Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/liang-hou/awesome-DGM-papers

awesome deep generative models papers
https://github.com/liang-hou/awesome-DGM-papers

List: awesome-DGM-papers

generative-adversarial-network generative-models varational-autoencoder

Last synced: 3 months ago
JSON representation

awesome deep generative models papers

Awesome Lists containing this project

README

        

# awesome-DGM-papers

Conference papers on deep generative models.

## ICLR 2020

### Oral

- [Your Classifier is Secretly an Energy based Model and You Should Treat it Like One](https://openreview.net/forum?id=Hkxzx0NtDB), Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, Kevin Swersky
- [High Fidelity Speech Synthesis with Adversarial Networks](https://openreview.net/forum?id=r1gfQgSFDr), Mikołaj Bińkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Norman Casagrande, Luis C. Cobo, Karen Simonyan

### Spotlight

- [Stable Rank Normalization for Improved Generalization in Neural Networks and GANs](https://openreview.net/forum?id=H1enKkrFDB), Amartya Sanyal, Philip H. Torr, Puneet K. Dokania
- [Scaling Autoregressive Video Models](https://openreview.net/forum?id=rJgsskrFwH), Dirk Weissenborn, Oscar Täckström, Jakob Uszkoreit

### Poster
- [AE-OT: A New Generative Model based on Extended Semi-Discrete Optimal Transport](https://openreview.net/forum?id=HkldyTNYwH), Dongsheng An, Yang Guo, Na Lei, Zhongxuan Luo, Shing-Tung Yau, Xianfeng Gu
- [Input Complexity and Out-of-distribution Detection with Likelihood-based Generative Models](https://openreview.net/forum?id=SyxIWpVYvr), Joan Serrà, David Álvarez, Vicenç Gómez, Olga Slizovskaia, José F. Núñez, Jordi Luque
- [VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation](https://openreview.net/forum?id=rJgUfTEYvH), Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, Durk Kingma
- [Difference-Seeking Generative Adversarial Network--Unseen Sample Generation](https://openreview.net/forum?id=rygjmpVFvB), Yi Lin Sung, Sung-Hsien Hsieh, Soo-Chang Pei, Chun-Shien Lu
- [From Variational to Deterministic Autoencoders](https://openreview.net/forum?id=S1g7tpEYDS), Partha Ghosh, Mehdi S. M. Sajjadi, Antonio Vergari, Michael Black, Bernhard Scholkopf
- [Generative Ratio Matching Networks](https://openreview.net/forum?id=SJg7spEYDS), Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton
- [On the "Steerability" of Generative Adversarial Networks](https://openreview.net/forum?id=HylsTT4FvB), Ali Jahanian*, Lucy Chai*, Phillip Isola
- [Semi-Supervised Generative Modeling for Controllable Speech Synthesis](https://openreview.net/forum?id=rJeqeCEtvH), Raza Habib, Soroosh Mariooryad, Matt Shannon, Eric Battenberg, RJ Skerry-Ryan, Daisy Stanton, David Kao, Tom Bagby
- [Towards Better Understanding of Adaptive Gradient Algorithms in Generative Adversarial Nets](https://openreview.net/forum?id=SJxIm0VtwH), Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, Tianbao Yang
- [Variational Hetero-Encoder Randomized GANs for Joint Image-Text Modeling](https://openreview.net/forum?id=H1x5wRVtvS), Hao Zhang, Bo Chen, Long Tian, Zhengjue Wang, Mingyuan Zhou
- [On the Need for Topology-Aware Generative Models for Manifold-Based Defenses](https://openreview.net/forum?id=r1lF_CEYwS), Uyeong Jang, Susmit Jha, Somesh Jha
- [A Closer Look at the Optimization Landscapes of Generative Adversarial Networks](https://openreview.net/forum?id=HJeVnCEKwH), Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, Simon Lacoste-Julien
- [Generative Models for Effective ML on Private, Decentralized Datasets](https://openreview.net/forum?id=SJgaRA4FPH), Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen, Rajiv Mathews, Blaise Aguera y Arcas
- [Smoothness and Stability in GANs](https://openreview.net/forum?id=HJeOekHKwr), Casey Chu, Kentaro Minami, Kenji Fukumizu
- [Kernel of CycleGAN as a Principal Homogeneous Space](https://openreview.net/forum?id=B1eWOJHKvB), Nikita Moriakov, Jonas Adler, Jonas Teuwen
- [U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation](https://openreview.net/forum?id=BJlZ5ySKPH), Junho Kim, Minjae Kim, Hyeonwoo Kang, Kwang Hee Lee
- [Understanding the Limitations of Conditional Generative Models](https://openreview.net/forum?id=r1lPleBFvH), Ethan Fetaya, Joern-Henrik Jacobsen, Will Grathwohl, Richard Zemel
- [Mixed-curvature Variational Autoencoders](https://openreview.net/forum?id=S1g6xeSKDS), Ondrej Skopek, Octavian-Eugen Ganea, Gary Bécigneul
- [Adversarial Lipschitz Regularization](https://openreview.net/forum?id=Bke_DertPB), Dávid Terjék
- [Consistency Regularization for Generative Adversarial Networks](https://openreview.net/forum?id=S1lxKlSKPH), Han Zhang, Zizhao Zhang, Augustus Odena, Honglak Lee
- [The Shape of Data: Intrinsic Distance for Data Distributions](https://openreview.net/forum?id=HyebplHYwB), Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alex Bronstein, Ivan Oseledets, Emmanuel Mueller

## ICML 2020

- [Do GANs always have Nash equilibria?](https://proceedings.mlr.press/v119/farnia20a.html), Farzan Farnia, Asuman Ozdaglar
- [AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks](https://proceedings.mlr.press/v119/fu20b.html), Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, Zhangyang Wang
- [SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification](https://proceedings.mlr.press/v119/golany20a.html), omer Golany, Kira Radinsky, Daniel Freedman
- [SGD Learns One-Layer Networks in WGANs](https://proceedings.mlr.press/v119/lei20b.html), Qi Lei, Jason Lee, Alex Dimakis, Constantinos Daskalakis
- [InfoGAN-CR and ModelCentrality: Self-supervised Model Training and Selection for Disentangling GANs](https://proceedings.mlr.press/v119/lin20e.html), Zinan Lin, Kiran Thekumparampil, Giulia Fanti, Sewoong Oh
- [Semi-Supervised StyleGAN for Disentanglement Learning](https://proceedings.mlr.press/v119/nie20a.html), Weili Nie, Tero Karras, Animesh Garg, Shoubhik Debnath, Anjul Patney, Ankit Patel, Animashree Anandkumar
- [Implicit competitive regularization in GANs](https://proceedings.mlr.press/v119/schaefer20a.html), Florian Schaefer, Hongkai Zheng, Animashree Anandkumar
- [Small-GAN: Speeding up GAN Training using Core-Sets](https://proceedings.mlr.press/v119/sinha20b.html), Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Augustus Odena
- [Bridging the Gap Between f-GANs and Wasserstein GANs](https://proceedings.mlr.press/v119/song20a.html), Jiaming Song, Stefano Ermon
- [Learning disconnected manifolds: a no GAN’s land](https://proceedings.mlr.press/v119/tanielian20a.html), Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, Jeremie Mary
- [Unsupervised Discovery of Interpretable Directions in the GAN Latent Space](https://proceedings.mlr.press/v119/voynov20a.html), Andrey Voynov, Artem Babenko
- [Understanding and Stabilizing GANs’ Training Dynamics Using Control Theory](https://proceedings.mlr.press/v119/xu20d.html), Kun Xu, Chongxuan Li, Jun Zhu, Bo Zhang
- [On Leveraging Pretrained GANs for Generation with Limited Data](https://proceedings.mlr.press/v119/zhao20a.html), Miaoyun Zhao, Yulai Cong, Lawrence Carin
- [Feature Quantization Improves GAN Training](https://proceedings.mlr.press/v119/zhao20d.html), Yang Zhao, Chunyuan Li, Ping Yu, Jianfeng Gao, Changyou Chen
- [Invertible generative models for inverse problems: mitigating representation error and dataset bias](https://proceedings.mlr.press/v119/asim20a.html), Muhammad Asim, Max Daniels, Oscar Leong, Ali Ahmed, Paul Hand
- [VFlow: More Expressive Generative Flows with Variational Data Augmentation](https://proceedings.mlr.press/v119/chen20p.html), Jianfei Chen, Cheng Lu, Biqi Chenli, Jun Zhu, Tian Tian
- [Generative Pretraining From Pixels](https://proceedings.mlr.press/v119/chen20s.html), Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever
- [Fair Generative Modeling via Weak Supervision](https://proceedings.mlr.press/v119/choi20a.html), Kristy Choi, Aditya Grover, Trisha Singh, Rui Shu, Stefano Ermon
- [Evaluating Lossy Compression Rates of Deep Generative Models](https://proceedings.mlr.press/v119/huang20c.html), Sicong Huang, Alireza Makhzani, Yanshuai Cao, Roger Grosse
- [Source Separation with Deep Generative Priors](https://proceedings.mlr.press/v119/jayaram20a.html), Vivek Jayaram, John Thickstun
- [Distribution Augmentation for Generative Modeling](https://proceedings.mlr.press/v119/jun20a.html), Heewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh, Alec Radford, Ilya Sutskever
- [On the Power of Compressed Sensing with Generative Models](https://proceedings.mlr.press/v119/kamath20a.html), Akshay Kamath, Eric Price, Sushrut Karmalkar
- [Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities](https://proceedings.mlr.press/v119/kohler20a.html), Jonas Köhler, Leon Klein, Frank Noe
- [Reliable Fidelity and Diversity Metrics for Generative Models](https://proceedings.mlr.press/v119/naeem20a.html), Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, Jaejun Yoo
- [PolyGen: An Autoregressive Generative Model of 3D Meshes](https://proceedings.mlr.press/v119/nash20a.html), Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, Peter Battaglia
- [Implicit Generative Modeling for Efficient Exploration](https://proceedings.mlr.press/v119/ratzlaff20a.html), Neale Ratzlaff, Qinxun Bai, Li Fuxin, Wei Xu
- [Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data](https://proceedings.mlr.press/v119/such20a.html), Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth Stanley, Jeffrey Clune
- [Perceptual Generative Autoencoders](https://proceedings.mlr.press/v119/zhang20ab.html), Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, Liam Paull
- [Latent Bernoulli Autoencoder](https://proceedings.mlr.press/v119/fajtl20a.html), Jiri Fajtl, Vasileios Argyriou, Dorothy Monekosso, Paolo Remagnino
- [Variational Autoencoders with Riemannian Brownian Motion Priors](https://proceedings.mlr.press/v119/kalatzis20a.html), Dimitrios Kalatzis, David Eklund, Georgios Arvanitidis, Soren Hauberg
- [Topological Autoencoders](https://proceedings.mlr.press/v119/moor20a.html), Michael Moor, Max Horn, Bastian Rieck, Karsten Borgwardt
- [Eliminating the Invariance on the Loss Landscape of Linear Autoencoders](https://proceedings.mlr.press/v119/oftadeh20a.html), Reza Oftadeh, Jiayi Shen, Zhangyang Wang, Dylan Shell
- [ControlVAE: Controllable Variational Autoencoder](https://proceedings.mlr.press/v119/shao20b.html), Huajie Shao, Shuochao Yao, Dachun Sun, Aston Zhang, Shengzhong Liu, Dongxin Liu, Jun Wang, Tarek Abdelzaher
- [Learning Autoencoders with Relational Regularization](https://proceedings.mlr.press/v119/xu20e.html), Hongteng Xu, Dixin Luo, Ricardo Henao, Svati Shah, Lawrence Carin

## NeurIPS 2020

- [Teaching a GAN What Not to Learn](https://papers.nips.cc/paper/2020/hash/29405e2a4c22866a205f557559c7fa4b-Abstract.html), Siddarth Asokan, Chandra Seelamantula
- [Improving GAN Training with Probability Ratio Clipping and Sample Reweighting](https://papers.nips.cc/paper/2020/hash/3eb46aa5d93b7a5939616af91addfa88-Abstract.html), Yue Wu, Pan Zhou, Andrew G. Wilson, Eric Xing, Zhiting Hu
- [GramGAN: Deep 3D Texture Synthesis From 2D Exemplars](https://papers.nips.cc/paper/2020/hash/4df5bde009073d3ef60da64d736724d6-Abstract.html), Tiziano Portenier, Siavash Arjomand Bigdeli, Orcun Goksel
- [Differentiable Augmentation for Data-Efficient GAN Training](https://papers.nips.cc/paper/2020/hash/55479c55ebd1efd3ff125f1337100388-Abstract.html), Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, Song Han
- [COT-GAN: Generating Sequential Data via Causal Optimal Transport](https://papers.nips.cc/paper/2020/hash/641d77dd5271fca28764612a028d9c8e-Abstract.html), Tianlin Xu, Li Kevin Wenliang, Michael Munn, Beatrice Acciaio
- [GANSpace: Discovering Interpretable GAN Controls](https://papers.nips.cc/paper/2020/hash/6fe43269967adbb64ec6149852b5cc3e-Abstract.html), Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, Sylvain Paris
- [Towards a Better Global Loss Landscape of GANs](https://papers.nips.cc/paper/2020/hash/738a6457be8432bab553e21b4235dd97-Abstract.html), Ruoyu Sun, Tiantian Fang, Alexander Schwing
- [Your GAN is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling](https://papers.nips.cc/paper/2020/hash/90525e70b7842930586545c6f1c9310c-Abstract.html), Tong Che, Ruixiang ZHANG, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio
- [GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators](https://papers.nips.cc/paper/2020/hash/9547ad6b651e2087bac67651aa92cd0d-Abstract.html), Dingfan Chen, Tribhuvanesh Orekondy, Mario Fritz
- [Reconstructing Perceptive Images from Brain Activity by Shape-Semantic GAN](https://papers.nips.cc/paper/2020/hash/9813b270ed0288e7c0388f0fd4ec68f5-Abstract.html), Tao Fang, Yu Qi, Gang Pan
- [Instance Selection for GANs](https://papers.nips.cc/paper/2020/hash/99f6a934a7cf277f2eaece8e3ce619b2-Abstract.html), Terrance DeVries, Michal Drozdzal, Graham W. Taylor
- [Top-k Training of GANs: Improving GAN Performance by Throwing Away Bad Samples](https://papers.nips.cc/paper/2020/hash/a851bd0d418b13310dd1e5e3ac7318ab-Abstract.html), Samarth Sinha, Zhengli Zhao, Anirudh Goyal ALIAS PARTH GOYAL, Colin A. Raffel, Augustus Odena
- [GAN Memory with No Forgetting](https://papers.nips.cc/paper/2020/hash/bf201d5407a6509fa536afc4b380577e-Abstract.html), Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, Lawrence Carin
- [Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample](https://papers.nips.cc/paper/2020/hash/c2f32522a84d5e6357e6abac087f1b0b-Abstract.html), Shir Gur, Sagie Benaim, Lior Wolf
- [HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis](https://papers.nips.cc/paper/2020/hash/c5d736809766d46260d816d8dbc9eb44-Abstract.html), Jungil Kong, Jaehyeon Kim, Jaekyoung Bae
- [Elastic-InfoGAN: Unsupervised Disentangled Representation Learning in Class-Imbalanced Data](https://papers.nips.cc/paper/2020/hash/d1e39c9bda5c80ac3d8ea9d658163967-Abstract.html), Utkarsh Ojha, Krishna Kumar Singh, Cho-Jui Hsieh, Yong Jae Lee
- [ColdGANs: Taming Language GANs with Cautious Sampling Strategies](https://papers.nips.cc/paper/2020/hash/db261d4f615f0e982983be499e57ccda-Abstract.html), Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano
- [CircleGAN: Generative Adversarial Learning across Spherical Circles](https://papers.nips.cc/paper/2020/hash/f14bc21be7eaeed046fed206a492e652-Abstract.html), Woohyeon Shim, Minsu Cho
- [ContraGAN: Contrastive Learning for Conditional Image Generation](https://papers.nips.cc/paper/2020/hash/f490c742cd8318b8ee6dca10af2a163f-Abstract.html), Minguk Kang, Jaesik Park
- [Sinkhorn Natural Gradient for Generative Models](https://papers.nips.cc/paper/2020/hash/122e27d57ae8ecb37f3f1da67abb33cb-Abstract.html), Zebang Shen, Zhenfu Wang, Alejandro Ribeiro, Hamed Hassani
- [A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model](https://papers.nips.cc/paper/2020/hash/165a59f7cf3b5c4396ba65953d679f17-Abstract.html), Steffen Czolbe, Oswin Krause, Ingemar Cox, Christian Igel
- [Asymptotic Guarantees for Generative Modeling Based on the Smooth Wasserstein Distance](https://papers.nips.cc/paper/2020/hash/1ac978c8020be6d7212aa71d4f040fc3-Abstract.html), Ziv Goldfeld, Kristjan Greenewald, Kengo Kato
- [Generative View Synthesis: From Single-view Semantics to Novel-view Images](https://papers.nips.cc/paper/2020/hash/3295c76acbf4caaed33c36b1b5fc2cb1-Abstract.html), Tewodros Amberbir Habtegebrial, Varun Jampani, Orazio Gallo, Didier Stricker
- [Training Generative Adversarial Networks by Solving Ordinary Differential Equations](https://papers.nips.cc/paper/2020/hash/3c8f9a173f749710d6377d3150cf90da-Abstract.html), Chongli Qin, Yan Wu, Jost Tobias Springenberg, Andy Brock, Jeff Donahue, Timothy Lillicrap, Pushmeet Kohli
- [Woodbury Transformations for Deep Generative Flows](https://papers.nips.cc/paper/2020/hash/3fb04953d95a94367bb133f862402bce-Abstract.html), You Lu, Bert Huang
- [Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence](https://papers.nips.cc/paper/2020/hash/43bb733c1b62a5e374c63cb22fa457b4-Abstract.html), Thomas Sutter, Imant Daunhawer, Julia Vogt
- [Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation](https://papers.nips.cc/paper/2020/hash/63c17d596f401acb520efe4a2a7a01ee-Abstract.html), Sajad Norouzi, David J. Fleet, Mohammad Norouzi
- [A Decentralized Parallel Algorithm for Training Generative Adversarial Nets](https://papers.nips.cc/paper/2020/hash/7e0a0209b929d097bd3e8ef30567a5c1-Abstract.html), Mingrui Liu, Wei Zhang, Youssef Mroueh, Xiaodong Cui, Jarret Ross, Tianbao Yang, Payel Das
- [Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining](https://papers.nips.cc/paper/2020/hash/81e3225c6ad49623167a4309eb4b2e75-Abstract.html), Austin Tripp, Erik Daxberger, José Miguel Hernández-Lobato
- [Training Generative Adversarial Networks with Limited Data](https://papers.nips.cc/paper/2020/hash/8d30aa96e72440759f74bd2306c1fa3d-Abstract.html), Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila
- [Improved Techniques for Training Score-Based Generative Models](https://papers.nips.cc/paper/2020/hash/92c3b916311a5517d9290576e3ea37ad-Abstract.html), Yang Song, Stefano Ermon
- [Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation](https://papers.nips.cc/paper/2020/hash/9719a00ed0c5709d80dfef33795dcef3-Abstract.html), Yogesh Balaji, Rama Chellappa, Soheil Feizi
- [DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation](https://papers.nips.cc/paper/2020/hash/bcf9d6bd14a2095866ce8c950b702341-Abstract.html), Alexandre Carlier, Martin Danelljan, Alexandre Alahi, Radu Timofte
- [Efficient Learning of Generative Models via Finite-Difference Score Matching](https://papers.nips.cc/paper/2020/hash/de6b1cf3fb0a3aa1244d30f7b8c29c41-Abstract.html), Tianyu Pang, Kun Xu, Chongxuan LI, Yang Song, Stefano Ermon, Jun Zhu
- [GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis](https://papers.nips.cc/paper/2020/hash/e92e1b476bb5262d793fd40931e0ed53-Abstract.html), Katja Schwarz, Yiyi Liao, Michael Niemeyer, Andreas Geiger
- [Learning Semantic-aware Normalization for Generative Adversarial Networks](https://papers.nips.cc/paper/2020/hash/f885a14eaf260d7d9f93c750e1174228-Abstract.html), Heliang Zheng, Jianlong Fu, Yanhong Zeng, Jiebo Luo, Zheng-Jun Zha
- [Goal-directed Generation of Discrete Structures with Conditional Generative Models](https://papers.nips.cc/paper/2020/hash/f9b9f0fef2274a6b7009b5d52f44a3b6-Abstract.html), Amina Mollaysa, Brooks Paige, Alexandros Kalousis
- [Lightweight Generative Adversarial Networks for Text-Guided Image Manipulation](https://papers.nips.cc/paper/2020/hash/fae0b27c451c728867a567e8c1bb4e53-Abstract.html), Bowen Li, Xiaojuan Qi, Philip Torr, Thomas Lukasiewicz
- [Hierarchical Quantized Autoencoders](https://papers.nips.cc/paper/2020/hash/309fee4e541e51de2e41f21bebb342aa-Abstract.html), Will Williams, Sam Ringer, Tom Ash, David MacLeod, Jamie Dougherty, John Hughes
- [Autoregressive Score Matching](https://papers.nips.cc/paper/2020/hash/4a4526b1ec301744aba9526d78fcb2a6-Abstract.html), Chenlin Meng, Lantao Yu, Yang Song, Jiaming Song, Stefano Ermon
- [Implicit Rank-Minimizing Autoencoder](https://papers.nips.cc/paper/2020/hash/a9078e8653368c9c291ae2f8b74012e7-Abstract.html), Li Jing, Jure Zbontar, yann lecun
- [The Autoencoding Variational Autoencoder](https://papers.nips.cc/paper/2020/hash/ac10ff1941c540cd87c107330996f4f6-Abstract.html), Taylan Cemgil, Sumedh Ghaisas, Krishnamurthy Dvijotham, Sven Gowal, Pushmeet Kohli
- [Autoencoders that don't overfit towards the Identity](https://papers.nips.cc/paper/2020/hash/e33d974aae13e4d877477d51d8bafdc4-Abstract.html), Harald Steck
- [NVAE: A Deep Hierarchical Variational Autoencoder](https://papers.nips.cc/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html), Arash Vahdat, Jan Kautz
- [Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder](https://papers.nips.cc/paper/2020/hash/eddea82ad2755b24c4e168c5fc2ebd40-Abstract.html), Zhisheng Xiao, Qing Yan, Yali Amit
- [Compositional Visual Generation with Energy Based Models](https://papers.nips.cc/paper/2020/hash/49856ed476ad01fcff881d57e161d73f-Abstract.html), Yilun Du, Shuang Li, Igor Mordatch
- [Strictly Batch Imitation Learning by Energy-based Distribution Matching](https://papers.nips.cc/paper/2020/hash/524f141e189d2a00968c3d48cadd4159-Abstract.html), Daniel Jarrett, Ioana Bica, Mihaela van der Schaar
- [Bi-level Score Matching for Learning Energy-based Latent Variable Models](https://papers.nips.cc/paper/2020/hash/d25a34b9c2a87db380ecd7f7115882ec-Abstract.html), Fan Bao, Chongxuan LI, Kun Xu, Hang Su, Jun Zhu, Bo Zhang
- [Learning Latent Space Energy-Based Prior Model](https://papers.nips.cc/paper/2020/hash/fa3060edb66e6ff4507886f9912e1ab9-Abstract.html), Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, Ying Nian Wu

## ICLR 2021

### Oral

- [Do 2D GANs Know 3D Shape? Unsupervised 3D Shape Reconstruction from 2D Image GANs](https://openreview.net/forum?id=FGqiDsBUKL0), Xingang Pan, Bo Dai, Ziwei Liu, Chen Change Loy, Ping Luo
- [Score-Based Generative Modeling through Stochastic Differential Equations](https://openreview.net/forum?id=PxTIG12RRHS), Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole
- [Image GANs meet Differentiable Rendering for Inverse Graphics and Interpretable 3D Neural Rendering](https://openreview.net/forum?id=yWkP7JuHX1), Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yinan Zhang, Antonio Torralba, Sanja Fidler
- [Improved Autoregressive Modeling with Distribution Smoothing](https://openreview.net/forum?id=rJA5Pz7lHKb), Chenlin Meng, Jiaming Song, Yang Song, Shengjia Zhao, Stefano Ermon

### Spotlight

- [VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models](https://openreview.net/forum?id=5m3SEczOV8L), Zhisheng Xiao, Karsten Kreis, Jan Kautz, Arash Vahdat
- [Large Scale Image Completion via Co-Modulated Generative Adversarial Networks](https://openreview.net/forum?id=sSjqmfsk95O), Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I-Chao Chang, Yan Xu
- [Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on Images](https://openreview.net/forum?id=RLRXCV6DbEJ), Rewon Child
- [A Good Image Generator Is What You Need for High-Resolution Video Synthesis](https://openreview.net/forum?id=6puCSjH3hwA), Yu Tian, Jian Ren, Menglei Chai, Kyle Olszewski, Xi Peng, Dimitris N. Metaxas, Sergey Tulyakov
- [GAN "Steerability" without optimization](https://openreview.net/forum?id=zDy_nQCXiIj), Nurit Spingarn, Ron Banner, Tomer Michaeli
- [Contrastive Divergence Learning is a Time Reversal Adversarial Game](https://openreview.net/forum?id=MLSvqIHRidA), Omer Yair, Tomer Michaeli
- [Influence Estimation for Generative Adversarial Networks](https://openreview.net/forum?id=opHLcXxYTC_), Naoyuki Terashita, Hiroki Ohashi, Yuichi Nonaka, Takashi Kanemaru
- [Distributional Sliced-Wasserstein and Applications to Generative Modeling](https://openreview.net/forum?id=QYjO70ACDK), Khai Nguyen, Nhat Ho, Tung Pham, Hung Bui
- [Disentangled Recurrent Wasserstein Autoencoder](https://openreview.net/forum?id=O7ms4LFdsX), Jun Han, Martin Renqiang Min, Ligong Han, Li Erran Li, Xuan Zhang
- [On Self-Supervised Image Representations for GAN Evaluation](https://openreview.net/forum?id=NeRdBeTionN), Stanislav Morozov, Andrey Voynov, Artem Babenko

### Poster

- [Training GANs with Stronger Augmentations via Contrastive Discriminator](https://openreview.net/forum?id=eo6U4CAwVmg), Jongheon Jeong, Jinwoo Shin
- [Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space Navigation](https://openreview.net/forum?id=HOFxeCutxZR), Peiye Zhuang, Oluwasanmi O Koyejo, Alex Schwing
- [Using latent space regression to analyze and leverage compositionality in GANs](https://openreview.net/forum?id=sjuuTm4vj0), Lucy Chai, Jonas Wulff, Phillip Isola
- [GANs Can Play Lottery Tickets Too](https://openreview.net/forum?id=1AoMhc_9jER), Xuxi Chen, Zhenyu Zhang, Yongduo Sui, Tianlong Chen
- [CcGAN: Continuous Conditional Generative Adversarial Networks for Image Generation](https://openreview.net/forum?id=PrzjugOsDeE), Xin Ding, Yongwei Wang, Zuheng Xu, William J Welch, Z. Jane Wang
- [Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis](https://openreview.net/forum?id=1Fqg133qRaI), Bingchen Liu, Yizhe Zhu, Kunpeng Song, Ahmed Elgammal
- [DINO: A Conditional Energy-Based GAN for Domain Translation](https://openreview.net/forum?id=WAISmwsqDsb), Konstantinos Vougioukas, Stavros Petridis, Maja Pantic
- [Private Post-GAN Boosting](https://openreview.net/forum?id=6isfR3JCbi), Marcel Neunhoeffer, Steven Wu, Cynthia Dwork
- [GAN2GAN: Generative Noise Learning for Blind Denoising with Single Noisy Images](https://openreview.net/forum?id=SHvF5xaueVn), Sungmin Cha, Taeeon Park, Byeongjoon Kim, Jongduk Baek, Taesup Moon
- [Taming GANs with Lookahead-Minmax](https://openreview.net/forum?id=ZW0yXJyNmoG), Tatjana Chavdarova, Matteo Pagliardini, Sebastian U Stich, François Fleuret, Martin Jaggi
- [Wasserstein-2 Generative Networks](https://openreview.net/forum?id=bEoxzW_EXsa), Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, Evgeny Burnaev
- [Learning Energy-Based Generative Models via Coarse-to-Fine Expanding and Sampling](https://openreview.net/forum?id=aD1_5zowqV), Yang Zhao, Jianwen Xie, Ping Li
- [Generative Time-series Modeling with Fourier Flows](https://openreview.net/forum?id=PpshD0AXfA), Ahmed Alaa, Alex James Chan, Mihaela van der Schaar
- [Conditional Generative Modeling via Learning the Latent Space](https://openreview.net/forum?id=VJnrYcnRc6), Sameera Ramasinghe, Kanchana Nisal Ranasinghe, Salman Khan, Nick Barnes, Stephen Gould
- [not-MIWAE: Deep Generative Modelling with Missing not at Random Data](https://openreview.net/forum?id=tu29GQT0JFy), Niels Bruun Ipsen, Pierre-Alexandre Mattei, Jes Frellsen
- [Private Image Reconstruction from System Side Channels Using Generative Models](https://openreview.net/forum?id=y06VOYLcQXa), Yuanyuan Yuan, Shuai Wang, Junping Zhang
- [Counterfactual Generative Networks](https://openreview.net/forum?id=BXewfAYMmJw), Axel Sauer, Andreas Geiger
- [Learning to Generate 3D Shapes with Generative Cellular Automata](https://openreview.net/forum?id=rABUmU3ulQh), Dongsu Zhang, Changwoon Choi, Jeonghwan Kim, Young Min Kim
- [Reducing the Computational Cost of Deep Generative Models with Binary Neural Networks](https://openreview.net/forum?id=sTeoJiB4uR), Thomas Bird, Friso Kingma, David Barber
- [Group Equivariant Generative Adversarial Networks](https://openreview.net/forum?id=rgFNuJHHXv), Neel Dey, Antong Chen, Soheil Ghafurian
- [Refining Deep Generative Models via Discriminator Gradient Flow](https://openreview.net/forum?id=Zbc-ue9p_rE), Abdul Fatir Ansari, Ming Liang Ang, Harold Soh
- [Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling](https://openreview.net/forum?id=I4c4K9vBNny), Đorđe Miladinović, Aleksandar Stanić, Stefan Bauer, Jürgen Schmidhuber, Joachim M. Buhmann
- [Relating by Contrasting: A Data-efficient Framework for Multimodal Generative Models](https://openreview.net/forum?id=vhKe9UFbrJo), Yuge Shi, Brooks Paige, Philip Torr, Siddharth N
- [Unsupervised Meta-Learning through Latent-Space Interpolation in Generative Models](https://openreview.net/forum?id=XOjv2HxIF6i), Siavash Khodadadeh, Sharare Zehtabian, Saeed Vahidian, Weijia Wang, Bill Lin, Ladislau Boloni
- [Flowtron: an Autoregressive Flow-based Generative Network for Text-to-Speech Synthesis](https://openreview.net/forum?id=Ig53hpHxS4), Rafael Valle, Kevin J. Shih, Ryan Prenger, Bryan Catanzaro
- [Understanding Over-parameterization in Generative Adversarial Networks](https://openreview.net/forum?id=C3qvk5IQIJY), Yogesh Balaji, Mohammadmahdi Sajedi, Neha Mukund Kalibhat, Mucong Ding, Dominik Stöger, Mahdi Soltanolkotabi, Soheil Feizi
- [Evaluating the Disentanglement of Deep Generative Models through Manifold Topology](https://openreview.net/forum?id=djwS0m4Ft_A), Sharon Zhou, Eric Zelikman, Fred Lu, Andrew Y. Ng, Gunnar E. Carlsson, Stefano Ermon
- [Decentralized Attribution of Generative Models](https://openreview.net/forum?id=_kxlwvhOodK), Changhoon Kim, Yi Ren, Yezhou Yang
- [Bowtie Networks: Generative Modeling for Joint Few-Shot Recognition and Novel-View Synthesis](https://openreview.net/forum?id=ESG-DMKQKsD), Zhipeng Bao, Yu-Xiong Wang, Martial Hebert
- [A Geometric Analysis of Deep Generative Image Models and Its Applications](https://openreview.net/forum?id=GH7QRzUDdXG), Binxu Wang, Carlos R Ponce
- [Unsupervised Audiovisual Synthesis via Exemplar Autoencoders](https://openreview.net/forum?id=43VKWxg_Sqr), Kangle Deng, Aayush Bansal, Deva Ramanan
- [Property Controllable Variational Autoencoder via Invertible Mutual Dependence](https://openreview.net/forum?id=tYxG_OMs9WE), Xiaojie Guo, Yuanqi Du, Liang Zhao
- [Anytime Sampling for Autoregressive Models via Ordered Autoencoding](https://openreview.net/forum?id=TSRTzJnuEBS), Yilun Xu, Yang Song, Sahaj Garg, Linyuan Gong, Rui Shu, Aditya Grover, Stefano Ermon
- [Tomographic Auto-Encoder: Unsupervised Bayesian Recovery of Corrupted Data](https://openreview.net/forum?id=YtMG5ex0ou), Francesco Tonolini, Pablo Garcia Moreno, Andreas Damianou, Roderick Murray-Smith

## ICML 2021

- [Uncertainty Principles of Encoding GANs](https://proceedings.mlr.press/v139/feng21c.html), Ruili Feng, Zhouchen Lin, Jiapeng Zhu, Deli Zhao, Jingren Zhou, Zheng-Jun Zha
- [Understanding Noise Injection in GANs](https://proceedings.mlr.press/v139/feng21g.html), Ruili Feng, Deli Zhao, Zheng-Jun Zha
- [Pareto GAN: Extending the Representational Power of GANs to Heavy-Tailed Distributions](https://proceedings.mlr.press/v139/huster21a.html), Todd Huster, Jeremy Cohen, Zinan Lin, Kevin Chan, Charles Kamhoua, Nandi O. Leslie, Cho-Yu Jason Chiang, Vyas Sekar
- [Functional Space Analysis of Local GAN Convergence](https://proceedings.mlr.press/v139/khrulkov21a.html), Valentin Khrulkov, Artem Babenko, Ivan Oseledets
- [Neural SDEs as Infinite-Dimensional GANs](https://proceedings.mlr.press/v139/kidger21b.html), Patrick Kidger, James Foster, Xuechen Li, Terry J Lyons
- [WGAN with an Infinitely Wide Generator Has No Spurious Stationary Points](https://proceedings.mlr.press/v139/no21a.html), Albert No, Taeho Yoon, Kwon Sehyun, Ernest K Ryu
- [On Characterizing GAN Convergence Through Proximal Duality Gap](https://proceedings.mlr.press/v139/sidheekh21a.html), Sahil Sidheekh, Aroof Aimen, Narayanan C Krishnan
- [Generative Adversarial Transformers](https://proceedings.mlr.press/v139/hudson21a.html), Drew A Hudson, Larry Zitnick
- [Provable Lipschitz Certification for Generative Models](https://proceedings.mlr.press/v139/jordan21a.html), Matt Jordan, Alex Dimakis
- [Prior Image-Constrained Reconstruction using Style-Based Generative Models](https://proceedings.mlr.press/v139/kelkar21a.html), Varun A Kelkar, Mark Anastasio
- [NeRF-VAE: A Geometry Aware 3D Scene Generative Model](https://proceedings.mlr.press/v139/kosiorek21a.html), Adam R Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia Schneider, Sona Mokra, Danilo Jimenez Rezende
- [Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models](https://proceedings.mlr.press/v139/lezama21a.html), Jose Lezama, Wei Chen, Qiang Qiu
- [Generative Adversarial Networks for Markovian Temporal Dynamics: Stochastic Continuous Data Generation](https://proceedings.mlr.press/v139/park21d.html), Sung Woo Park, Dong Wook Shu, Junseok Kwon
- [A Language for Counterfactual Generative Models](https://proceedings.mlr.press/v139/tavares21a.html), Zenna Tavares, James Koppel, Xin Zhang, Ria Das, Armando Solar-Lezama
- [Deep Generative Learning via Schrödinger Bridge](https://proceedings.mlr.press/v139/wang21l.html), Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, Can Yang
- [A Unified Generative Adversarial Network Training via Self-Labeling and Self-Attention](https://proceedings.mlr.press/v139/watanabe21a.html), Tomoki Watanabe, Paolo Favaro
- [Adversarial Purification with Score-based Generative Models](https://proceedings.mlr.press/v139/yoon21a.html), Jongmin Yoon, Sung Ju Hwang, Juho Lee
- [Understanding Failures in Out-of-Distribution Detection with Deep Generative Models](https://proceedings.mlr.press/v139/zhang21g.html), Lily Zhang, Mark Goldstein, Rajesh Ranganath
- [Multiscale Invertible Generative Networks for High-Dimensional Bayesian Inference](https://proceedings.mlr.press/v139/zhang21z.html), Shumao Zhang, Pengchuan Zhang, Thomas Y Hou
- [Unified Robust Semi-Supervised Variational Autoencoder](https://proceedings.mlr.press/v139/chen21a.html), Xu Chen
- [Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech](https://proceedings.mlr.press/v139/kim21f.html), Jaehyeon Kim, Jungil Kong, Juhee Son
- [MorphVAE: Generating Neural Morphologies from 3D-Walks using a Variational Autoencoder with Spherical Latent Space](https://proceedings.mlr.press/v139/laturnus21a.html), Sophie C. Laturnus, Philipp Berens
- [Autoencoder Image Interpolation by Shaping the Latent Space](https://proceedings.mlr.press/v139/oring21a.html), Alon Oring, Zohar Yakhini, Yacov Hel-Or
- [Spectral Smoothing Unveils Phase Transitions in Hierarchical Variational Autoencoders](https://proceedings.mlr.press/v139/pervez21a.html), Adeel Pervez, Efstratios Gavves
- [Autoencoding Under Normalization Constraints](https://proceedings.mlr.press/v139/yoon21c.html), Sangwoong Yoon, Yung-Kyun Noh, Frank Park
- [Learning from Nested Data with Ornstein Auto-Encoders](https://proceedings.mlr.press/v139/choi21a.html), Youngwon Choi, Sungdong Lee, Joong-Ho Won
- [Monte Carlo Variational Auto-Encoders](https://proceedings.mlr.press/v139/thin21a.html), Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, Maxim Panov
- [Zero-Shot Text-to-Image Generation](https://proceedings.mlr.press/v139/ramesh21a.html), Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever

## NeurIPS 2021 ([OpenReview](https://openreview.net/group?id=NeurIPS.cc/2021/Conference))

### Oral

- [Moser Flow: Divergence-based Generative Modeling on Manifolds](https://openreview.net/forum?id=qGvMv3undNJ), Noam Rozen, Aditya Grover, Maximilian Nickel, Yaron Lipman
- [Differentiable Quality Diversity](https://openreview.net/forum?id=uJGObgFU0lU), Matthew Christopher Fontaine, Stefanos Nikolaidis
- [Alias-Free Generative Adversarial Networks](https://openreview.net/forum?id=Owggnutk6lE), Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo Aila

### Spotlight

- [Breaking the Dilemma of Medical Image-to-image Translation](https://openreview.net/forum?id=C0GmZH2RnVR), Lingke Kong, Chenyu Lian, Detian Huang, ZhenJiang Li, Yanle Hu, Qichao Zhou
- [Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling](https://openreview.net/forum?id=9BnCwiXB0ty), Valentin De Bortoli, James Thornton, Jeremy Heng, Arnaud Doucet
- [Statistical Regeneration Guarantees of the Wasserstein Autoencoder with Latent Space Consistency](https://openreview.net/forum?id=iFadi3f5V5I), Anish Chakrabarty, Swagatam Das
- [On the Value of Infinite Gradients in Variational Autoencoder Models](https://openreview.net/forum?id=oumDUrf2dAB), Bin Dai, Li Kevin Wenliang, David Wipf
- [Maximum Likelihood Training of Score-Based Diffusion Models](https://openreview.net/forum?id=AklttWFnxS9), Yang Song, Conor Durkan, Iain Murray, Stefano Ermon
- [A Variational Perspective on Diffusion-Based Generative Models and Score Matching](https://openreview.net/forum?id=bXehDYUjjXi), Chin-Wei Huang, Jae Hyun Lim, Aaron Courville
- [Diffusion Models Beat GANs on Image Synthesis](https://openreview.net/forum?id=OU98jZWS3x_), Prafulla Dhariwal, Alexander Quinn Nichol
- [Instance-Conditioned GAN](https://openreview.net/forum?id=aUuTEEcyY_), Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michal Drozdzal, Adriana Romero

### Poster

- [Self-Supervised GANs with Label Augmentation](https://openreview.net/forum?id=MT0pTKLyzkT), Liang Hou, Huawei Shen, Qi Cao, Xueqi Cheng
- [Projected GANs Converge Faster](https://openreview.net/forum?id=fUxqIofPPi), Axel Sauer, Kashyap Chitta, Jens Müller, Andreas Geiger
- [Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective](https://openreview.net/forum?id=WQkGUUNsPu6), Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang
- [Invertible Tabular GANs: Killing Two Birds with One Stone for Tabular Data Synthesis](https://openreview.net/forum?id=tvDBe6K8L5o), JAEHOON LEE, Jihyeon Hyeong, Jinsung Jeon, Noseong Park, Jihoon Cho
- [Non-asymptotic Error Bounds for Bidirectional GANs](https://openreview.net/forum?id=Ifo8sa57U2f), Shiao Liu, Yunfei Yang, Jian Huang, Yuling Jiao, Yang Wang
- [Why Spectral Normalization Stabilizes GANs: Analysis and Improvements](https://openreview.net/forum?id=MLT9wFYMlJ9), Zinan Lin, Vyas Sekar, Giulia Fanti
- [CAM-GAN: Continual Adaptation Modules for Generative Adversarial Networks](https://openreview.net/forum?id=2r6F9duQ6o5), Sakshi Varshney, Vinay Kumar Verma, Srijith P K, Lawrence Carin, Piyush Rai
- [Self-Diagnosing GAN: Diagnosing Underrepresented Samples in Generative Adversarial Networks](https://openreview.net/forum?id=SGZn06ZXcG), Jinhee Lee, Haeri Kim, Youngkyu Hong, Hye Won Chung
- [Particle Cloud Generation with Message Passing Generative Adversarial Networks](https://openreview.net/forum?id=iorEu783qJ5), Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago R F P Tomei, Maurizio Pierini, Mary Touranakou, Jean-roch Vlimant, Dimitrios Gunopulos
- [TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up](https://openreview.net/forum?id=1GTpBZvNUrk), Yifan Jiang, Shiyu Chang, Zhangyang Wang
- [Low-Rank Subspaces in GANs](https://openreview.net/forum?id=Xp5BhDKdil5), Jiapeng Zhu, Ruili Feng, Yujun Shen, Deli Zhao, Zheng-Jun Zha, Jingren Zhou, Qifeng Chen
- [Lip to Speech Synthesis with Visual Context Attentional GAN](https://openreview.net/forum?id=x6z8J_17LP3), Minsu Kim, Joanna Hong, Yong Man Ro
- [Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme](https://openreview.net/forum?id=79xCSCP6qs), ShaoJie Li, Jie Wu, Xuefeng Xiao, Fei Chao, Xudong Mao, Rongrong Ji
- [EditGAN: High-Precision Semantic Image Editing](https://openreview.net/forum?id=ppv5yqhpNyE), Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, Sanja Fidler
- [Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training](https://openreview.net/forum?id=Ja-hVQrfeGZ), Minguk Kang, Woohyeon Joseph Shim, Minsu Cho, Jaesik Park
- [Rethinking Conditional GAN Training: An Approach using Geometrically Structured Latent Manifolds](https://openreview.net/forum?id=Hox8lKfr82L), Sameera Ramasinghe, Moshiur R Farazi, Salman Khan, Nick Barnes, Stephen Gould
- [BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation](https://openreview.net/forum?id=gISH-80g05u), Mingcong Liu, Qiang Li, Zekui Qin, Guoxin Zhang, Pengfei Wan, Wen Zheng
- [Data-Efficient Instance Generation from Instance Discrimination](https://openreview.net/forum?id=9BpjtPMyDQ), Ceyuan Yang, Yujun Shen, Yinghao Xu, Bolei Zhou
- [On the Frequency Bias of Generative Models](https://openreview.net/forum?id=IARK9TWiFRb), Katja Schwarz, Yiyi Liao, Andreas Geiger
- [Improved Transformer for High-Resolution GANs](https://openreview.net/forum?id=zmbiQmdtg9), Long Zhao, Zizhao Zhang, Ting Chen, Dimitris N. Metaxas, Han Zhang
- [Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data](https://openreview.net/forum?id=spjlJ4jeM_), Liming Jiang, Bo Dai, Wayne Wu, Chen Change Loy
- [Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN](https://openreview.net/forum?id=X8SLExrO2Lp), Zhenyu Xie, Zaiyu Huang, Fuwei Zhao, Haoye Dong, Michael Kampffmeyer, Xiaodan Liang
- [CogView: Mastering Text-to-Image Generation via Transformers](https://openreview.net/forum?id=cnWSyJNmeCE), Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao, Hongxia Yang, Jie Tang
- [Improving Visual Quality of Image Synthesis by A Token-based Generator with Transformers](https://openreview.net/forum?id=lGoKo9WS2A_), Yanhong Zeng, Huan Yang, Hongyang Chao, Jianbo Wang, Jianlong Fu
- [Manifold Topology Divergence: a Framework for Comparing Data Manifolds](https://openreview.net/forum?id=Fj6kQJbHwM9), Serguei Barannikov, Ilya Trofimov, Grigorii Sotnikov, Ekaterina Trimbach, Alexander Korotin, Alexander Filippov, Evgeny Burnaev
- [DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks](https://openreview.net/forum?id=XN1M27T6uux), Boris van Breugel, Trent Kyono, Jeroen Berrevoets, Mihaela van der Schaar
- [A Unified View of cGANs with and without Classifiers](https://openreview.net/forum?id=j6KoGtzPYa), Si-An Chen, Chun-Liang Li, Hsuan-Tien Lin
- [Conditional Generation Using Polynomial Expansions](https://openreview.net/forum?id=wPA_5Wsjt8i), Grigorios Chrysos, Markos Georgopoulos, Yannis Panagakis
- [Generative Occupancy Fields for 3D Surface-Aware Image Synthesis](https://openreview.net/forum?id=tHzvH4Rv1Qa), Xudong Xu, Xingang Pan, Dahua Lin, Bo Dai
- [Implicit Generative Copulas](https://openreview.net/forum?id=h1bPe7spQkr), Tim Janke, Mohamed Ghanmi, Florian Steinke
- [Don’t Generate Me: Training Differentially Private Generative Models with Sinkhorn Divergence](https://openreview.net/forum?id=waWmZSw0mn), Tianshi Cao, Alex Bie, Arash Vahdat, Sanja Fidler, Karsten Kreis
- [Learning Generative Vision Transformer with Energy-Based Latent Space for Saliency Prediction](https://openreview.net/forum?id=LoUdcqLuPej), Jing Zhang, Jianwen Xie, Nick Barnes, Ping Li
- [Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals](https://openreview.net/forum?id=Z_J5bCb4Rra), Lang Liu, Krishna Pillutla, Sean Welleck, Sewoong Oh, Yejin Choi, Zaid Harchaoui
- [On the Generative Utility of Cyclic Conditionals](https://openreview.net/forum?id=dPdrrr-YrgX), Chang Liu, Haoyue Tang, Tao Qin, Jintao Wang, Tie-Yan Liu
- [Score-based Generative Neural Networks for Large-Scale Optimal Transport](https://openreview.net/forum?id=PPzV1H4atM4), Max Daniels, Tyler Maunu, PAul HAnd
- [Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators](https://openreview.net/forum?id=wHxnK7Ucogy), Qitian Wu, Rui Gao, Hongyuan Zha
- [On Memorization in Probabilistic Deep Generative Models](https://openreview.net/forum?id=PlGSgjFK2oJ), Gerrit J.J. Van den Burg, Chris Williams
- [Score-based Generative Modeling in Latent Space](https://openreview.net/forum?id=P9TYG0j-wtG), Arash Vahdat, Karsten Kreis, Jan Kautz
- [SketchGen: Generating Constrained CAD Sketches](https://openreview.net/forum?id=Oeb2LbHAfJ4), Wamiq Reyaz Para, Shariq Farooq Bhat, Paul Guerrero, Tom Kelly, Niloy Mitra, Leonidas Guibas, Peter Wonka
- [Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling](https://openreview.net/forum?id=0p0gt1Pn2Gv), Naoya Takeishi, Alexandros Kalousis
- [Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models](https://openreview.net/forum?id=rqjfa49ODLE), Phil Chen, Masha Itkina, Ransalu Senanayake, Mykel Kochenderfer
- [Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation](https://openreview.net/forum?id=Arn2E4IRjEB), Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, Yoshua Bengio
- [Improving Robustness using Generated Data](https://openreview.net/forum?id=0NXUSlb6oEu), Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, Timothy Mann
- [D2C: Diffusion-Decoding Models for Few-Shot Conditional Generation](https://openreview.net/forum?id=4vUZPUKZsr5), Abhishek Sinha, Jiaming Song, Chenlin Meng, Stefano Ermon
- [Shape your Space: A Gaussian Mixture Regularization Approach to Deterministic Autoencoders](https://openreview.net/forum?id=WybjTtCKfGi), Amrutha Saseendran, Kathrin Skubch, Stefan Falkner, Margret Keuper
- [On Density Estimation with Diffusion Models](https://openreview.net/forum?id=2LdBqxc1Yv), Diederik P Kingma, Tim Salimans, Ben Poole, Jonathan Ho
- [Fast Approximation of the Sliced-Wasserstein Distance Using Concentration of Random Projections](https://openreview.net/forum?id=oa1AMhWKrS), Kimia Nadjahi, Alain Durmus, Pierre Jacob, Roland Badeau, Umut Simsekli
- [PortaSpeech: Portable and High-Quality Generative Text-to-Speech](https://openreview.net/forum?id=xmJsuh8xlq), Yi Ren, Jinglin Liu, Zhou Zhao
- [Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models](https://openreview.net/forum?id=-nLW4nhdkO), Keunseo Kim, JunCheol Shin, Heeyoung Kim
- [Topographic VAEs learn Equivariant Capsules](https://openreview.net/forum?id=AVWROGUWpu), T. Anderson Keller, Max Welling
- [ByPE-VAE: Bayesian Pseudocoresets Exemplar VAE](https://openreview.net/forum?id=SBiKnJW9fy), Qingzhong Ai, LIRONG HE, SHIYU LIU, Zenglin Xu
- [Understanding Instance-based Interpretability of Variational Auto-Encoders](https://openreview.net/forum?id=a5-37ER8qTI), Zhifeng Kong, Kamalika Chaudhuri
- [Local Disentanglement in Variational Auto-Encoders Using Jacobian $L_1$ Regularization](https://openreview.net/forum?id=8xyNqPvFZwC), Travers Rhodes, Daniel Lee
- [Consistency Regularization for Variational Auto-Encoders](https://openreview.net/forum?id=djbC2A4uTHP), Samarth Sinha, Adji Bousso Dieng