https://github.com/koriavinash1/fetal-brain-segmentation
Fully automatic technique for fetal brain segmentation using deep convolutional neural network
https://github.com/koriavinash1/fetal-brain-segmentation
ai artificial-intelligence automatic-segmentation deep-convolutional-neural-networks deep-learning fetal-imaging fmri-analysis medical-image-analysis segmentation unet-image-segmentation
Last synced: about 2 months ago
JSON representation
Fully automatic technique for fetal brain segmentation using deep convolutional neural network
- Host: GitHub
- URL: https://github.com/koriavinash1/fetal-brain-segmentation
- Owner: koriavinash1
- License: mit
- Created: 2018-01-27T16:17:26.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-08-05T09:18:50.000Z (almost 7 years ago)
- Last Synced: 2025-04-20T09:39:58.185Z (2 months ago)
- Topics: ai, artificial-intelligence, automatic-segmentation, deep-convolutional-neural-networks, deep-learning, fetal-imaging, fmri-analysis, medical-image-analysis, segmentation, unet-image-segmentation
- Language: Jupyter Notebook
- Homepage:
- Size: 3.12 MB
- Stars: 13
- Watchers: 3
- Forks: 6
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Fetal-Brain-Segmentation
## Introduction
This repository contains the implementation of 2D UNet architecture for fetal brain segmentation
## Network Architecture

(https://arxiv.org/pdf/1505.04597.pdf)## Raw data

First figure shows raw MR image, second hand annotated groundtruth image and last shows weight map for spatial weighted cross entropy loss
## Results
### Model predictions

### Dice score with epochs

## How to use?
~~~~
git clone https://github.com/koriavinash1/Fetal-Brain-Segmentation.git
cd Fetal-Brain-Segmentation
pip install -r requirements.txt~~~~
## Pre-Processing data
Run Generate_Procesed_Data notebook for generating pre-processed data
## Folder structure
> ./src consists all source codes
> > config -> all initial configurations
> > data_loader -> multithread data loader
> > estimator -> model estimator class
> > network -> network architecture definition
> > runner -> main function
``` python runner.py``` for training and ```python predictor.py``` for testing the model
If any comments or issues, pull requests/issues are Welcomed....
Thankyou
### Contact
* Avinash Kori ([email protected])