Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/koide3/direct_visual_lidar_calibration
A toolbox for target-less LiDAR-camera calibration [ROS1/ROS2]
https://github.com/koide3/direct_visual_lidar_calibration
calibration camera lidar nid ros ros2
Last synced: 2 days ago
JSON representation
A toolbox for target-less LiDAR-camera calibration [ROS1/ROS2]
- Host: GitHub
- URL: https://github.com/koide3/direct_visual_lidar_calibration
- Owner: koide3
- Created: 2022-09-13T01:06:03.000Z (over 2 years ago)
- Default Branch: main
- Last Pushed: 2024-09-22T00:29:02.000Z (4 months ago)
- Last Synced: 2024-10-30T03:44:39.228Z (3 months ago)
- Topics: calibration, camera, lidar, nid, ros, ros2
- Language: C++
- Homepage: https://koide3.github.io/direct_visual_lidar_calibration/
- Size: 815 KB
- Stars: 742
- Watchers: 18
- Forks: 113
- Open Issues: 45
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-and-novel-works-in-slam - [LiDARCam
README
# direct_visual_lidar_calibration
This package provides a toolbox for LiDAR-camera calibration that is:
- **Generalizable**: It can handle various LiDAR and camera projection models including spinning and non-repetitive scan LiDARs, and pinhole, fisheye, and omnidirectional projection cameras.
- **Target-less**: It does not require a calibration target but uses the environment structure and texture for calibration.
- **Single-shot**: At a minimum, only one pairing of a LiDAR point cloud and a camera image is required for calibration. Optionally, multiple LiDAR-camera data pairs can be used for improving the accuracy.
- **Automatic**: The calibration process is automatic and does not require an initial guess.
- **Accurate and robust**: It employs a pixel-level direct LiDAR-camera registration algorithm that is more robust and accurate compared to edge-based indirect LiDAR-camera registration.**Documentation: [https://koide3.github.io/direct_visual_lidar_calibration/](https://koide3.github.io/direct_visual_lidar_calibration/)**
**Docker hub: [koide3/direct_visual_lidar_calibration](https://hub.docker.com/repository/docker/koide3/direct_visual_lidar_calibration)**[![Build](https://github.com/koide3/direct_visual_lidar_calibration/actions/workflows/push.yaml/badge.svg)](https://github.com/koide3/direct_visual_lidar_calibration/actions/workflows/push.yaml) [![Docker Image Size (latest by date)](https://img.shields.io/docker/image-size/koide3/direct_visual_lidar_calibration)](https://hub.docker.com/repository/docker/koide3/direct_visual_lidar_calibration)
![213393920-501f754f-c19f-4bab-af82-76a70d2ec6c6](https://user-images.githubusercontent.com/31344317/213427328-ddf72a71-9aeb-42e8-86a5-9c2ae19890e3.jpg)
[Video](https://www.youtube.com/watch?v=7TM7wGthinc&feature=youtu.be)
## Dependencies
- [ROS1/ROS2](https://www.ros.org/)
- [PCL](https://pointclouds.org/)
- [OpenCV](https://opencv.org/)
- [GTSAM](https://gtsam.org/)
- [Ceres](http://ceres-solver.org/)
- [Iridescence](https://github.com/koide3/iridescence)
- [SuperGlue](https://github.com/magicleap/SuperGluePretrainedNetwork) [optional]## Getting started
1. [Installation](https://koide3.github.io/direct_visual_lidar_calibration/installation/) / [Docker images](https://koide3.github.io/direct_visual_lidar_calibration/docker/)
2. [Data collection](https://koide3.github.io/direct_visual_lidar_calibration/collection/)
3. [Calibration example](https://koide3.github.io/direct_visual_lidar_calibration/example/)
4. [Program details](https://koide3.github.io/direct_visual_lidar_calibration/programs/)## License
This package is released under the MIT license.
## Publication
Koide et al., General, Single-shot, Target-less, and Automatic LiDAR-Camera Extrinsic Calibration Toolbox, ICRA2023, [[PDF]](https://staff.aist.go.jp/k.koide/assets/pdf/icra2023.pdf)
## Contact
Kenji Koide, National Institute of Advanced Industrial Science and Technology (AIST), Japan