Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/keremberke/awesome-yolov8-models
Easy-to-use finetuned YOLOv8 models.
https://github.com/keremberke/awesome-yolov8-models
List: awesome-yolov8-models
computer-vision csgo gradio huggingface image-classification instance-segmentation object-detection pcb plane pothole-detection pytorch ultralytics valorant xray yolov8
Last synced: 16 days ago
JSON representation
Easy-to-use finetuned YOLOv8 models.
- Host: GitHub
- URL: https://github.com/keremberke/awesome-yolov8-models
- Owner: keremberke
- License: mit
- Created: 2023-01-31T19:34:11.000Z (almost 2 years ago)
- Default Branch: main
- Last Pushed: 2023-02-27T20:22:46.000Z (almost 2 years ago)
- Last Synced: 2024-04-18T14:38:43.340Z (8 months ago)
- Topics: computer-vision, csgo, gradio, huggingface, image-classification, instance-segmentation, object-detection, pcb, plane, pothole-detection, pytorch, ultralytics, valorant, xray, yolov8
- Language: HTML
- Homepage: https://yolov8.xyz
- Size: 51.8 KB
- Stars: 145
- Watchers: 1
- Forks: 22
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-yolov8-models - Easy-to-use finetuned YOLOv8 models. (Other Lists / Monkey C Lists)
README
Awesome YOLOv8 Models
Easy-to-use finetuned YOLOv8 models
TABLE OF CONTENTS
About the Project
Installation
- Usage
- Classification Models
- Detection Models
- Segmentation Models
- Contributing
- License
## About the Project
This is a collection of YOLOv8 models finetuned for classification/detection/segmentation tasks on datasets from various domains as Medicine/Insurance/Sports/Gaming.
> **Ultralytics YOLOv8**, developed by Ultralytics, is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
>
> _Source: [github](https://github.com/ultralytics/ultralytics)## Installation
To use listed models, install ultralyticsplus:
```bash
pip install ultralyticsplus
```## Usage
```python
from ultralyticsplus import YOLO, render_result# load model
model = YOLO(DESIRED_MODEL_ID)# set image
image = 'image.png'
# perform inference
results = model(image)# parse results
result = results[0]
boxes = result.boxes.xyxy # x1, y1, x2, y2
scores = result.boxes.conf
categories = result.boxes.cls
scores = result.probs # for classification models
masks = result.masks # for segmentation models
# show results on image
render = render_result(model=model, image=image, result=result)
render.show()
```## Classification Models
| top1 acc. | top5 acc. | model type | model id | dataset page |
|--- |--- |--- |--- |--- |
| 0.678 | 1.000 | yolov8n-cls | [keremberke/yolov8n-shoe-classification](https://huggingface.co/keremberke/yolov8n-shoe-classification) | [dataset](https://huggingface.co/datasets/keremberke/shoe-classification) |
| 0.687 | 1.000 | yolov8s-cls | [keremberke/yolov8s-shoe-classification](https://huggingface.co/keremberke/yolov8s-shoe-classification) | [dataset](https://huggingface.co/datasets/keremberke/shoe-classification) |
| 0.795 | 1.000 | yolov8m-cls | [keremberke/yolov8m-shoe-classification](https://huggingface.co/keremberke/yolov8m-shoe-classification) | [dataset](https://huggingface.co/datasets/keremberke/shoe-classification) || top1 acc. | top5 acc. | model type | model id | dataset page |
|--- |--- |--- |--- |--- |
| 0.943 | 1.000 | yolov8n-cls | [keremberke/yolov8n-chest-xray-classification](https://huggingface.co/keremberke/yolov8n-chest-xray-classification) | [dataset](https://huggingface.co/datasets/keremberke/chest-xray-classification) |
| 0.942 | 1.000 | yolov8s-cls | [keremberke/yolov8s-chest-xray-classification](https://huggingface.co/keremberke/yolov8s-chest-xray-classification) | [dataset](https://huggingface.co/datasets/keremberke/chest-xray-classification) |
| 0.955 | 1.000 | yolov8m-cls | [keremberke/yolov8m-chest-xray-classification](https://huggingface.co/keremberke/yolov8m-chest-xray-classification) | [dataset](https://huggingface.co/datasets/keremberke/chest-xray-classification) |## Detection Models
| box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.937 | yolov8n | [keremberke/yolov8n-valorant-detection](https://huggingface.co/keremberke/yolov8n-valorant-detection) | [dataset](https://huggingface.co/datasets/keremberke/valorant-object-detection) |
| 0.971 | yolov8s | [keremberke/yolov8s-valorant-detection](https://huggingface.co/keremberke/yolov8s-valorant-detection) | [dataset](https://huggingface.co/datasets/keremberke/valorant-object-detection) |
| 0.965 | yolov8m | [keremberke/yolov8m-valorant-detection](https://huggingface.co/keremberke/yolov8m-valorant-detection) | [dataset](https://huggingface.co/datasets/keremberke/valorant-object-detection) || box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.838 | yolov8n | [keremberke/yolov8n-forklift-detection](https://huggingface.co/keremberke/yolov8n-forklift-detection) | [dataset](https://huggingface.co/datasets/keremberke/forklift-object-detection) |
| 0.851 | yolov8s | [keremberke/yolov8s-forklift-detection](https://huggingface.co/keremberke/yolov8s-forklift-detection) | [dataset](https://huggingface.co/datasets/keremberke/forklift-object-detection) |
| 0.846 | yolov8m | [keremberke/yolov8m-forklift-detection](https://huggingface.co/keremberke/yolov8m-forklift-detection) | [dataset](https://huggingface.co/datasets/keremberke/forklift-object-detection) || box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.844 | yolov8n | [keremberke/yolov8n-csgo-player-detection](https://huggingface.co/keremberke/yolov8n-csgo-player-detection) | [dataset](https://huggingface.co/datasets/keremberke/csgo-object-detection) |
| 0.886 | yolov8s | [keremberke/yolov8s-csgo-player-detection](https://huggingface.co/keremberke/yolov8s-csgo-player-detection) | [dataset](https://huggingface.co/datasets/keremberke/csgo-object-detection) |
| 0.892 | yolov8m | [keremberke/yolov8m-csgo-player-detection](https://huggingface.co/keremberke/yolov8m-csgo-player-detection) | [dataset](https://huggingface.co/datasets/keremberke/csgo-object-detection) || box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.893 | yolov8n | [keremberke/yolov8n-blood-cell-detection](https://huggingface.co/keremberke/yolov8n-blood-cell-detection) | [dataset](https://huggingface.co/datasets/keremberke/blood-cell-object-detection) |
| 0.917 | yolov8s | [keremberke/yolov8s-blood-cell-detection](https://huggingface.co/keremberke/yolov8s-blood-cell-detection) | [dataset](https://huggingface.co/datasets/keremberke/blood-cell-object-detection) |
| 0.927 | yolov8m | [keremberke/yolov8m-blood-cell-detection](https://huggingface.co/keremberke/yolov8m-blood-cell-detection) | [dataset](https://huggingface.co/datasets/keremberke/blood-cell-object-detection) || box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.995 | yolov8n | [keremberke/yolov8n-plane-detection](https://huggingface.co/keremberke/yolov8n-plane-detection) | [dataset](https://huggingface.co/datasets/keremberke/plane-detection) |
| 0.995 | yolov8s | [keremberke/yolov8s-plane-detection](https://huggingface.co/keremberke/yolov8s-plane-detection) | [dataset](https://huggingface.co/datasets/keremberke/plane-detection) |
| 0.995 | yolov8m | [keremberke/yolov8m-plane-detection](https://huggingface.co/keremberke/yolov8m-plane-detection) | [dataset](https://huggingface.co/datasets/keremberke/plane-detection) || box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.209 | yolov8n | [keremberke/yolov8n-nlf-head-detection](https://huggingface.co/keremberke/yolov8n-nlf-head-detection) | [dataset](https://huggingface.co/datasets/keremberke/nfl-object-detection) |
| 0.279 | yolov8s | [keremberke/yolov8s-nlf-head-detection](https://huggingface.co/keremberke/yolov8s-nlf-head-detection) | [dataset](https://huggingface.co/datasets/keremberke/nfl-object-detection) |
| 0.287 | yolov8m | [keremberke/yolov8m-nlf-head-detection](https://huggingface.co/keremberke/yolov8m-nlf-head-detection) | [dataset](https://huggingface.co/datasets/keremberke/nfl-object-detection) || box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.836 | yolov8n | [keremberke/yolov8n-hard-hat-detection](https://huggingface.co/keremberke/yolov8n-hard-hat-detection) | [dataset](https://huggingface.co/datasets/keremberke/hard-hat-detection) |
| 0.834 | yolov8s | [keremberke/yolov8s-hard-hat-detection](https://huggingface.co/keremberke/yolov8s-hard-hat-detection) | [dataset](https://huggingface.co/datasets/keremberke/hard-hat-detection) |
| 0.811 | yolov8m | [keremberke/yolov8m-hard-hat-detection](https://huggingface.co/keremberke/yolov8m-hard-hat-detection) | [dataset](https://huggingface.co/datasets/keremberke/hard-hat-detection) || box [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.967 | yolov8n | [keremberke/yolov8n-table-extraction](https://huggingface.co/keremberke/yolov8n-table-extraction) | [dataset](https://huggingface.co/datasets/keremberke/table-extraction) |
| 0.984 | yolov8s | [keremberke/yolov8s-table-extraction](https://huggingface.co/keremberke/yolov8s-table-extraction) | [dataset](https://huggingface.co/datasets/keremberke/table-extraction) |
| 0.952 | yolov8m | [keremberke/yolov8m-table-extraction](https://huggingface.co/keremberke/yolov8m-table-extraction) | [dataset](https://huggingface.co/datasets/keremberke/table-extraction) |## Segmentation Models
| mask [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.491 | yolov8n-seg | [keremberke/yolov8n-pcb-defect-segmentation](https://huggingface.co/keremberke/yolov8n-pcb-defect-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/pcb-defect-segmentation) |
| 0.517 | yolov8s-seg | [keremberke/yolov8s-pcb-defect-segmentation](https://huggingface.co/keremberke/yolov8s-pcb-defect-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/pcb-defect-segmentation) |
| 0.557 | yolov8m-seg | [keremberke/yolov8m-pcb-defect-segmentation](https://huggingface.co/keremberke/yolov8m-pcb-defect-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/pcb-defect-segmentation) || mask [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.628 | yolov8n-seg | [keremberke/yolov8n-building-segmentation](https://huggingface.co/keremberke/yolov8n-building-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/satellite-building-segmentation) |
| 0.651 | yolov8s-seg | [keremberke/yolov8s-building-segmentation](https://huggingface.co/keremberke/yolov8s-building-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/satellite-building-segmentation) |
| 0.613 | yolov8m-seg | [keremberke/yolov8m-building-segmentation](https://huggingface.co/keremberke/yolov8m-building-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/satellite-building-segmentation) || mask [email protected] | model type | model id | dataset page |
|--- |--- |--- |--- |
| 0.995 | yolov8n-seg | [keremberke/yolov8n-pothole-segmentation](https://huggingface.co/keremberke/yolov8n-pothole-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/pothole-segmentation) |
| 0.928 | yolov8s-seg | [keremberke/yolov8s-pothole-segmentation](https://huggingface.co/keremberke/yolov8s-pothole-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/pothole-segmentation) |
| 0.895 | yolov8m-seg | [keremberke/yolov8m-pothole-segmentation](https://huggingface.co/keremberke/yolov8m-pothole-segmentation) | [dataset](https://huggingface.co/datasets/keremberke/pothole-segmentation) |## Contributing
To contribute to `Awesome-YOLOv8-Models`, follow these steps:
1. Train a YOLOv8 model with ultralytics package | [tutorial](https://github.com/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb)
2. Push your model to hub with ultralyticsplus package | [package readme](https://github.com/fcakyon/ultralyticsplus#push-to--hub)
3. Open a PR or Discussion post in this repo with your hub id.## License
This project is licensed under `MIT` license. See [`LICENSE`](LICENSE) for more information.
![-----------------------------------------------------](https://raw.githubusercontent.com/canturan10/readme-template/master/src/colored_4b.png)
Give a ⭐️ if this project helped you!