-directional Contrastive Learning on Hypergraphs**[[paper]](https://arxiv.org/abs/2206.04739)
27. [ArXiv 2022]**Triangular Contrastive Learning on Molecular Graphs**[[paper]](https://arxiv.org/abs/2205.13279)
28. [ArXiv 2022]**ImGCL: Revisiting Graph Contrastive Learning on Imbalanced Node Classification**[[paper]](https://arxiv.org/abs/2205.11332)
29. [KDD 2022]**GraphMAE: Self-Supervised Masked Graph Autoencoders**[[paper]](https://arxiv.org/abs/2205.10803)
30. [ArXiv 2022]**MaskGAE: Masked Graph Modeling Meets Graph Autoencoders**[[paper]](https://arxiv.org/abs/2205.10053)
31. [TNSE 2022]**Deep Multi-Attributed-View Graph Representation Learning**[[paper]](https://ieeexplore.ieee.org/abstract/document/9782548/)
32. [TSIPN 2022]**Fair Contrastive Learning on Graphs**[[paper]](https://ieeexplore.ieee.org/abstract/document/9779533/)
33. [Easychair]**Cross-Perspective Graph Contrastive Learning**[[paper]](https://easychair.org/publications/preprint_download/vrKL)
34. [WWW 2022 Workshop] **A Content-First Benchmark for Self-Supervised Graph Representation Learning** [[paper]](https://graph-learning-benchmarks.github.io/assets/papers/glb2022/A_Content_First_Benchmark_for_Self_Supervised_Graph_Representation_Learning.pdf)
35. [Arxiv 2022] **SCGC: Self-Supervised Contrastive Graph Clustering** [[paper]](https://arxiv.org/abs/2204.12656)
36. [ICASSP 2022] **Graph Fine-Grained Contrastive Representation Learning** [[paper]](https://ieeexplore.ieee.org/abstract/document/9746085)
37. [TCYB 2022] **Multiview Deep Graph Infomax to Achieve Unsupervised Graph Embedding** [[paper]](https://ieeexplore.ieee.org/abstract/document/9758652/)
38. [Arxiv 2022] **Augmentation-Free Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2204.04874.pdf)
39. [Arxiv 2022] **A Simple Yet Effective Pretraining Strategy for Graph Few-shot Learning** [[paper]](https://arxiv.org/abs/2203.15936)
40. [Arxiv 2022] **Unsupervised Heterophilous Network Embedding via r-Ego Network Discrimination** [[paper]](https://arxiv.org/abs/2203.10866)
41. [CVPR 2022] **Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization**[[paper]](https://arxiv.org/abs/2203.12265)
42. [Arxiv 2022] **GraphCoCo: Graph Complementary Contrastive Learning**[[paper]](https://arxiv.org/abs/2203.12821)
43. [AAAI 2022] **Simple Unsupervised Graph Representation Learning**[[paper]](https://www.aaai.org/AAAI22Papers/AAAI-3999.MoY.pdf)
44. [SDM 2022] **Neural Graph Matching for Pre-training Graph Neural Networks**[[paper]](https://arxiv.org/pdf/2203.01597.pdf)
45. [Nature Machine Intelligence 2022] **Molecular contrastive learning of representations via graph neural networks** [[paper]](https://www.nature.com/articles/s42256-022-00447-x)
46. [WWW 2022] **SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation** [[paper]](https://arxiv.org/pdf/2202.03104.pdf) [[code]](https://github.com/junxia97/SimGRACE)
47. [WWW 2022] **Rumor Detection on Social Media with Graph Adversarial Contrastive Learning**[[paper]](https://dl.acm.org/doi/abs/10.1145/3485447.3511999?casa_token=ryocVyMREWsAAAAA:ZzfkfURdQ7IMtarpA686MoiGnqWqZ85jz634VpCZ1jn2DRFzWt40WtYQ2ZBcAp-Z7NzG3SvtUzFR1bY)
48. [WWW 2022] **Robust Self-Supervised Structural Graph Neural Network for Social Network Prediction**[[paper]](https://dl.acm.org/doi/abs/10.1145/3485447.3512182?casa_token=sfwcy_9vf7cAAAAA:CxQnB4ZKOFyjFrDa2hEfOlOJeok4j0R-4RUWKtlFVXIknJhIiU_5jG9XUfg0t9PDAt3Q7jyGlx9XNzY)
49. [WWW 2022] **Dual Space Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2201.07409.pdf)
50. [WWW 2022] **Adversarial Graph Contrastive Learning with Information Regularization** [[paper]](https://arxiv.org/pdf/2202.06491.pdf)
51. [WWW 2022] **The Role of Augmentations in Graph Contrastive Learning: Current Methodological Flaws & Improved Practices** [[paper]](https://arxiv.org/pdf/2111.03220.pdf)
52. [WWW 2022] **ClusterSCL: Cluster-Aware Supervised Contrastive Learning on Graphs** [[paper]](https://xiaojingzi.github.io/publications/WWW22-Wang-et-al-ClusterSCL.pdf)
53. [WWW 2022] **Graph Communal Contrastive Learning** [[paper]](https://arxiv.org/pdf/2110.14863.pdf)
54. [TKDE 2022] **CCGL: Contrastive Cascade Graph Learning** [[paper]](https://arxiv.org/pdf/2107.12576.pdf)[[code]](https://arxiv.org/pdf/2107.12576.pdf)
55. [BIBM 2021] **Molecular Graph Contrastive Learning with Parameterized Explainable Augmentations** [[paper]](https://www.biorxiv.org/content/10.1101/2021.12.03.471150v1)
56. [WSDM 2022]**Bringing Your Own View: Graph Contrastive Learning without Prefabricated Data Augmentations** [[paper]](https://arxiv.org/abs/2201.01702) [[code]](https://github.com/Shen-Lab/GraphCL_Automated)
57. [SDM 2022] **Structure-Enhanced Heterogeneous Graph Contrastive Learning** [[paper]](https://sxkdz.github.io/files/publications/SDM/STENCIL/STENCIL.pdf)
58. [AAAI 2022] **GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction** [[paper]](https://arxiv.org/pdf/2109.11730.pdf)
59. [AAAI 2022] **Self-supervised Graph Neural Networks via Diverse and Interactive Message Passing** [[paper]](https://yangliang.github.io/pdf/aaai22.pdf)
60. [AAAI 2022] **Augmentation-Free Self-Supervised Learning on Graphs** [[paper]](https://arxiv.org/pdf/2112.02472.pdf)[[code]](https://github.com/Namkyeong/AFGRL)
61. [AAAI 2022] **Deep Graph Clustering via Dual Correlation Reduction** [[paper]](https://arxiv.org/pdf/2112.14772)[[code]](https://github.com/yueliu1999/DCRN)
62. [ICOIN 2022] **Adaptive Self-Supervised Graph Representation Learning** [[paper]](https://ieeexplore.ieee.org/abstract/document/9687176)
63. [arXiv 2022] **Graph Masked Autoencoder** [[paper]](https://arxiv.org/abs/2202.08391)
64. [arXiv 2022] **Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning** [[paper]](https://arxiv.org/pdf/2202.08480.pdf)
65. [arXiv 2022] **Graph Self-supervised Learning with Accurate Discrepancy Learning** [[paper]](https://arxiv.org/pdf/2202.02989.pdf)
66. [arXiv 2021] **Multilayer Graph Contrastive Clustering Network** [[paper]](https://arxiv.org/pdf/2112.14021.pdf)
67. [arXiv 2021] **Graph Representation Learning via Contrasting Cluster Assignments** [[paper]](https://arxiv.org/pdf/2112.07934.pdf)
68. [arXiv 2021] **Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning** [[paper]](https://arxiv.org/pdf/2112.08830.pdf)
69. [arXiv 2021] **Bayesian Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2112.07823.pdf)
70. [NeurIPS 2021 Workshop] **Self-Supervised GNN that Jointly Learns to Augment** [[paper]](https://www.researchgate.net/profile/Zekarias-Kefato/publication/356997993_Self-Supervised_GNN_that_Jointly_Learns_to_Augment/links/61b75d88a6251b553ab64ff4/Self-Supervised-GNN-that-Jointly-Learns-to-Augment.pdf)
71. [NeurIPS 2021] **Enhancing Hyperbolic Graph Embeddings via Contrastive Learning** [[paper]](https://sslneurips21.github.io/files/CameraReady/NeurIPS_2021_workshop_version2.pdf)
72. [NeurIPS 2021] **Transfer Learning of Graph Neural Networks with Ego-graph Information Maximization** [[paper]](https://openreview.net/forum?id=J_pvI6ap5Mn)
73. [NeurIPS 2021] **Motif-based Graph Self-Supervised Learning for Molecular Property Prediction** [[paper]](https://arxiv.org/pdf/2110.00987.pdf)
74. [NeurIPS 2021] **Graph Adversarial Self-Supervised Learning** [[paper]](https://proceedings.neurips.cc/paper/2021/file/7d3010c11d08cf990b7614d2c2ca9098-Paper.pdf)
75. [NeurIPS 2021] **Contrastive laplacian eigenmaps** [[paper]](https://papers.nips.cc/paper/2021/file/2d1b2a5ff364606ff041650887723470-Paper.pdf)
76. [NeurIPS 2021] **Directed Graph Contrastive Learning** [[paper]](https://zekuntong.com/files/digcl_nips.pdf)[[code]](https://github.com/flyingtango/DiGCL)
77. [NeurIPS 2021] **Multi-view Contrastive Graph Clustering** [[paper]](https://arxiv.org/pdf/2110.11842.pdf)[[code]](https://github.com/Panern/MCGC)
78. [NeurIPS 2021] **From Canonical Correlation Analysis to Self-supervised Graph Neural Networks** [[paper]](https://arxiv.org/pdf/2106.12484.pdf)[[code]](https://github.com/hengruizhang98/CCA-SSG)
79. [NeurIPS 2021] **InfoGCL: Information-Aware Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2110.15438.pdf)
80. [NeurIPS 2021] **Adversarial Graph Augmentation to Improve Graph Contrastive Learning** [[paper]](https://arxiv.org/abs/2106.05819)[[code]](https://github.com/susheels/adgcl)
81. [NeurIPS 2021] **Disentangled Contrastive Learning on Graphs** [[paper]](https://openreview.net/pdf?id=C_L0Xw_Qf8M)
82. [arXiv 2021] **Subgraph Contrastive Link Representation Learning** [[paper]](https://arxiv.org/pdf/2112.01165.pdf)
83. [arXiv 2021] **Augmentations in Graph Contrastive Learning: Current Methodological Flaws & Towards Better Practices** [[paper]](https://arxiv.org/pdf/2111.03220.pdf)
84. [arXiv 2021] **Collaborative Graph Contrastive Learning: Data Augmentation Composition May Not be Necessary for Graph Representation Learning** [[paper]](https://arxiv.org/pdf/2111.03262.pdf)
85. [CIKM 2021] **Contrastive Pre-Training of GNNs on Heterogeneous Graphs** [[paper]](https://yuanfulu.github.io/publication/CIKM-CPT.pdf)
86. [CIKM 2021] **Self-supervised Representation Learning on Dynamic Graphs** [[paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3482389)
87. [CIKM 2021] **SGCL: Contrastive Representation Learning for Signed Graphs** [[paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3482478)
88. [CIKM 2021] **Semi-Supervised and Self-Supervised Classification with Multi-View Graph Neural Networks** [[paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3482477)
89. [arXiv 2021] **Graph Communal Contrastive Learning** [[paper]](https://arxiv.org/pdf/2110.14863.pdf)
90. [arXiv 2021] **Self-supervised Contrastive Attributed Graph Clustering** [[paper]](https://arxiv.org/pdf/2110.08264.pdf)
91. [arXiv 2021] **Adaptive Multi-layer Contrastive Graph Neural Networks** [[paper]](https://arxiv.org/pdf/2109.14159.pdf)
92. [arXiv 2021] **Graph-MVP: Multi-View Prototypical Contrastive Learning for Multiplex Graphs** [[paper]](https://arxiv.org/pdf/2109.03560.pdf)
93. [arXiv 2021] **Spatio-Temporal Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2108.11873.pdf)
94. [IJCAI 2021] **Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning** [[paper]](https://www.ijcai.org/proceedings/2021/0204.pdf)
95. [IJCAI 2021] **Pairwise Half-graph Discrimination: A Simple Graph-level Self-supervised Strategy for Pre-training Graph Neural Networks** [[paper]](https://www.ijcai.org/proceedings/2021/0371.pdf)
96. [arXiv 2021] **RRLFSOR: An Efficient Self-Supervised Learning Strategy of Graph Convolutional Networks** [[paper]](https://arxiv.org/ftp/arxiv/papers/2108/2108.07481.pdf)
97. [ICML 2021] **Graph Contrastive Learning Automated** [[paper]](https://arxiv.org/abs/2106.07594) [[code]](https://github.com/Shen-Lab/GraphCL_Automated)
98. [ICML 2021] **Self-supervised Graph-level Representation Learning with Local and Global Structure** [[paper]](https://arxiv.org/pdf/2106.04113) [[code]](https://github.com/DeepGraphLearning/GraphLoG)
99.[arXiv 2021] **Group Contrastive Self-Supervised Learning on Graphs** [[paper]](https://arxiv.org/abs/2107.09787)
100. [arXiv 2021] **Multi-Level Graph Contrastive Learning** [[paper]](https://arxiv.org/abs/2107.02639)
101. [KDD 2021] **Pre-training on Large-Scale Heterogeneous Graph** [[paper]](http://www.shichuan.org/doc/111.pdf)
102. [KDD 2021] **Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning** [[paper]](https://arxiv.org/abs/2105.09111) [[code]](https://github.com/liun-online/HeCo)
103. [arXiv 2021] **Prototypical Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2106.09645.pdf)
104. [arXiv 2021] **Graph Barlow Twins: A self-supervised representation learning framework for graphs** [[paper]](https://arxiv.org/pdf/2106.02466.pdf)
105. [arXiv 2021] **Self-Supervised Graph Learning with Proximity-based Views and Channel Contrast** [[paper]](https://arxiv.org/pdf/2106.03723.pdf)
106. [arXiv 2021] **FedGL: Federated Graph Learning Framework with Global Self-Supervision** [[paper]](https://arxiv.org/pdf/2105.03170.pdf)
107. [IJCNN 2021] **Node Embedding using Mutual Information and Self-Supervision based Bi-level Aggregation** [[paper]](https://arxiv.org/abs/2104.13014v1)
108. [arXiv 2021] **Graph Representation Learning by Ensemble Aggregating Subgraphs via Mutual Information Maximization** [[paper]](https://arxiv.org/abs/2103.13125)
109. [arXiv 2021] **Self-supervised Auxiliary Learning for Graph Neural Networks via Meta-Learning** [[paper]](https://arxiv.org/abs/2103.00771)
110. [arXiv 2021] **Towards Robust Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2102.13085.pdf)
111. [arXiv 2021] **Pre-Training on Dynamic Graph Neural Networks** [[paper]](https://arxiv.org/abs/2102.12380)
112. [WWW 2021] **Graph Contrastive Learning with Adaptive Augmentation** [[paper]](https://arxiv.org/abs/2010.14945) [[code]](https://github.com/CRIPAC-DIG/GCA)
113. [Arxiv 2020] **Distance-wise Graph Contrastive Learning** [[paper]](https://arxiv.org/abs/2012.07437)
114. [Openreview 2020] **Motif-Driven Contrastive Learning of Graph Representations** [[paper]](https://openreview.net/forum?id=qcKh_Msv1GP)
115. [Openreview 2020] **SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks** [[paper]](https://openreview.net/forum?id=a5KvtsZ14ev)
116. [Openreview 2020] **TopoTER: Unsupervised Learning of Topology Transformation Equivariant Representations** [[paper]](https://openreview.net/forum?id=9az9VKjOx00)
117. [Openreview 2020] **Graph-Based Neural Network Models with Multiple Self-Supervised Auxiliary Tasks** [[paper]](https://openreview.net/forum?id=hnJSgY7p33a)
118. [NeurIPS 2020] **Self-Supervised Graph Transformer on Large-Scale Molecular Data** [[paper]](https://drug.ai.tencent.com/publications/GROVER.pdf)
119. [NeurIPS 2020] **Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs** [[paper]](https://arxiv.org/abs/2007.08294) [[code]](https://github.com/mlvlab/SELAR)
120. [NeurIPS 2020] **Graph Contrastive Learning with Augmentations** [[paper]](https://arxiv.org/abs/2010.13902) [[code]](https://github.com/Shen-Lab/GraphCL)
121. [Arxiv 2020] **Deep Graph Contrastive Representation Learning** [[paper]](https://arxiv.org/abs/2006.04131)
122. [ICML 2020] **When Does Self-Supervision Help Graph Convolutional Networks?** [[paper]](https://arxiv.org/abs/2006.09136) [[code]](https://github.com/Shen-Lab/SS-GCNs)
123. [ICML 2020] **Contrastive Multi-View Representation Learning on Graphs.** [[paper]](https://arxiv.org/abs/2006.05582) [[code]](https://github.com/kavehhassani/mvgrl)
124. [ICML 2020 Workshop] **Self-supervised edge features for improved Graph Neural Network training.** [[paper]](https://arxiv.org/abs/2007.04777)
125. [Arxiv 2020] **Self-supervised Training of Graph Convolutional Networks.** [[paper]](https://arxiv.org/abs/2006.02380)
126. [Arxiv 2020] **Self-Supervised Graph Representation Learning via Global Context Prediction.** [[paper]](https://arxiv.org/abs/2003.01604)
127. [KDD 2020] **GPT-GNN: Generative Pre-Training of Graph Neural Networks.** [[pdf]](https://arxiv.org/abs/2006.15437) [[code]](https://github.com/acbull/GPT-GNN)
128. [KDD 2020] **GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training.** [[pdf]](https://arxiv.org/abs/2006.09963) [[code]](https://github.com/THUDM/GCC)
129. [Arxiv 2020] **Graph-Bert: Only Attention is Needed for Learning Graph Representations.** [[paper]](https://arxiv.org/abs/2001.05140) [[code]](https://github.com/anonymous-sourcecode/Graph-Bert)
130. [ICLR 2020] **InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization.** [[paper]](https://arxiv.org/abs/1908.01000) [[code]](https://github.com/fanyun-sun/InfoGraph)
131. [ICLR 2020] **Strategies for Pre-training Graph Neural Networks.** [[paper]](https://arxiv.org/abs/1905.12265) [[code]](https://github.com/snap-stanford/pretrain-gnns)
132. [KDD 2019 Workshop] **SGR: Self-Supervised Spectral Graph Representation Learning.** [[paper]](https://arxiv.org/abs/1811.06237)
133. [ICLR 2019 workshop] **Pre-Training Graph Neural Networks for Generic Structural Feature Extraction.** [[paper]](https://arxiv.org/abs/1905.13728)
134. [Arxiv 2019] **Heterogeneous Deep Graph Infomax** [[paper]](https://arxiv.org/abs/1911.08538) [[code]](https://github.com/YuxiangRen/Heterogeneous-Deep-Graph-Infomax)
135. [ICLR 2019] **Deep Graph Informax.** [[paper]](https://arxiv.org/abs/1809.10341) [[code]](https://github.com/PetarV-/DGI)


### Knowledge-Enriched Pretraining Strategies
1. [Arxiv 2022] KnowAugNet: Multi-Source Medical Knowledge Augmented Medication Prediction Network with Multi-Level Graph Contrastive Learning [[paper]](https://arxiv.org/abs/2204.11736)
1. [Nature Machine Itelligence 2022] Geometry-enhanced molecular representation learning for property prediction[[paper]](https://www.nature.com/articles/s42256-021-00438-4)
2. [ICLR 2022] **PRE-TRAINING MOLECULAR GRAPH REPRESENTATION WITH 3D GEOMETRY** [[paper]](https://wyliu.com/papers/GraphMVP.pdf) [[code]](https://github.com/chao1224/GraphMVP)
3. [AAAI 2022] **Molecular Contrastive Learning with Chemical Element Knowledge Graph** [[paper]](https://arxiv.org/pdf/2112.00544.pdf)
4. [KDD 2021] **MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph** [[paper]](https://dl.acm.org/doi/abs/10.1145/3447548.3467186) [[code]](https://github.com/illidanlab/MoCL-DK)
9. [arXiv 2021] **3D Infomax improves GNNs for Molecular Property Prediction** [[paper]](https://arxiv.org/abs/2110.04126v1) [[code]](https://github.com/HannesStark/3DInfomax)
10. [ICLR 2022] **Chemical-Reaction-Aware Molecule Representation Learning** [[paper]](https://openreview.net/forum?id=6sh3pIzKS-)[[code]](https://github.com/hwwang55/MolR)


### Hard Negative Mining Strategies
1. [ICML 2022]**ProGCL: Rethinking Hard Negative Mining in Graph Contrastive Learning**[[paper]](https://arxiv.org/abs/2110.02027v2)[[code(coming soon)]](https://github.com/junxia97/ProGCL)
1. [SDM 2022] **Structure-Enhanced Heterogeneous Graph Contrastive Learning** [[paper]](https://sxkdz.github.io/files/publications/SDM/STENCIL/STENCIL.pdf)
3. [Signal Processing 2021] **Negative Sampling Strategies for Contrastive Self-Supervised Learning of Graph Representations** [[paper]](https://www.sciencedirect.com/science/article/abs/pii/S0165168421003479)
4. [IJCAI 2021] **Graph Debiased Contrastive Learning with Joint Representation Clustering** [[paper]](https://www.ijcai.org/proceedings/2021/0473.pdf)
5. [IJCAI 2021] **CuCo: Graph Representation with Curriculum Contrastive Learning** [[paper]](https://www.ijcai.org/proceedings/2021/0317.pdf)
6. [arXiv 2021] **Debiased Graph Contrastive Learning** [[paper]](https://arxiv.org/pdf/2110.02027.pdf)


### Tuning Strategies
1. [KDD 2021] **Adaptive Transfer Learning on Graph Neural Networks** [[paper]](https://arxiv.org/pdf/2107.08765.pdf)
3. [BioRxiv 2022] **Towards Effective and Generalizable Fine-tuning for Pre-trained Molecular Graph Models**[[paper]](https://www.biorxiv.org/content/10.1101/2022.02.03.479055v1)
4. [AAAI 2022] **CODE: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking** [[paper]](https://arxiv.org/abs/2012.11336) [[code]](https://github.com/BoChen-Daniel/Expert-Linking)
5 [Arxiv 2022]**Fine-Tuning Graph Neural Networks via Graph Topology induced Optimal Transport** [[paper]](https://arxiv.org/pdf/2203.10453.pdf)

### Applications
1. [The Journal of Chemical Physics] **Transfer Learning using Attentions across Atomic Systems with Graph Neural Networks (TAAG)** [[paper]](https://aip.scitation.org/doi/abs/10.1063/5.0088019)
1. [SIGIR 2022] **Are Graph Augmentations Necessary? Simple Graph Contrastive Learning for Recommendation**[[paper]](https://www.researchgate.net/profile/Junliang-Yu/publication/359788233_Are_Graph_Augmentations_Necessary_Simple_Graph_Contrastive_Learning_for_Recommendation/links/624e802ad726197cfd426f81/Are-Graph-Augmentations-Necessary-Simple-Graph-Contrastive-Learning-for-Recommendation.pdf)
1. [Arxiv 22] **Protein Representation Learning by Geometric Structure Pretraining** [[paper]](https://arxiv.org/abs/2203.06125)
1. [Nature Communications 2021] **Masked graph modeling for molecule generation** [[paper]](https://www.nature.com/articles/s41467-021-23415-2)
1. [NPL 2022] **How Does Bayesian Noisy Self-Supervision Defend Graph Convolutional Networks?** [[paper]](https://link.springer.com/article/10.1007/s11063-022-10750-8)
2. [arXiv 2022] **Self-supervised Graphs for Audio Representation Learning with Limited Labeled Data** [[paper]](https://arxiv.org/pdf/2202.00097.pdf)
3. [arXiv 2022] **Link Prediction with Contextualized Self-Supervision** [[paper]](https://arxiv.org/pdf/2201.10069.pdf)
4. [arXiv 2022] **Learning Robust Representation through Graph Adversarial Contrastive Learning** [[paper]](https://arxiv.org/pdf/2201.13025.pdf)
5. [WWW 2021] **Multi-view Graph Contrastive Representation Learning for Drug-drug Interaction Prediction** [[paper]](https://arxiv.org/pdf/2010.11711.pdf)
6. [BIBM 2021] **SGAT: a Self-supervised Graph Attention Network for Biomedical Relation Extraction** [[paper]](https://ieeexplore.ieee.org/abstract/document/9669699)
7. [ICBD 2021] **Session-based Recommendation via Contrastive Learning on Heterogeneous Graph** [[paper]](https://ieeexplore.ieee.org/abstract/document/9671296)
8. [arXiv 2021] **Graph Augmentation-Free Contrastive Learning for Recommendation** [[paper]](https://arxiv.org/pdf/2112.08679.pdf)
9. [arXiv 2021] **TCGL: Temporal Contrastive Graph for Self-supervised Video Representation Learning** [[paper]](https://arxiv.org/pdf/2112.03587.pdf)
10. [NeurIPS 2021 Workshop] **Contrastive Embedding of Structured Space for Bayesian Optimisation** [[paper]](https://openreview.net/pdf?id=xFpkJUMS9te)
11. [ICCSNT 2021] **Graph Data Augmentation based on Adaptive Graph Convolution for Skeleton-based Action Recognition** [[paper]](https://ieeexplore.ieee.org/abstract/document/9615451)
12. [arXiv 2021] **Pre-training Graph Neural Network for Cross Domain Recommendation** [[paper]](https://arxiv.org/pdf/2111.08268.pdf)
13. [CIKM 2021] **Social Recommendation with Self-Supervised Metagraph Informax Network** [[paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3482480) [[code]](https://github.com/SocialRecsys/SMIN)
14. [arXiv 2021] **Self-Supervised Learning for Molecular Property Prediction** [[paper]](https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/61677becaa918db6bf2a31cb/original/self-supervised-learning-for-molecular-property-prediction.pdf)
15. [arXiv 2021] **Contrastive Graph Convolutional Networks for Hardware Trojan Detection in Third Party IP Cores** [[paper]](https://people.cs.vt.edu/~ramakris/papers/Hardware_Trojan_Trigger_Detection__HOST2021.pdf)
16. [KBS 2021] **Multi-aspect self-supervised learning for heterogeneous information network** [[paper]](https://www.sciencedirect.com/science/article/abs/pii/S095070512100736X)
17. [arXiv 2021] **Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation** [[paper]](https://arxiv.org/pdf/2109.02859.pdf)
18. [arXiv 2021] **Generative and Contrastive Self-Supervised Learning for Graph Anomaly Detection** [[paper]](https://arxiv.org/pdf/2108.09896.pdf)
19. [IJCAI 2021] **CSGNN: Contrastive Self-Supervised Graph Neural Network for Molecular Interaction Prediction** [[paper]](https://www.ijcai.org/proceedings/2021/0517.pdf)
20. [arXiv 2021] **GCCAD: Graph Contrastive Coding for Anomaly Detection** [[paper]](https://arxiv.org/pdf/2108.07516.pdf)
21. [arXiv 2021] **Contrastive Self-supervised Sequential Recommendation with Robust Augmentation** [[paper]](https://arxiv.org/pdf/2108.06479.pdf)
22. [KDD 2021] **Contrastive Multi-View Multiplex Network Embedding with Applications to Robust Network Alignment** [[paper]](https://dl.acm.org/doi/abs/10.1145/3447548.3467227)
23. [arXiv 2021] **Hop-Count Based Self-Supervised Anomaly Detection on Attributed Networks** [[paper]](https://arxiv.org/abs/2104.07917)
24. [arXiv 2021] **Representation Learning for Networks in Biology and Medicine: Advancements, Challenges, and Opportunities** [[paper]](https://arxiv.org/abs/2104.04883)
25. [arXiv 2021] **Drug Target Prediction Using Graph Representation Learning via Substructures Contrast** [[paper]](https://www.preprints.org/manuscript/202103.0337/v1)
26. [Arxiv 2021] **Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation** [[paper]](https://arxiv.org/abs/2101.06448) [[code]](https://github.com/Coder-Yu/RecQ)
27. [ICLR 2021] **How to Find Your Friendly Neighborhood: Graph Attention Design with Self-Supervision** [[paper]](https://openreview.net/forum?id=Wi5KUNlqWty) [[code]](https://github.com/dongkwan-kim/SuperGAT)
28. [WSDM 2021] **Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation** [[paper]](https://arxiv.org/abs/2012.07064) [[code]](https://github.com/jerryhao66/Pretrain-Recsys)
29. [ICML 2020] **Graph-based, Self-Supervised Program Repair from Diagnostic Feedback.** [[paper]](https://arxiv.org/abs/2005.10636)

### Others
1. [arXiv 2022] **A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications** [[paper]](https://arxiv.org/abs/2202.07893)
1. [NeurIPS 2021 datasets and benchmark track] **An Empirical Study of Graph Contrastive Learning** [[paper]](https://openreview.net/forum?id=fYxEnpY-__G)
2. [arXiv 2021] **Evaluating Modules in Graph Contrastive Learning** [[paper]](https://arxiv.org/abs/2106.08171) [[code]](https://github.com/thunlp/OpenGCL)
3. [arXiv 2021] **Graph Self-Supervised Learning: A Survey** [[paper]](https://arxiv.org/abs/2103.00111)
4. [arXiv 2021] **Self-Supervised Learning of Graph Neural Networks: A Unified Review** [[paper]](https://arxiv.org/abs/2102.10757)
5. [Arxiv 2020] **Self-supervised Learning on Graphs: Deep Insights and New Direction.** [[paper]](https://arxiv.org/abs/2006.10141) [[code]](https://github.com/ChandlerBang/SelfTask-GNN)
6. [ICLR 2019 Workshop] **Can Graph Neural Networks Go "Online"? An Analysis of Pretraining and Inference.** [[paper]](https://arxiv.org/abs/1905.06018)


## Open-Sourced Pretrained Graph Models
|PGMs| Architecture | Pretraining Database| \# Params. | Download Link |
|-------------------------------------|-----------------------------------------|---------------------------|-------------------------------------------------|---------------------|
|[Hu et al.](https://arxiv.org/pdf/2001.05140.pdf)| 5-layer GIN| ZINC15 (2M) + ChEMBL (456K)| ~ 2M |[Link](https://github.com/snap-stanford/pretrain-gnns/tree/master/chem/model_gin)|
| [Graph-BERT](https://arxiv.org/pdf/2001.05140.pdf)| [Graph Transformer](https://arxiv.org/pdf/2001.05140.pdf) | Cora + CiteSeer + PubMed | N/A |[Link](https://github.com/jwzhanggy/Graph-Bert/tree/master/result/PreTrained_GraphBert)|
| [GraphCL](https://arxiv.org/abs/2010.13902)| 5-layer GIN| ZINC15 (2M) + ChEMBL (456K) | ~ 2M|[Link](https://github.com/Shen-Lab/GraphCL/tree/master/transferLearning_MoleculeNet_PPI)|
| [GPT-GNN](https://arxiv.org/pdf/2006.15437.pdf) | [HGT](https://arxiv.org/pdf/2003.01332.pdf) | OAG + Amazon| N/A|[Link](https://github.com/acbull/GPT-GNN)|
| [GCC](https://arxiv.org/pdf/2006.09963.pdf) | 5-layer GIN | Academia + DBLP + IMDB + Facebook + LiveJournal | <1M|[Link](https://github.com/THUDM/GCC#download-pretrained-models)|
| [JOAO](http://proceedings.mlr.press/v139/you21a.html) | 5-layer GIN | ZINC15 (2M) + ChEMBL (456K) | ~ 2M |[Link](https://github.com/Shen-Lab/GraphCL_Automated/tree/master/transferLearning_MoleculeNet_PPI)|
| [AD-GCL](https://openreview.net/forum?id=ioyq7NsR1KJ) | 5-layer GIN | ZINC15 (2M) + ChEMBL (456K) | ~ 2M |N/A|
| [GraphLog](https://arxiv.org/pdf/2106.04113.pdf) | 5-layer GIN | ZINC15 (2M) + ChEMBL (456K)| ~ 2M |[Link](https://github.com/DeepGraphLearning/GraphLoG/tree/main/models)|
| [GROVER](https://arxiv.org/abs/2007.02835) | [GTransformer](https://arxiv.org/abs/2007.02835) | ZINC + ChEMBL (10M)| 48M ~ 100M|[Link](https://github.com/tencent-ailab/grover)|
| [MGSSL](https://arxiv.org/pdf/2110.00987.pdf) | 5-layer GIN | ZINC15 (250K) | ~ 2M |[Link](https://github.com/zaixizhang/MGSSL/tree/main/motif_based_pretrain/saved_model)|
| [CPT-HG](https://yuanfulu.github.io/publication/CIKM-CPT.pdf) | [HGT](https://arxiv.org/pdf/2003.01332.pdf) | DBLP + YELP + Aminer | N/A |N/A|
| [MPG](https://pubmed.ncbi.nlm.nih.gov/33940598/) | [MolGNet](https://pubmed.ncbi.nlm.nih.gov/33940598/) | ZINC + ChEMBL (11M) | 53M|N/A|
| [LP-Info](https://arxiv.org/pdf/2201.01702.pdf) | 5-layer GIN | ZINC15 (2M) + ChEMBL (456K) | ~ 2M|[Link](https://github.com/Shen-Lab/GraphCL_Automated/tree/master/transferLearning_MoleculeNet_PPI_LP)|
| [SimGRACE](https://arxiv.org/pdf/2202.03104.pdf) | 5-layer GIN | ZINC15 (2M) + ChEMBL (456K) | ~ 2M |[Link](https://github.com/junxia97/SimGRACE)|
| [MolCLR](https://arxiv.org/pdf/2102.10056.pdf) | GCN + GIN | PubChem (10M)| N/A|[Link](https://github.com/yuyangw/MolCLR/tree/master/ckpt)|
| [DMP](https://arxiv.org/pdf/2106.10234.pdf) | DeeperGCN + Transformer | PubChem (110M) | 104.1 M|N/A|
| [ChemRL-GEM](https://www.nature.com/articles/s42256-021-00438-4) | GeoGNN | ZINC15 (20M)| N/A |[Link](https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/pretrained_compound/ChemRL/GEM)|
| [KCL](https://arxiv.org/pdf/2112.00544.pdf) | GCN + KMPNN | ZINC15 (250K) | < 1M |N/A|
| [3D Infomax](https://arxiv.org/pdf/2110.04126.pdf) | PNA | QM9(50K) + GEOM-drugs(140K) + QMugs(620K) | N/A |[Link](https://github.com/HannesStark/3DInfomax)|
| [GraphMVP](https://openreview.net/pdf?id=xQUe1pOKPam) | GIN + SchNet | GEOM (50k) | ~ 2M |[Link](https://github.com/chao1224/GraphMVP)|


## Pre-traing Datasets
| Name | Category | Download Link |
| :----------: | :---------: | :------: |
| ZINC | Molecular Graph | [Link](https://zinc15.docking.org/) |
| CheMBL | Molecular Graph | [Link](https://chembl.gitbook.io/chembl-interface-documentation/downloads) |
| PubChem | Molecular Graph | [Link](https://pubchem.ncbi.nlm.nih.gov) |
| QM9 | Molecular Graph| [Link](http://quantum-machine.org/datasets/) |
| QMugs |Molecular Graph | [Link](https://libdrive.ethz.ch/index.php/s/X5vOBNSITAG5vzM) |
| GEOM | Molecular Graph | [Link](https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JNGTDF) |

## Citation
```
@inproceedings{
xia2022pretraining,
title={Pre-training Graph Neural Networks for Molecular Representations: Retrospect and Prospect},
author={Jun Xia and Yanqiao Zhu and Yuanqi Du and Stan Z. Li},
booktitle={ICML 2022 2nd AI for Science Workshop},
year={2022},
url={https://openreview.net/forum?id=dhXLkrY2Nj3}
}
@article{xia2023systematic,
title={A Systematic Survey of Chemical Pre-trained Models},
author={Xia, Jun and Zhu, Yanqiao and Du, Yuanqi and Liu, Yue and Li, Stan Z},
journal={IJCAI},
year={2023}
}
```
## Acknowledgements
+ [awesome-pretrained-chinese-nlp-models](https://github.com/lonePatient/awesome-pretrained-chinese-nlp-models)
+ [awesome-self-supervised-gnn](https://github.com/ChandlerBang/awesome-self-supervised-gnn)
+ [awesome-self-supervised-learning-for-graphs](https://github.com/SXKDZ/awesome-self-supervised-learning-for-graphs)