Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/kyrcha/awesome-algofairness
A curated list of awesome algorithmic fairness resources.
https://github.com/kyrcha/awesome-algofairness
List: awesome-algofairness
Last synced: 3 months ago
JSON representation
A curated list of awesome algorithmic fairness resources.
- Host: GitHub
- URL: https://github.com/kyrcha/awesome-algofairness
- Owner: kyrcha
- Created: 2019-09-06T09:48:14.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2019-09-05T06:21:06.000Z (about 5 years ago)
- Last Synced: 2024-04-09T14:40:52.450Z (7 months ago)
- Homepage:
- Size: 14.6 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: contributing.md
- Code of conduct: code-of-conduct.md
Awesome Lists containing this project
- ultimate-awesome - awesome-algofairness - A curated list of awesome algorithmic fairness resources. (Other Lists / PowerShell Lists)
README
# Awesome Algorithmic Fairness [![Awesome](https://awesome.re/badge.svg)](https://awesome.re)
> A curated list of awesome algorithmic fairness resources.
## Introduction
- [Machine Bias](https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing)
- [Tutorial: 21 fairness definitions and their politics](https://youtu.be/jIXIuYdnyyk)
- [NIPS 2017 Fairness In Machine Leaning](https://nips.cc/Conferences/2017/Schedule?showEvent=8734). ([Video](https://vimeo.com/248490141)), ([Slides](http://fairml.how/tutorial/#/))
- [A Tutorial on Fairness in Machine Learning](https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb)
- [Attacking discrimination with smarter machine learning](http://research.google.com/bigpicture/attacking-discrimination-in-ml/)
- [Google Developers ML Fairness Overview](https://developers.google.com/machine-learning/fairness-overview/)
- [Google Developers ML Crash Course Fairness](https://developers.google.com/machine-learning/crash-course/fairness/video-lecture)## Tutorials
* [AIF360 Tutorials](http://aif360.mybluemix.net/resources#tutorials)
## Guideline, Principle and Practices
* [Google AI - Responsible AI Practices](https://ai.google/education/responsible-ai-practices)
## Selection of research papers
## Software and data sets
### Visualization
* [Facets](https://pair-code.github.io/facets/)
### Python
* [Fairness comparison](https://github.com/algofairness/fairness-comparison)
* [AI Fairness 360 Open Source Toolkit](http://aif360.mybluemix.net/)
* [BlackBoxAuditing](https://github.com/algofairness/BlackBoxAuditing)
* [Themis ML](https://github.com/cosmicBboy/themis-ml)
* [FairML](https://github.com/adebayoj/fairml)
* [Themis](https://github.com/LASER-UMASS/Themis)
* [FairSquare](https://github.com/sedrews/fairsquare)
* [FairTest](https://github.com/columbia/fairtest)
* [Aequitas](https://github.com/sakshiudeshi/Aequitas)
* [Aequitas](https://dsapp.uchicago.edu/projects/aequitas/)
* [AuditAI](https://github.com/pymetrics/audit-ai)
* [What If Tool](https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins/interactive_inference)## Datasets
* [COMPAS Recidivism Risk](https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis) ([GitHub](https://github.com/propublica/compas-analysis))
* [Statlog German Credit Data](https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data))
* [Default of credit card clients](https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients)
* [Census Income](http://archive.ics.uci.edu/ml/datasets/Census+Income) (same as [Adult](https://archive.ics.uci.edu/ml/datasets/adult))
* [SAT](http://www.fairness-measures.org/Pages/Datasets/SAT.html)
* [PSU-Chile](http://www.fairness-measures.org/Pages/Datasets/SATChile.html)
* [SOEP](http://www.fairness-measures.org/Pages/Datasets/SOEP.html)
* [MEPS](https://meps.ahrq.gov/mepsweb/) (Medical Expenditure Panel Survey)
* [The Dutch Virtual Census of 2001 - IPUMS Subset](https://microdata.worldbank.org/index.php/catalog/2102/study-description)
* [Law School Admissions Council’s National Longitudinal Bar Passage Study](https://files.eric.ed.gov/fulltext/ED469370.pdf)## Organizations, workgroups and conferences
### Corporation research programs
* IBM [Trusted AI](https://www.research.ibm.com/artificial-intelligence/trusted-ai/)
* Google Brain [Pair (People + AI Research)](https://ai.google/research/teams/brain/pair)### Academic research centers
* The University of Chicago [Center of Data Science and Public Policy](https://dsapp.uchicago.edu)
* UC Berkeley [Center for Technology, Society & Policy](https://ctsp.berkeley.edu/) [Algorithmic Fairness and Opacity Worknig Group](http://afog.berkeley.edu/)
* Harvard [Algorithmic Fairness](http://fairness.haverford.edu/)
* MIT [Active Fairness in Algorithmc Decision Making](https://www.media.mit.edu/projects/active-fairness/)
* [AI Now Institute](https://ainowinstitute.org/)### Activist groups
* [AlgorithmWatch](AlgorithmWatch)
### Conferences and workshops
* [ACM FAT*](https://fatconference.org/)
* [AIES](http://www.aies-conference.com/)
* [AI Now Symposium](https://symposium.ainowinstitute.org/)
* [FAT/ML](http://www.fatml.org/)
* [FairWare](http://fairware.cs.umass.edu/index.html)## Contribute
Contributions welcome! Read the [contribution guidelines](contributing.md) first.
## License
[![CC0](http://mirrors.creativecommons.org/presskit/buttons/88x31/svg/cc-zero.svg)](http://creativecommons.org/publicdomain/zero/1.0)
To the extent possible under law, Pomin Wu has waived all copyright and
related or neighboring rights to this work.