Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/lichen14/awesome-weakly-supervised-segmentation

Weakly Supervised Learning for Image Segmentation, a collection of literature reviews and code implementations.
https://github.com/lichen14/awesome-weakly-supervised-segmentation

List: awesome-weakly-supervised-segmentation

Last synced: 16 days ago
JSON representation

Weakly Supervised Learning for Image Segmentation, a collection of literature reviews and code implementations.

Awesome Lists containing this project

README

        

# Weakly-supervised-learning-for-image-analysis

[![Awesome](https://awesome.re/badge.svg)](https://awesome.re) ![GitHub stars](https://img.shields.io/github/stars/lichen14/awesome-weakly-supervised-segmentation?color=yellow) ![GitHub forks](https://img.shields.io/github/forks/lichen14/awesome-weakly-supervised-segmentation?color=green&label=Fork) ![visitors](https://visitor-badge.glitch.me/badge?page_id=lichen14.awesome-weakly-supervised-segmentation)
* Recently, weak-supervised image analysis has become a hot topic in medical&natural image computing. Unfortunately, there are only a few open-source codes and datasets, since the privacy policy and others. For easy evaluation and fair comparison, we are trying to build a weak-supervised image analysis benchmark to boost the weak-supervised learning research in the image computing community.
* If you are interested, you can push your implementations or ideas to this repo or contact [me](https://lichen14.github.io/) at any time.
* My personal interest is mainly focused on medical image segmentation tasks, but this repo will also collect many papers on natural image detection and segmentation tasks.
### Typical weak annotations include image-level labels, bounding boxes, points, and scribbles. This repo focus on points and scribbles.

## Content
- [Literature List](#literature-list)
- [Benchmark](#benchmark)
* [Medical Images](#medical-images)
+ [VS & BraTS](#brain-tumor-segmentation)
+ [COVID-19](#is-covid-dataset)
+ [ACDC](#acdc-dataset)
+ [MSCMRseg](#mscmrseg-dataset)
+ [LVSC](#lvsc-dataset)
+ [CHAOS](#chaos-dataset)
* [Natural Images](#natural-images)
+ [COD10K,CAMO,CHAMELEON](#camouflaged-object-detection)
+ [DUTS testing dataset, ECSSD, DUT, PASCAL-S, HKU-IS, THUR](#salient-object-detection)
+ [MS-COCO, PASCAL VOC , Bees, CrowdHuman and Objects365](#semi-or-weak-supervised-object-detection)
* [Others](#others)
- [Tutorial](#tutorial)
* [中文](#中文)
* [English](#english)
- [Conclusion](#conclusion)
- [Questions and Suggestions](#questions-and-suggestions)

## Literature List

Keywords

__`scrib.`__: scribble level label  |  __`point.`__: point level label   | __`box.`__: bounding box label   | __`img.`__: image level label   |  

Statistics: :fire: code is available & stars >= 100  |  :star: popular & cited in a survey  | 
:sunflower: natural scene images  |  :earth_americas: remote sensing images  |  :hospital: medical images

|Date|1st Institute|Title|Code|Publication|Label|Dataset|
|---|---|---|---|---|---|---|
|2022-08|University of Electronic Science and Technology of China 成电王国泰组|PA-Seg: Learning from Point Annotations for 3D Medical Image Segmen- tation using Contextual Regularization and Cross Knowledge Distillation|None|[Arxiv](https://arxiv.org/abs/2208.05669) under TMI revision|__`point.`__ |:hospital: [VS, BraTS](#vs)|
|2022-07|City University of Hong Kong|Weakly-Supervised Camouflaged Object Detection with Scribble Annotation|None|[Arxiv](https://arxiv.org/abs/2207.14083)|__`scrib.`__ |:sunflower: [COD10K, CAMO, CHAMELEON](#camouflaged-object-detection)|
|2022-06|Fudan University|CycleMix: A Holistic Strategy for Medical Image Segmentation from Scribble Supervision|[github](https://github.com/BWGZK/CycleMix)|[CVPR 2022](https://openaccess.thecvf.com/content/CVPR2022/html/Zhang_CycleMix_A_Holistic_Strategy_for_Medical_Image_Segmentation_From_Scribble_CVPR_2022_paper.html)|__`scrib.`__ |:hospital: [ACDC, MSCMRseg](#heart-segmentation)|
|2022-03|Shanghai Jiao Tong University|Scribble2D5: Weakly-Supervised Volumetric Image Segmentation via Scribble Annotations|[github](https://github.com/Qybc/Scribble2D5)|[MICCAI 2022](https://arxiv.org/abs/2205.06779v2)|__`scrib.`__ |:hospital: [ACDC, VS, CHAOS](#heart-segmentation)|
|2022-03|University of Electronic Science and Technology of China 成电王国泰组|Scribble-Supervised Medical Image Segmentation via Dual-Branch Network and Dynamically Mixed Pseudo Labels Supervision|[github](https://github.com/HiLab-git/WSL4MIS)|[MICCAI 2022](https://arxiv.org/abs/2203.02106v1)|__`scrib.`__ |:hospital: [ACDC](#heart-segmentation)|
|2022-06|AWS AI Labs|Omni-DETR: Omni-Supervised Object Detection with Transformers|[github](https://github.com/amazon-research/omni-detr)|[CVPR 2022](https://openaccess.thecvf.com/content/CVPR2022/html/Wang_Omni-DETR_Omni-Supervised_Object_Detection_With_Transformers_CVPR_2022_paper.html)|__`point.`__ __`box.`__ __`img.`__|:sunflower: [MS-COCO, PASCAL VOC, Bees, CrowdHuman, Objects365](#semi-or-weak-supervised-object-detection)|
|2021-09|Wuhan University of Science and Technology|Weakly Supervised Segmentation of COVID19 Infection with Scribble Annotation on CT Image|None|[Pattern Recognition](https://doi.org/10.1016/j.patcog.2021.108341)|__`scrib.`__ |:hospital: [COVID-19](#is-covid-dataset)|
|2021-06|UC Berkeley|Universal Weakly Supervised Segmentation by Pixel-to-Segment Contrastive Learning|[github](https://github.com/twke18/SPML)|[ICLR](https://bair.berkeley.edu/blog/2021/07/22/spml/)|__`scrib.`__ __`point.`__ __`box.`__ __`img.`__|:sunflower: Pascal VOC 2012|
|2021-03|Hong Kong University of Science and Technology|Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion|[github](https://hkchengrex.github.io/MiVOS/)|[CVPR](https://arxiv.org/pdf/2103.07941.pdf)|__`scrib.`__|:sunflower: [Interactive Video Object Segmentation](#TODO)|
|2021-03|University of Edinburgh|Learning to Segment from Scribbles using Multi-scale Adversarial Attention Gates|[github](https://vios-s.github.io/multiscale-adversarial-attention-gates)|[TMI](https://ieeexplore.ieee.org/abstract/document/9389796)|__`scrib.`__|:hospital: [Heart Segmentation](#heart-segmentation), [Abdominal Segmentation](#abdominal-segmentation)|
|2021-01|Element AI|A Weakly Supervised Consistency-based Learning Method for COVID-19 Segmentation in CT Images|[github](https://github.com/IssamLaradji/covid19_weak_supervision)|[WACV](https://ieeexplore.ieee.org/document/9423094/)|__`point.`__|:hospital: COVID-19|
|2020-07|Australian National University|Weakly-Supervised Salient Object Detection via Scribble Annotations|[github](https://github.com/JingZhang617/Scribble_Saliency)|[CVPR](https://ieeexplore.ieee.org/document/9157788)|__`scrib.`__|:sunflower: [DUTS testing dataset, ECSSD, DUT, PASCAL-S, HKU-IS, THUR](#salient-object-detection)|
|2020-09|Rutgers University|Weakly Supervised Deep Nuclei Segmentation Using Partial Points Annotation in Histopathology Images|None|[TMI](https://ieeexplore.ieee.org/abstract/document/9116833)|__`point.`__ |:hospital: |
|2020-06|Ulsan National Institute of Science and Technology|Scribble2Label: Scribble-Supervised Cell Segmentation via Self-Generating Pseudo-Labels with Consistency|[github](https://github.com/hvcl/scribble2label)|[MICCAI](https://link.springer.com/chapter/10.1007/978-3-030-59710-8_2)|__`scrib.`__|:hospital: [Cell segmentation](#cell-segmentation)|

## Benchmark
### Medical images
#### Vestibular Schwannoma
* [VS](https://www.nature.com/articles/s41597-021-01064-w)
#### Brain Tumor Segmentation
* [BraTS](https://doi.org/10.1109/tmi.2014.2377694)

#### [IS-COVID dataset](https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=9098956&ref=)

|Label|Methods|dice|Jaccard|sensitivity|specificity|MAE|
|---|---|---|---|---|---|---|
|Scribble|p-UNet[55]|0.660|0.516|0.833|0.825|0.138|
||WS0D[54]|0.684|0.533|0.842|0.871|0.114|
||S2L[44]|0.708|0.550|0.805|0.926|0.091|
||USTM-Net|0.725|0.582|0.854|0.967|0.086|
|Full|U-Net[49]|0.736|0.595|0.867|0.961|0.082|

#### [Lesion Segmentation (CC-COVID) dataset](https://www.cell.com/cell/pdf/S0092-8674(20)31071-0.pdf)


Label
Methods
Consolidation
Ground-Glass Opacity
Average


Dice
SE
SP
Dice
SE
SP
Dice
SE
SP


Scribble
p-UNet [55]
0.672
0.806
0.908
0.643
0.789
0.894
0.658
0.798
0.901


WSOD [54]
0.695
0.833
0.917
0.674
0.801
0.902
0.685
0.817
0.910


S2L [44]
0.724
0.857
0.934
0.698
0.840
0.928
0.711
0.849
0.931


USTM-Net
0.736
0.862
0.958
0.709
0.829
0.947
0.723
0.846
0.953


Point
WSCL [18]
0.705
0.827
0.920
0.681
0.803
0.916
0.693
0.815
0.918


Full
U-Net [49]
0.748
0.874
0.966
0.713
0.825
0.952
0.731
0.850
0.959

#### Heart Segmentation
* [ACDC dataset](https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html), [scribble available](https://vios-s.github.io/multiscale-adversarial-attention-gates/data)
* [LVSC dataset](https://www.sciencedirect.com/science/article/abs/pii/S1361841513001217), [scribble generation](https://github.com/gvalvano/multiscale-adversarial-attention-gates/blob/fc05d70d411d20147075392c14fced274c1bf6ee/data_interface/scribble_generators/scribble_generators.py#L5)
* [MSCMRseg dataset](https://zmiclab.github.io/zxh/0/mscmrseg19/index.html), [scribble available](https://github.com/BWGZK/CycleMix/tree/main/MSCMR_scribbles)



#### Abdominal Segmentation
* [CHAOS dataset](https://chaos.grand-challenge.org/),[scribble generation](https://github.com/gvalvano/multiscale-adversarial-attention-gates/blob/fc05d70d411d20147075392c14fced274c1bf6ee/data_interface/scribble_generators/scribble_generators.py#L5)
* result style in the table: (Dice) mean±std.

|SupervisionType|Model|ACDC|LVSC|CHAOS-T1|CHAOS-T2|
|----|---------|----|----|----|----|
|Scribble|UNet pcE|79.0±0.06|62.3±0.09|34.4±0.06|37.5±0.06|
|Scribble | UNet wpcE | 69.4±0.07 | 59.1±0.07 | 40.0±0.05 | 52.1±0.05 |
| Scribble | UNet cRF| 69.6±0.07 | 60.4±0.08 | 40.5±0.05 | 44.7±0.06 |
| Scribble | TS-UNet cRF | 37.3±0.08 | 50.5±0.07 | 29.3±0.05 | 27.6±0.05 |
| Scribble | PostDAE | 69.0±0.06 | 58.6±0.07 | 29.1±0.06 | 35.5±0.05 |
| Scribble | UNet D | 61.8±0.08 | 31.7±0.09 | 44.0±0.03 | 46.3±0.01 |
| Scribble | ACCL | 82.6±0.05 | 65.9±0.08 | 48.3±0.07 | 49.7±0.05 |
| Scribble | [Valvano et al.](https://ieeexplore.ieee.org/abstract/document/9389796) | 84.3±0.04 | 65.5±0.08 | 56.8±0.05 | 57.8±0.04 |
| Mask | UNet UB | 82.0±0.qs | 67.2±0.07 | 60.8±0.06 | 58.6±0.01 |
| Mask | UNet D UB | 83.9±0.05 | 67.9±0.09 | 63.9±0.05 | 60.8±0.01 |

#### Cell Segmentation
* [EM](https://www.sci.utah.edu/~tolga/ResearchWebPages/em-segmentation.html)&[Data Science Bowl 2018](https://www.kaggle.com/c/data-science-bowl-2018/)&[MoNuSeg](https://ieeexplore.ieee.org/document/7872382)
* result style in the table: Dice[mIoU]

|Label|Method|EM|DSB-BF|DSB-Fluo|DSB-Histo|MoNuSeg|
|---|----|---|---|---|---|---|
|Scribble|GrabCut[8]|0.5288[0.6066]|0.7328[0.7207]|0.8019[0.7815]|0.6969[0.5961]|0.1534[0.0703]|
|Scribble|Pseudo-Label[6]|0.9126[0.9096]|0.6177[0.6826]|0.8109[0.8136]|0.7888[0.7096]|0.6113[0.5607]|
|Scribble|pCEOnly[16]|0.9000[0.9032]|0.7954[0.7351]|0.8293[0.8375]|0.7804[0.7173]|0.6319[0.5766]|
|Scribble|rLoss[16]|0.9108[0.9100]|0.7993[0.7280]|0.8334[0.8394]|0.7873[0.7177]|0.6337[0.5789]|
|Scribble|[Scribble2Label](https://link.springer.com/chapter/10.1007/978-3-030-59710-8_2)|0.9208[0.9167]|0.8236[0.7663]|0.8426[0.8443]|0.7970[0.7246]|0.6408[0.5811]|
|Point|Qu[13]|-|-|-|0.5544[0.7204]|0.6099[0.7127]|
|Full|Full|0.9298[0.9149]|0.8774[0.7879]|0.8688[0.8390]|0.8134[0.7014]|0.7014[0.6677]|

### Natural Images
#### Camouflaged Object Detection
* [COD10K](https://ieeexplore.ieee.org/document/9156837/)
* [CAMO](https://www.sciencedirect.com/science/article/abs/pii/S1077314219300608)
* [CHAMELEON](https://www.polsl.pl/rau6/chameleon-database-animal-camouflage-analysis/)

#### Semi or Weak-Supervised Object Detection
* [MS-COCO](https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48)
* [PASCAL VOC](https://link.springer.com/article/10.1007/s11263-009-0275-4)

* [Bees](https://lila.science/datasets/boxes-on-bees-and-pollen)
* [CrowdHuman](https://arxiv.org/abs/1805.00123v1)
* [Objects365](https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf)

#### Salient Object Detection
* [DUTS](https://ieeexplore.ieee.org/document/8099887)
* [ECSSD](https://ieeexplore.ieee.org/document/6618997)
* [DUT](https://ieeexplore.ieee.org/document/6619251)
* [PASCAL-S](https://ieeexplore.ieee.org/document/6909437)
* [HKU-IS](https://ieeexplore.ieee.org/document/7299184/)
* [THUR](https://link.springer.com/article/10.1007/s00371-013-0867-4)

### Others

## Tutorial
* 中文:
1. https://zhuanlan.zhihu.com/p/81404885
2. https://baijiahao.baidu.com/s?id=1632614040925107215&wfr=spider&for=pc
* English:
1. https://ai.stanford.edu/blog/weak-supervision
2. https://www.snorkel.org/blog/weak-supervision
3. Zhou Z H. [A brief introduction to weakly supervised learning](https://academic.oup.com/nsr/article/5/1/44/4093912). National science review, 2018, 5(1): 44-53.
## Conclusion
* This repository provides daily-update literature reviews, algorithms' implementation, and some examples of using PyTorch for weak-supervised image segmentation. The project is under development.
In the future, it will support 2D and 3D semi-supervised image segmentation and includes five widely-used algorithms' implementations.

* In the next two or three months, we will provide more algorithms' implementations, examples, and pre-trained models.

## Questions and Suggestions
* If you have any questions or suggestions about this project, please contact me through email: `[email protected]`.