Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/marcionicolau/awesome-neurosymbolic-cv
Awesome Neurosymbolic Computer Vision
https://github.com/marcionicolau/awesome-neurosymbolic-cv
List: awesome-neurosymbolic-cv
Last synced: 3 months ago
JSON representation
Awesome Neurosymbolic Computer Vision
- Host: GitHub
- URL: https://github.com/marcionicolau/awesome-neurosymbolic-cv
- Owner: marcionicolau
- License: mit
- Created: 2024-01-09T14:23:38.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2024-01-10T12:48:02.000Z (10 months ago)
- Last Synced: 2024-04-15T09:10:13.754Z (7 months ago)
- Size: 38.1 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- ultimate-awesome - awesome-neurosymbolic-cv - Awesome Neurosymbolic Computer Vision. (Other Lists / PowerShell Lists)
README
# Awesome Neurosymbolic Computer Vision
This repository is built for paper: Neurosymbolic Computer Vision: A Survey## Citation
- Neurosymbolic Computer Vision Publications
- [Learning and Reasoning from symbolic rules](#learning-and-reasoning-from-symbolic-rules)
- [Learning from symbolic rules](#learning-from-symbolic-rules)
- [Reasoning from symbolic rules](#reasoning-from-symbolic-rules)
- [Learning and Reasoning from approximated rules](#learning-and-reasoning-from-approximated-rules)
- [Frameworks](#frameworks)
- [Datasets](#datasets)## Learning and Reasoning from symbolic rules
- *ABL*: Bridging Machine Learning and Logical Reasoning by Abductive Learning. 2019. [📑](https://proceedings.neurips.cc/paper_files/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf).
- *LB-VQA*: Visual Question Answering based on Formal Logic. 2021. [📑](https://doi.org/10.1109/icmla52953.2021.00157).
- *DeepProbLog*: Neural probabilistic logic programming in DeepProbLog. 2021. [📑](https://doi.org/10.1016/j.artint.2021.103504). [💻](https://github.com/ML-KULeuven/deepproblog).
- *DFLO*: Analyzing Differentiable Fuzzy Logic Operators. 2022. [📑](https://doi.org/10.1016/j.artint.2021.103602).
- *VDP*: Composing Neural Learning and Symbolic Reasoning with an Application to Visual Discrimination. 2022. [📑](https://doi.org/10.24963/ijcai.2022/466). [💻](https://github.com/muraliadithya/vdp).
- *NLRL*: Neural logic rule layers. 2022. [📑](https://doi.org/10.1016/j.ins.2022.03.021).
- *Rapid*: Rapid Image Labeling via Neuro-Symbolic Learning. 2023. [📑](https://doi.org/10.1145/3580305.3599485). [💻](https://github.com/Neural-Symbolic-Image-Labeling/Rapid/).
- *RelaTe*: Sample-Efficient Learning of Novel Visual Concepts. 2023. [📑](https://doi.org/10.48550/arxiv.2306.09482).
- *SMTLayer*: Learning Modulo Theories. 2023. [📑](https://doi.org/10.48550/arxiv.2301.11435).
- αILP: thinking visual scenes as differentiable logic programs. 2023. [📑](https://doi.org/10.1007/s10994-023-06320-1).## Learning from symbolic rules
- *SBR*: Integrating Prior Knowledge into Deep Learning. 2017. [📑](https://doi.org/10.1109/icmla.2017.00-37).
- *Semantic Loss*: A Semantic Loss Function for Deep Learning with Symbolic Knowledge. 2017. [📑](https://proceedings.mlr.press/v80/xu18h.html). [💻](https://github.com/UCLA-StarAI/Semantic-Loss).
- *RwPK*: Regularizing deep networks with prior knowledge: A constraint-based approach. 2021. [📑](https://doi.org/10.1016/j.knosys.2021.106989). [💻](https://sites.google.com/view/regularizingdeepnetworks/home).
- *logLTN*: Differentiable Fuzzy Logic in the Logarithm Space. 2023. [📑](https://doi.org/10.48550/arxiv.2306.14546). [💻](https://github.com/sbadredd/logltn-experiments).
## Reasoning from symbolic rules- *SSR*: A Scalable Reasoning and Learning Approach for Neural-Symbolic Stream Fusion. 2021. [📑](https://doi.org/10.1609/aaai.v35i6.16633).
- *NSL*: Unifying neural learning and symbolic reasoning for spinal medical report generation. 2021. [📑](https://doi.org/10.1016/j.media.2020.101872).
- *NS-VQA*: A Neuro-Symbolic ASP Pipeline for Visual Question Answering. 2022. [📑](https://doi.org/10.1017/s1471068422000229). [💻](https://github.com/macehil/nesy-asp-vqa-pipeline).
- *DUA*: Detect, Understand, Act: A Neuro-symbolic Hierarchical Reinforcement Learning Framework. 2022. [📑](https://doi.org/10.1007/s10994-022-06142-7).
- *FO-SL*: Composing Neural Learning and Symbolic Reasoning with an Application to Visual Discrimination. 2022. [📑](https://doi.org/10.24963/ijcai.2022/466). [💻](https://github.com/muraliadithya/vdp).
## Learning and Reasoning from approximated rules- *SII*: Logic Tensor Networks for Semantic Image Interpretation. 2017. [📑](). [💻](https://gitlab.fbk.eu/donadello/LTN_IJCAI17).
- *▽-FOL*: Neuro-Symbolic Visual Reasoning: Disentangling "Visual" from "Reasoning". 2020. [📑](https://proceedings.mlr.press/v119/amizadeh20a.html). [💻](https://github.com/microsoft/DFOL-VQA).
- *PrediNet*: An Explicitly Relational Neural Network Architecture. 2020. [📑](https://dl.acm.org/doi/abs/10.5555/3524938.3525735).
- *DLM*: Integrating Learning and Reasoning with Deep Logic Models. 2020. [📑](https://doi.org/10.1007/978-3-030-46147-8_31).
- *PrAE*: Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and Execution. 2021. [📑](https://doi.org/10.1109/cvpr46437.2021.00961).
- *Faster-LTN*: A Neuro-Symbolic, End-to-End Object Detection Architecture. 2021. [📑](https://doi.org/10.1007/978-3-030-86340-1_4). [💻](https://gitlab.com/grains2/Faster-LTN).
- *TCAV-LTN*: Neural-Symbolic Integration for Interactive Learning and Conceptual Grounding. 2021. [📑](http://arxiv.org/abs/2112.11805v2).
- *pix2rule*: End-to-end Neuro-symbolic Rule Learning. 2021. [📑](https://ceur-ws.org/Vol-2986/paper3.pdf). [💻](https://github.com/nuric/pix2rule).
- *NeSy XIL*: **Right for the Right Concept**: Revising Neuro-Symbolic Concepts by Interacting with their Explanations. 2021. [📑](https://doi.org/10.1109/cvpr46437.2021.00362). [💻](https://github.com/ml-research/NeSyXIL).
- *Scallop*: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning. 2021. [📑](https://openreview.net/forum?id=ngdcA1tlDvj). [💻](https://github.com/scallop-lang/scallop-old).
- *Apperception Engine*: Making sense of raw input. 2021. [📑](https://doi.org/10.1016/j.artint.2021.103521). [💻](https://github.com/RichardEvans/apperception).
- *PALO*: A probabilistic approximate logic for neuro-symbolic learning and reasoning. 2022. [📑](https://doi.org/10.1016/j.jlamp.2021.100719).
- _BPGR_: A Probabilistic Graphical Model Based on Neural-symbolic Reasoning for Visual Relationship Detection. 2022. [📑](https://doi.org/10.1109/cvpr52688.2022.01035).
- *A-NeSI*: A Scalable Approximate Method for Probabilistic Neurosymbolic Inference. 2022. [📑](https://doi.org/10.48550/arxiv.2212.12393). [💻](https://github.com/HEmile/a-nesi).
- *e-LENs*: Entropy-Based Logic Explanations of Neural Networks. 2022. [📑](https://doi.org/10.1609/aaai.v36i6.20551). [💻](https://github.com/pietrobarbiero/entropy-lens).
- *Graybox XAI*: A Neural-Symbolic learning framework to produce interpretable predictions for image classification. 2022. [📑](https://doi.org/10.1016/j.knosys.2022.109947). [💻](https://github.com/AdriBento/Greybox-).
- *PROTO-LTN*: PROTOtypical Logic Tensor Networks (PROTO-LTN) for Zero Shot Learning. 2022. [📑](https://doi.org/10.1109/icpr56361.2022.9956239). [💻](https://github.com/FrancescoManigrass/PROTO-LTN).
- *RILL*: Reduced Implication-bias Logic Loss for Neuro-Symbolic Learning. 2023. [📑](https://doi.org/10.48550/arxiv.2208.06838). [💻](https://git.nju.edu.cn/Alkane/clion).
- *GBPGR*: A Novel Neural-symbolic System under Statistical Relational Learning. 2023. [📑](https://doi.org/10.48550/arxiv.2309.08931).
- *CL-STE*: Injecting Logical Constraints into Neural Networks via Straight-Through Estimators. 2023. [📑](https://proceedings.mlr.press/v162/yang22h/yang22h.pdf).
- *DCR*: Interpretable Neural-Symbolic Concept Reasoning. 2023. [📑](https://proceedings.mlr.press/v202/barbiero23a.html). [💻](https://github.com/pietrobarbiero/pytorch_explain).
- *NEUMANN*: Learning Differentiable Logic Programs for Abstract Visual Reasoning. 2023. [📑](https://doi.org/10.48550/arxiv.2307.00928). [💻](https://github.com/ml-research/neumann/).
- *LEN*: Logic Explained Networks. 2023. [📑](https://doi.org/10.1016/j.artint.2022.103822). [💻](https://github.com/pietrobarbiero/pytorch_explain).
- *LogicSeg*: Parsing Visual Semantics with Neural Logic Learning and Reasoning. 2023. [📑](http://arxiv.org/abs/2309.13556).
- *NeSyFOLD*: Neurosymbolic Framework for Interpretable Image Classification. 2023. [📑](https://doi.org/10.48550/arxiv.2301.12667).
- *NeuPSL*: Neural Probabilistic Soft Logic. 2023. [📑](https://doi.org/10.24963/ijcai.2023/461). [💻](https://github.com/linqs/neupsl-ijcai23).
- *ILR*: Refining neural network predictions using background knowledge. 2023. [📑](https://doi.org/10.1007/s10994-023-06310-3). [💻](https://github.com/DanieleAlessandro/IterativeLocalRefinement).
- *Semantic Strengthening*: Semantic Strengthening of Neuro-Symbolic Learning. 2023. [📑](https://doi.org/10.48550/arxiv.2302.14207). [💻](https://github.com/UCLAStarAI/Semantic-Strengthening).
## Frameworks- *LTN*: Logic Tensor Networks. 2017. [📑](https://doi.org/10.1016/j.artint.2021.103649). [💻](https://github.com/logictensornetworks/logictensornetworks).
- *Scallop*: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning. 2021. [📑](https://openreview.net/forum?id=ngdcA1tlDvj). [💻](https://www.scallop-lang.org/).
- *PyTorch Explain*: Interpretable Neural-Symbolic Concept Reasoning. 2022. [📑](https://proceedings.mlr.press/v202/barbiero23a.html). [💻](https://pypi.org/project/torch-explain/).
## Datasets- MNIST. [📑](https://doi.org/10.1109/5.726791). [💾](http://yann.lecun.com/exdb/mnist/).
- PASCAL-PART. [📑](https://dl.acm.org/doi/10.1109/CVPR.2014.254). [💾](https://roozbehm.info/pascal-parts/pascal-parts.html).
- CLEVR. [📑](https://doi.org/10.1109/CVPR.2017.215). [💾](https://cs.stanford.edu/people/jcjohns/clevr/).
- GQA. [📑](https://arxiv.org/abs/1902.09506). [💾](https://cs.stanford.edu/people/dorarad/gqa/index.html).
- CIFAR-10. [📑](https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf). [💾](https://www.cs.toronto.edu/~kriz/cifar.html).
- Visual Sudoku. [📑](https://ceur-ws.org/Vol-3212/paper2.pdf). [💾](https://github.com/linqs/visual-sudoku-puzzle-classification).
- CLEVR-Hans. [📑](https://doi.org/10.1109/cvpr46437.2021.00362). [💾](https://github.com/ml-research/CLEVR-Hans).
- ImageNet. [📑](https://doi.org/10.1007/s11263-015-0816-y). [💾](https://www.image-net.org/challenges/LSVRC/2010/index).
- CUB. [📑](https://doi.org/10.1109/ICCV.2011.6126539). [💾](https://www.vision.caltech.edu/datasets/cub_200_2011/).