Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/mawady/awesome-tools-cv
A curated list of development and deployment tools for Computer Vision projects
https://github.com/mawady/awesome-tools-cv
List: awesome-tools-cv
artificial-intelligence awesome-list computer-vision deep-learning image-processing machine-learning python tools
Last synced: 16 days ago
JSON representation
A curated list of development and deployment tools for Computer Vision projects
- Host: GitHub
- URL: https://github.com/mawady/awesome-tools-cv
- Owner: mawady
- Created: 2022-02-25T11:23:25.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2023-02-14T17:45:38.000Z (almost 2 years ago)
- Last Synced: 2024-11-26T00:02:01.492Z (26 days ago)
- Topics: artificial-intelligence, awesome-list, computer-vision, deep-learning, image-processing, machine-learning, python, tools
- Homepage:
- Size: 16.6 KB
- Stars: 4
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- ultimate-awesome - awesome-tools-cv - A curated list of development and deployment tools for Computer Vision projects. (Other Lists / Monkey C Lists)
README
# A curated list of development and deployment tools for Computer Vision projects in Python
---
## Container management
- [Docker](https://www.docker.com) (recommended)
- [Kubernetes](https://kubernetes.io) (recommended)
---
## IDEs
- [VSCode](https://code.visualstudio.com) (recommended)
- [Eclipse](https://www.eclipse.org)
- [PyCharm](https://www.jetbrains.com/pycharm/)
---
## Cloud computing service providers
- [AWS](https://aws.amazon.com) (recommended)
- [GCP](https://cloud.google.com)
- [Azure](https://azure.microsoft.com/)
---
## NoSQL databases
- [MongoDB](https://www.mongodb.com) (recommended)
- [Cassandra](https://cassandra.apache.org/)
---
## SQL databases
- [MySQL](https://www.mysql.com) (recommended)
- [Oracle](https://www.oracle.com/database/)
- [PostgreSQL](https://www.postgresql.org)
---
## In-memory database
- [Redis](https://redis.io) (recommended)
- [Memcached](https://memcached.org)
---
## Distributed streaming platform
- [Kafka](https://kafka.apache.org)
---
## API development tools
- [Thunder Client](https://www.thunderclient.com)
- [Postman](https://www.postman.com) (recommended)
- [Testfully](https://testfully.io)
- [Insomnia](https://insomnia.rest)
---
## Deep learning frameworks
- [PyTorch](https://pytorch.org) (recommended)
- [Tensorflow](https://www.tensorflow.org)
- [Keras](https://keras.io)
- [Theano](https://github.com/Theano/Theano) (discontinued)
- [Caffe](https://caffe.berkeleyvision.org) (discontinued)
---
## ML management and experimentation
- [MLflow](https://mlflow.org)
- [Airflow](https://airflow.apache.org)
- [WandB](https://wandb.ai) (recommended)
- [neptune.ai](https://neptune.ai)
- [DVC](https://dvc.org)
---
## Data augmentation frameworks for computer vision
- [albumentations](https://albumentations.ai) (recommended)
- [imgaug](https://imgaug.readthedocs.io/en/latest/)
- [augmentor](https://augmentor.readthedocs.io/en/master/)
---
## Important libraries for computer vision
- [NumPy](https://numpy.org)
- [OpenCV](https://opencv.org)
- [PIL](https://pillow.readthedocs.io/)
- [Matplotlib](https://matplotlib.org)
- [scikit-learn](https://scikit-learn.org/)
- [SciPy](https://scipy.org)
- [Pandas](https://pandas.pydata.org)
---
## Remote desktop
- [RustDesk -- Free/Opensource](https://rustdesk.com) (recommended)
- [Chrome Remote Desktop -- Free/Proprietary](https://remotedesktop.google.com)
- [AnyDesk -- Free Personal/Proprietary](https://anydesk.com/)
- [TeamViewer-- Free Personal/Proprietary](https://www.teamviewer.com/)
---
## Building interactive python code validation over webpages/LMS
- [PyScript](https://github.com/pyscript/pyscript)
- [DataCamp Light](https://github.com/datacamp/datacamp-light)
- [CodeRunner -- Moodle Plugin](https://coderunner.org.nz)
- [VPL -- Moodle Plugin](https://vpl.dis.ulpgc.es)
---
## Data serialization languages (JSON, YAML, XML)
---
## Ways to save/load data to/from files (CSV, JSON, H5Py, Pickle, NumPy)
---
## Python environment / package managers (pip, pipenv, pypoetry, conda)